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A B S T R A C T

In terms of URL-based features, some studies have classified malicious URLs into a group

with the same attributes. However, the malicious URLs are of two different types, each of

which produces entirely different results. Thus, depending on their intention, adversaries

leave slightly different behavioral traces within the malicious URLs. This paper presents an

in-depth empirical study conducted based on 1,529,433 malicious URLs collected over the

past two years.

In particular, we analyze attackers’ tactical behavior regarding URLs and extract common

features. We then divide them into three different feature pools to determine the level of

compromise of unknown URLs. To leverage detection rates, we employ a similarity matching

technique. We believe that new URLs can be identified through attackers’ habitual URL ma-

nipulation behaviors. This approach covers a large set of malicious URLs with small feature

sets. The accuracy of the proposed approach (up to 70%) is reasonable and the approach

requires only the attributes of URLs to be examined. This model can be utilized during pre-

processing to determine whether input URLs are benign, and as a web filter or a risk-level

scaler to estimate whether a URL is malicious.

© 2018 Elsevier Ltd. All rights reserved.
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1. Introduction

A web server consists of tens of thousands of URL links. Ad-
versaries may inject a short iFrame into one of the webpages
to redirect users to a malicious site. If the infected domain is
a popular website that receives millions of daily visitors, one
malicious URL can contaminate a large number of user ma-
chines in minutes.Therefore, protecting against these malicious
links helps to block daily malware infestations.

However, current antivirus software that supports URL filters
provides domain-based protection. When a user sends an HTTP
request, this software blocks access to a domain if the “Host”
in a header packet exactly matches a domain in a blacklist

database.This web-filtering is very helpful in protecting against
blacklisted domains. These domain-based technologies keep
up with the volume of malicious domains and IP addresses.
Using this approach, Google’s Safe Browsing API (Google, 2016),
McAfee’s SiteAdvisor (McAfee SiteAdvisor software, 2017), or
Symantec’s Safe Web (Norton safe web, 2017) prevents users
from visiting these malicious sites.

However, these web-filtering systems induce a high False-
Positive (FP) rate when malicious domains are inactive. Attackers
quickly remove the attack URLs from the malicious sites. They
may appear some time later, or may not be exposed again on
the same websites. In this regard, if domain-based solutions
refrain from updating their blacklists, users can be blocked
from normal access to an entire website. For instance,
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domain-based Google Safe Browsing prohibits user access to
entire webpages for a grace period, even though attacks have
stopped. For small online companies, a disruption of this nature
can have critical consequences. Currently, most web-filtering
systems cause the same problem. Hence, blocking malicious
URLs instead of malicious domains can be a more acceptable
solution. This enables users to access all the webpages of the
domain except for the malicious links even when FPs are
encountered.

However, for protection against malicious URLs, which have
propagated malware with hundreds of subdomains such as
athersite.com and findhere.org, a URL-based web-filtering
system requires a large-scale blacklist containing all mali-
cious links, in contrast to a domain-based system.

Thus, we propose a URL-based web-filtering model that can
protect against a large number of malicious webpages with very
small blacklist sets.The proposed model protects Internet users
from malware contamination and allows e-service providers
to achieve business continuity. As a result, the premise of our
study is to implement a web-filtering model that prohibits
malware proliferation with minimal FPs and small datasets.

Our main idea is based on the repeatable behavior in an ad-
versary’s URL manipulation, as shown in Table 1. Our objective
is to design a detection model with similarity matching based
on the traceable features of malicious URLs. Our method can
detect large-scale malicious URLs from a small database, even
though no identical match is found unlike domain-based
systems. Consequently, we have two objectives: i) understand-
ing of the important characteristics of malicious URL types, and
ii) proving the validity of our proposed model based on the fea-
tures of malicious URLs.

This paper describes a measurement sample of 1,529,433
malicious URLs collected from a Tier-1 ISP (SK broadband). The
main contributions of this paper are as follows.

1. We introduce new features that characterize malicious URLs,
and which provide useful insights for a new detection model.
Further, we provide previously unreported results and sta-
tistics that are valid for future use.

2. Our behavior-based model increases detection coverage to
70% than current web-filtering systems. Our work is appli-
cable to actual environments.

The remainder of this paper is organized as follows. We
present related work in Section 2. Section 3 defines mali-
cious URLs. Section 4 describes our URL dataset. We furnish
details of our empirical research in Section 5 and provide an
overview of the proposed model in Section 6. In Section 7, the
details of our evaluation are explained, and the experimental
setup and results are reported. We discuss the limitations of
our approach in Section 8. Our conclusions are outlined in
Section 9.

2. Related work

Two methods have been extensively used in the wild to detect
malicious websites.

2.1. Feature-based detection

The methods that are presently emerging only use the URL
structure for detection. Huang et al. (2013) mentioned that the
lexical tokens in the URL are less effective. Instead, they used
the patterns of malicious URL segments, because these are more
informative. However, the main drawback of the greedy selec-
tion algorithm they used is that it cannot process polymorphic
URLs, such as when the pattern */*paypal*.com*/* is changed
to */*paypaaxl*.com*/*. The fixed patterns cannot respond
to URL variations. In other words, this model is not sufficient
for detecting small changes as it needs to regenerate new pat-
terns for subsequent URL detection.

In studies on lexical properties of the URL, McGrath and
Gupta (2008) selected length in the domain and URL, and the
number of unique characters (e.g., dots). They used these fea-
tures to determine the properties of phishing URLs. Similarly,
“Beyond blacklists” (Ma et al., 2009a) performed analysis based
on IP properties (e.g., blacklisted IPs), and geographical loca-
tion. EXPOSURE (Bilge et al., 2011) extracted 15 features
associated with passive DNS analysis. In particular, the authors
defined domain name-based features. They observed the nu-
merical characters and substring length of “domain fluxing,”
which is algorithmically generated. The features were mainly
quantified as counts (#) or a ratio (%). Another DNS paper

Table 1 – Feature sets and features.

Feature Set Feature Name Malicious URL Examples

Host-based features similar domain wsad004.asia, wsad066.asia, wsad123.asia
similar subdomain webhosting50.1blu.de, webhosting52.1blu.de
similar IP prefix 104.149.195.115, 104.149.195.116
similar port 174.139.26.238:801, 174.139.30.222:802
same domain couponmoeum.com/PEG/css/1.js, couponmoeum.com/PEG/css/ad.html
same subdomain aa.sswangima.com, aa.wangma1q.com
same IP 175.126.74.101/files/2.js, 175.126.74.101/files/1.js
same port 2288.org:8832, 6600.org:8832, 8800.org:8832, 8866.org:8832

Path-based features similar pathname sbsjob.co.kr/PEG/js/check_38746.js, dowmi.net/PEG/ad/check_38746.js
same pathname braxico.com/images/m2dcbAnA.php, kappen-orth.de/images/iRsGKfv2.php

Filename-based features similar query type rcjhvqmtkmp?bdhkuyjqwmpi=6621548, rckjyihjpoggki?bxvuwwsceqt=6621548
similar filename 199.188.107.109/yy.html, 199.188.107.109/zz.html
same query type 175.45.4.158/index.php?id=kim031, 175.45.4.158/index.php?id=kim032
same filename 199.188.107.112/xiaoyu.html, 198.2.221.203/xiaoyu.html
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(Antonakakis et al., 2010) proposed a dynamic reputation system
for the attacker’s DNS agility. Features related to DNS include
the diversity of geographical locations, distinct TLD counts, and
the average length of domain names. Prophiler (Canali et al.,
2011) proposed the use of host and URL-based properties. They
observed untrusted WHOIS registration information, domain/
filename/URL lengths, and certain TLDs. They also noted the
absence of subdomains and the presence of an IP address or
port number in the URL. Such features were used to con-
struct classifiers for malicious webpage detection. However, the
feature sets are still weak at identifying URL polymorphism
types using benign attributes, which are surpassed.

On the contrary, in our model, the presence of subdomains
is a critical element for detection.The length of the URL is clas-
sified differently according to the types of malicious URLs
(details in Section 3). We do not consider WHOIS informa-
tion. Instead, we emphasize IP subsequences. Unlike previous
prominent studies (Le et al., 2011; McGrath and Gupta, 2008;
Whittaker et al., 2010), which entailed the selection of fea-
tures related to abnormal behavior, our feature sets resemble
the attackers’ habitual behavior. These features reflect similar
characteristics on URLs, and they share syntactical similarity
with other malicious URLs.

2.2. Blacklist-based detection

In the real world, there are many blacklisting systems, such
as antivirus software-based malicious URL protection systems.

A webpage contains many URLs, ranging from a few to
several hundred links. Thus, finding malicious URLs in a web
server that is composed of myriads of webpages may not be
feasible. To this end, we learned various features from previ-
ous achievements (Antonakakis et al., 2010; Canali et al., 2011;
Huang et al., 2013; Kapravelos and Shoshitaishvili, 2013; Ma
et al., 2009a; Stringhini et al., 2013) and added new indicators
of malicious behavior by verifying significant differences in the
types of malicious URLs. These properties are based on URL-
based, attackers’ tactical habits.

Although a web-filtering system provides high-performance
protection, it can only identify malicious domain patterns that
are identical to those stored within a database. In this regard,
our analysis revealed that more than 70% are closely related
with other malicious URLs. For example, domain names contain
similarities such as 0lg.info, 0ql.info, and 05f.info.

2.3. Others

A method to detect machines that resolve domain names to
networks that have been prone to infections (e.g., malicious
IP spaces), has been developed (Antonakakis et al., 2011). Segugio
(Rahbarinia et al., 2015) searched for machines that were con-
sistently queried, were active only for a very short time, or
pointed to previously abused IP space. This requires a black-
list, whitelist, and passive DNS DB. These systems mainly aim
to detect DNS-based malicious domains, including malware,
phishing, and spam domains. In this approach, we can observe
that they do not leverage the similarity of malicious URL strings
itself formed by attackers. These systems behave differently
from ours.

Perdisci et al. (2013) considers traffic information pro-
duced by malware. Their similarity was based on the total
number of HTTP, GET, and POST requests by malware and the
average length of the URLs. This study searched for semantic
similarity in HTTP traffic. Krishnan et al. (2016) captured a “tree-
like” malicious form on a subtree similarity. However, our
similarity relates to the adversary’s deployment behavior in
a URL lexical format.

WebWinnow (Eshete and Venkatakrishnan, 2014) classi-
fied malicious domains by comparing the features of about 40
different exploit toolkits. They considered the attack proper-
ties in retaining exploit codes such as obfuscation, vulnerable
application verification, blacklist lookup, and cloaking. Simi-
larly, Stock et al. (2016) and Eshete et al. (2015) addressed
approaches to automatically detect the presence of exploit.
However, we consider malicious URL types that trigger exploit
kits than EKs itself.

Consequently, our URL-mining scheme emphasizes the simi-
larities between malicious URLs. The similarity matching
technique is more beneficial than simple domain matching.
It shows high similarity existence without the real-time ad-
dendum of patterns. Accordingly, a major difference between
our technique and previous ones is the use of different feature
sets. Based on these properties, our model enhances the prior
URL-based feature scope as well as the detection range of
current blacklist-based detection.

3. Definition of malicious URLs

Before explaining our approach, we need to understand ma-
licious URL types. All malicious URL types are not equal. For
instance, URLs used in malicious webpages contain three types
in terms of their role. Firstly, there are “landing URLs”.This URL
is very similar to the benign URL with the aim of concealing
the identity of an attack. They resemble benign URLs in terms
of the URL length and lexical format. Second, “distribution URLs”
that contain an exploit toolkit exist. The lexical type of these
URLs differs from that of landing URLs in terms of the length
and lexical format. Lastly, there are URLs that are generated
by malware after drive-by downloads. Many studies focused
on the last type (Holz et al., 2008; Nazario and Holz, 2008).

In this paper, we focus on the first and second types. We
do not believe that the three types of URLs have the same result.
The length of the URLs and the number of dots or subdomains
are not extensively applied for spam filtering (Thomas et al.,
2011). Hence, it may also differ in terms of phishing URLs (Le
et al., 2011), fast flux-based URLs (Holz et al., 2008; Nazario and
Holz, 2008), Twitter stream (Lee and Kim, 2012), or other types
of malicious URLs. For instance, Le et al. (2011) proposed a
method to detect malicious URLs based on URL obfuscation
and URL length. Obfuscation in landing URLs is applied in entire
script code than a URL itself. In addition, the URL length is
similar with benign URL length.

As mentioned above, there are two types of malicious URLs.
Stokes et al. (2010) defined them as landing sites and distri-
bution sites with hops, and Wang et al. (2013) defined the three
components: landing page, redirection URL, and exploitation
URL. In this paper, we categorize malicious URLs as either
landing URLs or distribution URLs. Landing URLs are used to
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redirect users to the attack code, whereas distribution URLs
contain codes that exploit and compromise vulnerable soft-
ware on client machines.Thus, we differentiate malicious URLs
into two distinct groups.

A distribution URL manages multiple landing URLs. Even-
tually, all landing URLs are centralized to distribution URLs.
Therefore, blocking distribution URLs is a key factor to de-
crease the probability of malware proliferation. Another
important facet of distribution URLs is a notable difference in
features (see Table 1), compared with those of landing URLs.
To address this issue, we focus on finding the properties of dis-
tribution URLs constructed for malicious purposes. In particular,
“drive-by downloads” caused by exploit toolkits (EKs) are di-
rectly related to distribution URLs. We then identify the
relevance by analyzing adversaries’ URL deployment behavior.

In general, URL-based detection employs a lexical analy-
sis of the URL itself. However, our approach utilizes
behavioristics, which examines “how attackers operate landing
and distribution URLs,” or “how attackers have shown similar
behavior regarding their IP management.” This behavioral ap-
proach can detect suspicious IPs without counting the hyphens
or dots. That is, some existing models (Eshete, 2013; Ma et al.,
2009b) identify traits using textual analysis, such as the URL
length, hostname length, path length, number of dots, and
number of hyphens. Such features are often used for classi-
fication. In contrast, our behavioral approach considers the
identical attributes or attitudes that attackers utilize in mali-
cious URLs. Of course, not all malicious URLs have homologous
forms.

The behavioristic approach involves examining the prop-
erties of landing URLs that mask attackers’ activities by
appearing to be benign URLs. Thus, these URLs redirect users
to other webpage through seemingly proper connections. Such
that, landing URLs share very similar traits with benign URLs
in a lexical format and this similarity is apparently used in prac-
tice. In contrast, distribution URLs behave much more
aggressively. General distribution URLs share similar proper-
ties with other distribution URLs. They can be identified in
various ways, such as by detecting atypical characters, dupli-
cations, or both, and IP geolocation differences. All of these URL
features represent behavioral traces left by attackers when they
insert or modify malicious URLs.

4. Collection of malicious URLs

The dataset for the URL pattern analysis was gathered as
follows.

We designed a Collector to collect malicious URLs. The
Collector parses the web sources with browser rendering, and
detects the distribution webpages containing the exploit codes.
More specifically, it detects whether malicious webpages create
new files, modify a registry, or attempt a new network con-
nection on a 32-bit VM image installed with Java SE 6u25, IE
6.0.2900.5512, Adobe Flash Player (AFP) 11.5.502.146, and
Silverlight 3 SDK.This is because attack codes can take the form
of Oracle JRE/Applet, AFP, MS IE, XML, or ActiveX.

From a hooked web browser, the Collector monitored
drive-by download activation. It was programmed based on
Detours (Detours, 2015) (32-bit). Malicious links that exposed

malicious activities were gathered using traffic logs gener-
ated by HTTP requests. The collected malicious links were
instantly sent to Protector, which was deployed in one of the
domestic major ISPs for end-user protection. Protector is a
web-filtering system, and it collects referrer URLs, generated
when web accesses of ISP users are redirected to malicious
URLs, and forwards them to our database system. The landing
URLs were mainly collected from Protector’s referrers and Col-

lector’s redirection URLs.The distribution URLs were obtained
from Collector.

A total of 1,529,433 malicious URLs were selected for the
experimental datasets. Among these, 1,509,230 landing URLs
and 20,203 distribution URLs were used for measurement.They
are based on fully qualified domain names.

In particular, 90.31% of 20,203 distribution URLs existed in
VirusTotal (2014), and 6.27% existed in websites of other well-
known blacklist information providers such as DNS-BH (Malware
domain blocklist, 2016), PhishTank (2016), and Google Safe
Browsing.The remaining unknown URLs constitute only 3.42%,
which were labeled using Cuckoo Sandbox (Cuckoo, 2016). In
this paper, we present the analysis results of these sample
datasets. We provide a dataset at this address: https://drive
.google.com/file/d/0Bwjmbj3-p7V_S3RIRXFxTHZkcUU/view.

5. Empirical studies

Our study is motivated by the fact that attackers rely on ha-
bitual behaviors to accomplish their daily attacks. In this section,
we discuss the results of empirical research on the features
of this behavior.

The URL specification is classified into scheme:[//

[user:password@]host[:port]][/]path[?query]

[#fragment] (Uniform resource locator, 2016). However, we
define a URL as having three parts: a host, path, and file-
name for detection convenience (e.g., http://host/path/filename).
We also handle a URL as a set of tokens that includes delim-
iters, numbers, and alphabetic characters. The URL contains
meaningful properties such as a distinct length, a geographi-
cal property, and a semantic string.

Previous studies have proposed detection techniques using
URL lexical analysis (Eshete, 2013; Huang et al., 2013; McGrath
and Gupta, 2008; Wang et al., 2013). In terms of URL attri-
butes, some studies (Eshete et al., 2012; McGrath and Gupta,
2008) have also suggested that malicious URLs have different
lengths compared to benign URLs as well as more delimiters
and alphanumeric characters. Although this may be true, most
malicious landing URLs closely resemble benign URL attri-
butes, because adversaries wish to hide their landing URLs
without exposure by exhibiting the characteristics of benign
URLs. Attackers have effectively utilized these properties.

In contrast, attackers’ URL manipulation (or URL rewrit-
ing) in distribution URLs includes generating random queries,
obscurely modifying the pathname and renaming the file-
name analogously, and substituting specific URL segments.
Attackers may also use an IP with similar prefixes and the ex-
istence of identical subdomains. Traces of these forgeries have
been located in various malicious URLs (see Table A1 in the
Appendix).These properties are critical for our detection model;
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they are summarized in Table 2. The characteristics of mali-
cious URLs in Table 2 expose the URL similarities in Table 1.

5.1. Characteristics of malicious URLs

5.1.1. Alexa-based properties of malicious URLs
In this section, our analysis methodology is outlined based on
the Alexa rankings – which mainly represents domain-based
ranks. Thus, we treated all their subdomains with the same
rank. For example, facebook.com and apps.facebook.com are
regarded as having the same rank.

Adversaries use landing URLs, which are ranked highly in
Alexa, whereas distribution URLs are ranked lower. This is
because the landing URL is an advantageous location in which
to situate the landing points of malware proliferation on popular
websites, whereas the distribution URL is beneficial for locat-
ing attack codes on unpopular websites, where they are easily
exploited and less likely to be discovered because of the lack
of web maintenance.Typically, unpopular websites are not well
managed by the server manager. The attack codes are typi-
cally long scripts that can be discovered more easily than the
landing points. In this circumstance, an adversary invokes
attacks on poorly maintained websites, rendering them useful
for malware distribution. On the other hand, the role of the
landing page is to hide and redirect the landing URL to the
exploit code, masquerading as a benign URL. Thus, adversar-
ies manage malicious URLs of two different types for attack
convenience.

As a result, we assumed that landing URLs are scattered
across sites with high Alexa ranks (e.g., between 1 and 100,000),
and distribution URLs are predominantly centralized in low-
ranking sites. However, in our datasets, 1.43% of landing URLs
have remarkably high ranks (within the top 1000); almost 3.2%
are located in the top 10,000 of the Alexa ranking, more than
6.9% are ranked within the top 100,000, and about 16% are within
the top 1,000,000. Almost 63% of landing URLs were out-of-rank.

On the other hand, for distribution URLs, the high-rank rate
is relatively lower than for landing URLs, as per our assump-
tion – only 0.11% within the top 1000, about 0.2% within the
top 10,000, and approximately 3.47% within the top 100,000.
Almost 8.38% are within the top 1,000,000, leaving some 74.5%
out-of-rank. Both types of malicious URLs are therefore mainly
in out-of-rank sites. In particular, 0.5% of landing URLs are
within the top 100 Alexa rankings, whereas none of the dis-
tribution URLs rank this high.

The Alexa top 100 is thought to be relatively safe (Eshete
et al., 2012) according to a study that provided different weights

according to the rank level. They used Alexa-based features for
classification, which slightly conflicts with our analysis. Ac-
cordingly, from these artifacts, we assume that the belief that
high-ranked websites provide safety regarding malware propa-
gation may be biased.

In particular, the malicious rate that occurred in subdomains
of the top 1000 ranks covered 79.28% and 90.87% in landing
and distribution URLs, respectively. The frequency used in top-
level domains (TLDs) is very low in the ranks. Thus, we infer
that attacks mainly occur in subdomains rather than TLDs. For
instance, some domains such as UglyAs.com and AtHerSite.com
show that 201 and 261 subdomains were used to dissemi-
nate malware.

Landing URLs tend to be centralized in highly ranked
domains at the start of malware infiltration to increase the
attack success rate. The Spearman’s coefficient between the rank
distribution of the two malicious URL types was found to be
0.945.This result is a strong indication of a correlation between
the two groups. However, as shown in Fig. 1, the cumulative
distribution function (CDF) of the two malicious URL types is
similar, but they exhibit different traits at high ranks (less than
1M). The figure shows the tendency of landing URLs to be cen-
tralized at a high rank, and for distribution URLs to be
centralized at a low rank, even though it is trivial. The average
distribution rate of landing URLs at high ranks exceeds that
of distribution URLs by at least a factor of two.

Among highly ranked domains, such as Facebook, Naver,
and Baidu, many were distributing malware through their
search engine (see Table A2 in the Appendix). These sites were
used as landing URLs that were redirected to distribution URLs.
Amazon and Youtube hosted malicious advertisements, and
googleusercontent.com transferred malicious links through
Google translation.

We summarize the findings from this section as follows.
Finding 1: Attacks mainly occurred in subdomains rather

than TLDs in Alexa top ranked domains even though mali-
cious URLs are rarely found at the top of the Alexa ranking;
however, once all of the top ranks were unaffected in our
datasets, we confirm some known facts that the Alexa top-
ranked domains were used as landing points. This does not
necessarily mean that the top-ranked domains were compro-
mised. Rather, it denotes that adversaries craftily manipulate
the websites’ functions to mount an attack.

Finding 2: The Spearman’s correlation and CDF results show
that the two types of malicious URLs are similarly distrib-
uted. However, we verified that attackers targeted relatively
highly ranked domains for locating landing URLs, and

Table 2 – Properties of malicious URLs.

Features Description Section

Alexa-based properties Adversaries mainly use subdomains in Alexa top-ranked domains attack. 4.1.1
High-ranked domains for landing URLs and relatively lower-ranked sites for distribution URLs are used.

Geographical trends Between landing URLs and distribution URLs show high geolocation difference. 4.1.2
Code changes in EKs The type of some EKs can be predicted via the frequency of code changes. 4.2
Landing URL Landing URLs in terms of length and path depth resemble benign URLs. 4.3.1
Serial IP zone New malicious IPs are often found in /16 and /24 prefixes around malicious IPs. 4.3.2
Pathname Attackers reuse pathnames. 4.3.3
Filename Typical filenames: very short, default and its variants, foreign-language-based, and random. 4.3.4

Distribution URLs’ size is shorter in general than that of landing URLs.
Alphanumeric filenames are more popular than numeric filenames.
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depended on lower-ranked sites to a greater extent for locat-
ing distribution URLs.

5.1.2. Geographical trends
Another interesting factor concerns the use of generic top-
level domains (gTLDs) and country code top-level domains
(ccTLDs).

We investigated the geographical differences by examining
ccTLDs in both landing and distribution URLs. Previous studies
(Klien and Strohmaier, 2012; Stringhini et al., 2013) used geo-
graphical properties, whereas we adopted location difference
between landing and distribution URLs. In ccTLDs, the rate at
which landing URLs are located domestically but distribution
URLs are situated overseas is 98.67% and 31.88%, respectively.
This means that many domestic users are exploited by attack
servers abroad. Moreover, gTLDs with domestic IPs constitute
93.18% of landing URLs and 16.12% of distribution URLs. This
significant difference is approximately 77% (see Table 3).

In terms of the locations of ccTLD and gTLD, landing URLs
are more likely to be domestic, whereas distribution URLs are
more likely to be overseas. This discrepancy in ccTLD/gTLD
between the two malicious URL types is frequently observed in
real environments. Regarding location conflicts, Table 3 high-
lights that the rate of gTLDs in landing URLs is 93.18%; however,
the overseas proportion of distribution URLs is 83.88%. An analy-
sis of gTLDs yields the differences in location from where attacks
are launched and where the exploitation/distribution occurs.

The landing URLs are located in 31 countries. Distribution
URLs are spread across 46 countries. In particular, for distri-
bution URLs, the countries with the highest ccTLD/gTLD ratio
are the US and China, which cover 60.66% and 18.80%,
respectively.

Finally, gTLDs in landing URLs are predominantly from do-
mestic IPs. However, distribution URLs are located on foreign

IPs. Distribution URLs are highly dependent on compromised
IPs that are not located in the target country. Many IPs are there-
fore operated by attackers from other countries. It appears that
attackers hack domains and operate them remotely.

Finding 3: Table 3 proves that landing URLs mainly begin
in domestic webpages; however, the exploit servers that are
used for malware distribution are located overseas. Hence, the
difference in the location of the starting and ending domain
is a highly malicious trait. Accordingly, the discordance of lo-
cations between ccTLD/gTLD in the two URL types is a feature
that increases the likelihood of detection. In the influence of
geographical location, gTLD gives more information than ccTLD.

5.2. Code changes in EKs

Adversaries distribute malware by employing automated attack
tools that are effective and easy to use. There are many well-
known tools, such as Sweet Orange and RedKit. Remarkably,
attackers accomplish their objectives by frequently changing
the EK code to avoid detection.

We measured the code changes of EKs and the frequen-
cies of those changes. We also examined the changes of
distribution URLs.We investigated whether this frequency could
be used to determine the type of EK during their lifetimes. We
observed a code changing frequency of 200 EKs (36 Gongda,
101 JS NB VIP, 3 RIG, and 60 Sweet Orange) that were directly
related to malware distribution. Four types of EKs were ran-
domly selected for the experiment. The graph in Fig. 2 shows
the code changes of EKs (denoted as “○”) whenever an EK is
detected by antivirus software or when avoidance is re-
quired. In reality, some EKs routinely use anonymous virus
verification services such as scan4you.net (Scan4you, 2016) to
check whether they can be detected by antivirus software
(Eshete and Venkatakrishnan, 2014).The average lifetime of 200
EKs represents 13.19 days for Gondad, 7.31 days for JS NB VIP,
1 day for RIG, and 8.76 days for Sweet Orange. In this test, most
EKs have a short life span. Nappa et al. (2013) identified that
the exploit server lifetime was mostly short.

The average number of code changes varies from 4.31 to
92.98 over their lifetime, whereby more than 55% of EKs are
involved in multiple changes. Indeed, one of the EKs exhib-
ited a maximum of 311 code changes. The number of code
changes experienced by EKs increases randomly over time.

Fig. 1 – CDF of malicious URLs based on Alexa rank.

Table 3 – Location correlation between ccTLD and gTLD
based on GeoIP (Maxmind, 2016).

Location Landing URLs Distribution URLs

% ccTLD % gTLD % ccTLD % gTLD

Domestic 98.67 93.18 68.12 16.12
Oversea 1.33 6.82 31.88 83.88
# URLs 19,587 20,101 22,921 24,583
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We consequently assessed whether EKs obey a normal dis-
tribution, which would enable us to infer the types of each EK.
Casual EKs were differentiated by an unusual EKs (irregular dis-
tribution).We found the accumulated changes in Sweet Orange
EKs to suddenly increase and found them to be distributed ex-
tensively over a short period.Similar patterns were found between
the same EKs. Thus, the extent to which thresholds are ex-
ceeded and patterns are correlated can enable the EK type to be
predicted. Another tactic used by attackers is to substitute EKs
with other attack types, such as iFrame, or JavaScript.The prob-
ability of these tactics being used is more than 11% for our dataset.

By analyzing webpages with 20,203 distribution URLs, we
realized that many webpages had a short lifespan. Mean-
while, there were cases in which they were active for more than
six months. As shown in Fig. 3, the lifetime of EKs is typically
brief, but in our experiment over 1 year, exploit pages of ap-
proximately 34.10% survived for a day and 67.05% for 1 week,
respectively. Further, 16.87% of exploit pages only appeared after
30 days, and 94.26% of exploit pages disappeared for 6 months.
About 99.9% of exploit pages disappeared within 230 days. Only
one exploit page survived for 1 year.

We denote that the exploit webpages mostly contained
exploit kits, but they were also changed to webpages with ana-
lytics, attack scripts, or any other exploit links. Thus, these
webpages do not always have EKs. They also try to change dif-
ferent EK types, unlike prior EK. Most EKs disappear after a
short-term attack, but some EKs constantly change attack types
for a long-term period. EKs disappeared after launching attacks
and reappeared sometimes later.

During the latent period, attackers often check user visits
using analytics, e.g.,Yandex, 51.la, 51yes, Baidu, and cnzz. Among
20,203 distribution URLs, 12,830 were accompanied with these
analytics. Apart from that, we examined the changes of distri-
bution URLs that indicate EKs and found that many distribution
URLs with iFrame or script types were changed more than twice.

This feature selection includes routine hourly checking for
malicious content changes connected to the collected mali-
cious links. We executed this routine check on 20,203
distribution URLs during the study period.

Finding 4: We may predict the type of some EKs based on
the frequency of code changes. In addition, the average life-
time of an EK is less than one month; however, their websites
still remain latent. These malicious websites can be reacti-
vated after several months.The EK changes affect in the change
of other attack types for detection difficulties.

5.3. Lexical analysis

5.3.1. Malicious URL path depth
Previous studies (Eshete et al., 2012; Stokes et al., 2010) have clas-
sified URLs as benign URLs and malicious URLs. Some of them
have used the URL length and delimiters for detection features.
They suggest that malicious URLs are longer than benign URLs.
Eshete et al. (2012) noted that the average URL length of the Alexa
top 500 (Alexa.com, 2015) was 15 and that of PhishTank (2016)
was 45 at a 1:3 rate. However, our dataset exhibits different traits.
In short, the average length of a URL (excluding duplicate URLs)
in the Alexa top 500 was found to be 71.10. Landing URLs have
similar lengths to those of the Alexa top URLs with an average
length of approximately 80.21. However, distribution URLs are

Fig. 2 – Rate of code changes of EKs. The x- and y-axes denote the number of changes and the normal probabilities of each
EK, respectively.

Fig. 3 – Lifetime of EKs based on one year period.
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shorter, with an average length of only 39.03, which includes
“http://”and“https://,”even though URL shortening services,such
as Twitter and spam, are not applied.

In terms of URL lengths, Fig. 4 shows that the typical length
distributions of benign and malicious landing URLs are almost
the same. The figure shows that distribution URLs have larger
standard deviations, because the differences between the ranges
are large and provide greater differentiation. Hence, the two
types of URLs are not aligned in terms of their length being
an indication of malicious properties. We believe that using the
length of a landing URL for detection is not useful.

An examination of path depth (the count of “/” delimiters)
shows that distribution URLs have depths of 1–3, with depths
of more than three being much less prevalent. In contrast, this
is clearly distinguishable with landing and benign URLs. The
path depths of landing URLs and benign URLs are exten-
sively distributed, unlike that of distribution URLs. Thus, this
feature can be indirectly utilized in determining malicious
symptoms. More than 90% of distribution URLs were located
at depths of less than three, and they had a maximum depth
of six. Distribution URL lengths range from 14 to 89 including
delimiters (e.g., /, _, =, ?, and -).

On the other hand, the length of landing URLs varies widely.
Landing URLs have depths of 1–29. The depth distribution of
benign URLs is similar to that of landing URLs. This property
significantly affects the decision of whether a URL is benign.
The average path depths of distribution and landing URLs are
each 1.672 and 2.667, respectively. The landing URLs have
lengths ranging from 15–916 characters, with 83.6% in the range
21–110. A similar scenario can be extensively observed in benign
URLs.

Finding 5: As shown in Fig. 4, the attributions of landing and
distribution URLs differ significantly. Landing URLs resemble
benign URLs in terms of URL length and path depth. Thus,
adopting landing URLs as a malicious feature is not rational,
whereas distribution URLs yield more precise results.

5.3.2. Centralized IP zone and serial IP zone
Distribution URLs exhibit similar traits with a probability of ap-
proximately 70%. The features are of various types, such as the

same IP zones, same domains, same pathnames, or similar file-
names. The properties of these types are often revealed
somewhere in the dataset.

Mavrommatis and Provos (2008) analyzed the relation-
ships among IPs. The study described the /8 prefix distribution
for malicious IPs, which was plotted against the cumulative
site fraction. Similarly, in our dataset, there are four central-
ized districts related to the /8 prefix of IPs: 50–70, 110–121, 173–
175, and 204–222. These IP areas are associated with a high
probability of containing malicious IPs. The 204–222 IP zone ac-
counted for 39% of all malicious IPs, the 50–70 region comprised
19%, the 110–121 zone included 17%, and the 173–175 region
had 10%. These IP zones formed 85% of all malicious IPs. We
obtained a similar result by examining IP space concentra-
tions for malware sites, although the datasets differed. A similar
phenomenon was observed with /16 and /24.

Besides, when a malicious IP is detected, we conclude that
another malicious IP is highly likely to be found in the same IP
zone. The correlation between malicious IPs with the same /16
or /24 prefix is as strong as for Provos’s centralized malicious
IP zones. This enables us to distinguish maliciousness in can-
didate URLs. For example, we observed the existence of malicious
IP ranges, and discovered attackers’ IP management habits, such
as http://198.1.x.34/index.html, http://198.1.x.35/index1.html, and
http://198.1.x.36/index2.html. Many malicious IPs in the same
zone exhibit similar tendencies.They have been centralized with
respect to the /24 or /16 IP prefix.

Hence, the next malicious IP in such cases can be easily pre-
dicted. This assumption helps to determine the malicious
attributes of an unknown URL. In our dataset, the closeness
between malicious IPs with the same /24 prefix has a rela-
tively higher probability than that of a /16 prefix. In particular,
if a distribution URL is IP-based, serial IPs with the same prefix
are most likely to be malicious. For example, if 110.34.196.113
is a malicious IP, then 110.34.196.114 and 110.34.196.115

are likely to be malicious IPs. Moreover, on the inetnum from
110.34.192.* to 110.34.207.*, we found IP zones that are
likely to be highly malicious.

In the real world, it is difficult to detect such zones without
this property. The web servers with these malicious IPs

Fig. 4 – Normal distribution of URL length.
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generally return 404 errors when accessed and contain only
a few webpages.They are only open for a limited duration when
the attacks are launched. Thus, the malicious IP manage-
ment habits of attackers appear unexposed. In this regard, our
IP prefix-based feature can help to predict unknown short-
lived malicious IPs.

Our empirical results for VirusTotal in May 2015 substan-
tiate this point. We identified that malicious inetnums
from VirusTotal were extensively distributed. The probability
that serial malicious IPs are detected in an equal IP class
significantly increases. Accordingly, if “110.34.197.243”,
“110.34.197.244,” and “110.34.197.246” were used as ma-
licious IPs, predictably, 110.34.197.245 has a relatively high
probability of being malicious. This approach may predict
unused malicious IPs that are exposed later. Consequently,
current clean sites may be used as malicious sites at a later
date. Based on these circumstances, we distinguished these
subnet properties by classifying 2383 malicious IPs in the 20,203
distribution URLs. A total of 94.13% of the malicious IPs showed
serial IP properties. However, we have not yet confirmed the
other 5.87% of malicious IPs.

These serial IPs can be easily used to detect pharming web-
sites. To this end, we programmed a Pharming Collector that
takes a snapshot of the web content of an IP address. First, we
searched pharming websites that communicate with malware
downloaded from a CK VIP attack. We crawled the IP subnet
of the pharming website based on WHOIS, and finally found
another unused pharming website. In the IP zone, there existed
many pharming and suspicious gambling sites being pre-
pared for use.These sites were alternatives that could be rapidly
replaced when the current pharming websites became blocked.
However, http://43.249.82.136 was not detected by VirusTotal
(2015-5-8). We realized that attackers were preparing redun-
dant pharming websites in addition to those currently being
used. This feature may be effective in detecting newly mali-
cious IPs, as in the above example. Our model thus adopted
this approach.

Prior studies (Holz et al., 2008; Nazario and Holz, 2008;
Stringhini et al., 2013) considered malicious IP spaces such as
Provos’s centralized malicious IP zones. However, we adopt serial
IP zones in same IP class.

Finding 6: Attackers gradually utilize their management IPs
in bulk. Accordingly, a series of malicious IPs marks a suspi-
cious trait. Detecting new malicious IPs requires us to conduct
surveillance around malicious IPs with /16 and /24 prefixes.

5.3.3. Characteristics of pathname
Attackers exhibit specific patterns or leave considerable traces
on distribution URLs. In particular, these similarities appear
in pathnames. For example, a distribution URL with the
/.errordocs pathname is also found in other distribution URLs.
This property often surfaces because attackers show similar
behavior. This modus operandi is highly related to the habits
of adversaries.

In general, attackers show similar behavior when they dis-
tribute their custom-built malware on the web. They reuse
similar or identical pathnames with a similar or the same query
in the URLs, because these share the characteristics needed
to execute extensive dissemination for a short time. In our
dataset, some pathnames are found relatively frequently, such

as /pop, /image, /data, /update, /updir, /upfiles, /upload, and /file.
The pathnames are referenced in the detection model.

Finding 7: Attackers habitually reuse their pathnames.

5.3.4. Filename, query string and extensions
There is a high frequency of filename similarities within dis-
tribution URLs. For example, http://110.34.196.117/cake.php was
regarded as a malicious IP by VirusTotal. We also found that
http://110.34.196.125/cake.php included an EK on 2014-11-27
16:09 (VirusTotal did not detect this during the test period, but
identified malicious activities on the VM (Cuckoo, 2016)). These
URLs share identical segments in their filenames, which were
changed to similar filenames on other IPs (e.g., index, index2,
and index3). The malicious IPs exhibit similar filenames (see
Table A1 in the Appendix).

Filenames in distribution URLs were broadly distributed with
short lengths.The filename is a serial number or closely relates
to a character or a string, such as 1.html, 1.js, 2.js, 3.js, a.js, a.html,
b.html, and c.js. In particular, extremely short filenames com-
prised 11.17% in total, such as 1, 2, 3, a, b, c, d, and x. Most of the
other filenames had short names such as ad.html. Moreover,
meaningless filenames with fixed alphanumeric sizes, such as
RCkWbqGd.php, were often found. In our datasets, most file-
names consisted of fewer than eleven characters; 22.4% could
not be decoded, and the remaining 77.6% were readable. They
combined upper- and lower-case alphanumeric characters. In
particular, the random filenames contained approximately seven
to nine characters.Alphanumeric filenames appeared more often
than purely numeric names, with a ratio of approximately 4:1,
and are mostly accompanied with .php and .html extensions.

Filenames with a query were repeatedly used, such as
dftuegni?hirgnsuriq=6621548, and the “6621548” string was
found in more than 200 different URLs. In distribution URLs,
“index.html” was one of the most extensively used file-
names. Derivations with default names were also used, such
as index1.html, index2.html, inde.htm, index.html., index.html,
and iindex.php.These index.html types comprised 23.4% of our
distribution URLs and the 93 different types of index.html
existed. This means that attackers insert their malicious code
in a default webpage and its variants.

The filename feature is largely classified into four catego-
ries. First, there are short filenames, such as 1, 2, 3, m, s, x, y,
and ww. Second, there are frequently used filenames and deri-
vational filenames, such as index, indexa, and indexb. Third,
the filename is rendered in a foreign language, such as shifu,
xiaomao, luku, maomi, meigui, and xiaoyu. Fourth, there are
random numbers or alphanumeric characters with a fixed
length, such as 13212323, RCkWbqGd, as well as query pat-
terns (e.g., 01oQJqSl.php?id=18584046, 02aqlXuJ.php?id=
47043301, and crpy.html?j=1958545) (This is a known fact).
In addition, the most frequently used extensions are html, js,
php, and asp. The other extensions are aspx, exe, css, gif, htm,
jpg, enc, swf, phtml, apk, and jhtm.

Finding 8: There are four types of filenames: very short, well
known and its variants, foreign-language-based, and random.
Their respective sizes are predominantly less than 11. Alpha-
numeric names are more popular than purely numeric ones.
More than 20% of filenames are unreadable. Consequently, to
exhibit the effectiveness of these URLs’ similarities, a model
should be cooperated with distribute URLs.
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6. Building classification models

In this section, we give the details of the proof-of-concept model
based on the features selected in the previous section.

6.1. Model motivation and basic idea

Attackers create malicious URLs by randomly generating a fixed
string of alphanumeric characters, replacing a segment with
a random numeric string, or both. Unfortunately, those URLs
can bypass current detection systems.

Distribution URLs are the source of malware propagation.
Such URLs have been used to launch attacks to disrupt criti-
cal systems and to upload sensitive information. Our approach
is to classify URLs of this type by adopting a similarity match-
ing technique to protect against malicious URLs that circumvent
a blacklist database. This technique compares the similarity
of strings in specific segment regions of a URL with feature sets.

Current string matching,such as web-filtering systems,covers
only certain cases of exact string matching. In fact, current com-
mercial antivirus products mostly provide 1:1 matching.However,
similarity matching provides more extensive detection ranges.
In this regard, string similarity matching should consider several
preconditions for extensive detection. First, the feature set of
distribution URLs is needed. Second, newly found distribution
URLs are constantly needed to detect new types of malicious
URLs. Third, the similarity method may not detect malicious
URLs that avoid predefined features. Nonetheless, similarity
matching based on well-defined features can cover a large portion
of malicious URL sets. To advance the properties, our model
provides scoring factors based on the predefined features.This
helps to identify the malicious symptoms.

In this paper, we implemented our similarity matching ap-
proach for a real-time web-filtering system.

6.2. Model definition

In this subsection, we present our model setup based on the
proposed features. Our detection model procedures are out-
lined in Fig. 5.

6.2.1. Dataset selection
The URLs are divided into benign URLs and malicious URLs.
The malicious URLs we collected are classified as being either

landing URLs or distribution URLs, which together are a subset
of malicious URLs. Let M l l d d nn n= ( ) ( ){ } ≥( )1 1 1, , , , ,… … be a set
of malicious URLs, where l denotes a landing URL and d denotes
a distribution URL. dn expresses the nth distribution URL. Let
D d d nn= { } ≥( )1 1, ,… be a set of distribution URLs. M ⊃ D, but
M ⊄ D. We only select distribution URLs for feature selection from
this dataset.This is because all malicious landing URLs are cen-
tralized to distribution URLs.

6.2.2. Feature extraction and grouping
A feature is a set of meaningful strings used in segments of
distribution URLs. A string is a set of tokens. It shares the same
meaning or represents repeated attempts with delimiters and/
or alphanumeric characters in the distribution URLs.

Trivially, F f f nn= { } ≥( )1 1, ,… is a set of features on D, where
fn is said to be the nth feature string of a unit in D. In fact, we
have three different feature sets: host features, path fea-
tures, and filename features. We have a feature pool for each
of these, and individually name them Fhost, Fpath, and Ffilename. To
generate the most suitable pattern, our model compares the
features from each of the pools.

To extract features from D, we parse di (1 ≤ i ≤ n) into a host,
a pathname and a filename portion, and classify si (1 ≤ i ≤ n)
(which is a partial string of a URL and not necessarily a feature)
as a host, path, and filename (temporal) group. We then sort
these respective groups, remove duplicates from ordered se-
quences, and randomly choose one of them when there is a
high similarity between serial si. For example, we select one
among 103.14.114.44, 103.14.114.45, and 103.14.114.47. We eradi-
cate “www” and “filenames” from the default webpages of
domains to increase the accuracy of similarity matching. Ac-
cordingly, a function f: F → S, where S s s nn= { } ≥( )1 1, ,… is a
set of strings, satisfies the set fi (1 ≤ i ≤ n) in set S. Therefore,
Fhost, Fpath and Ffilename are optimized feature sets that exist ex-
clusively on any fi.

Attackers intentionally or unintentionally mix various be-
havioral characteristics in creating malicious URLs. They use
serial IP lists, serial numeric or alphabetic strings, meaning-
less filenames with alphanumeric strings, and pathnames with
fixed-size variables. These traits are exposed as a combined
figure.

In this regard, our model generates malicious patterns with
various combinations from three different pools such as a
“mesh structure.” fi contains one feature from three sets. From

Fig. 5 – Overview of fuzzy-based similarity matching.
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the given fi, we combine some or all of the features to gener-
ate a new pattern. Let P p pn= { }1, ,… be a set of URL patterns,
where pi (1 ≤ i ≤ n) is generated by combining fi elements from
F. Similarly, the combination of some features selected from
f fn1, ,… generates p pn1, ,… such as pi = “http://f1/f4/f9”. At

this point, the hostname is denoted as f1, f4 is the pathname,
and f9 is the filename. A pattern is at least 10 characters long,
including http. In general, P produces the following pattern rules:

P F Fnumber of pattern ii host= +
=∏ ∑1

3

Fi is sequentially #Fhost, #Fpath and #Ffilename, where # means the
cardinality of set Fi, and Pnumberofpattern is the product of # of all
Fi, which should be greater than or equal to one. In particu-
lar, #Fhost can be utilized independently as a pattern. In similarity
matching, PnumberofPattern can be countless. A feature can be used
as a duplicate with features in other pools.

6.2.3. Similarity measure and modeling
In model design, to formalize the scoring algorithm for mea-
suring the maliciousness of a candidate URL, we define CL based

on the scoring factors in (1) and FR∑ as the sum of mali-
cious probabilities from Fuzzy-based similarity matching. LR and
PR denote the geolocation and URL length result, respectively.

The malicious probability ratio FW of a candidate URL is
FR

FR
∑
#

,

where |#FR| is the number of pools that participated in the simi-
larity matching.

Our URL similarity matching model first parses a candidate
URL as host, pathname, and filename length intervals. The
model then searches for similar IP prefixes (/16, /24) or similar
hostnames from the set of Fhost. The pathname and filename
also correspond with Fpath and Ffilename. Next, the model mea-
sures the best fitted similarity of each host, pathname, and
filename, and computes the overall relationship FR. However,
if FW threshold does not reach the level required for a mali-
cious decision (FW ≥ 7) and returns a suspicious extent of
6 ≤ FW < 7, the model searches for additional evidence from LR

and PR (“7” is the minimum control value computed by the clas-
sifier). Similarly, it checks the IP location (or inconsistency
thereof) based on the ccTLD/gTLD as well as the URL length.

Our model calculates ten phases of risk level; however, each
candidate URL has a different weight, because of the differ-
ence in similarity. Similarity in the IP/domain incurs a high
severity. Some similar pathnames and filenames, such as
“.errordocs,” “?click=1110828,” and “zB0ypBk9.php,” are also
treated with a high suspicion.These malicious indications help
to form the malicious relationship.

C F

if F

L or if foreign IP

P takeup or giveup
L W

W

R

R

= +
<

( )
⎧
⎨
⎪

⎩⎪
∑

7

0 1

,

,

,
(1)

FR comprises the Levenshtein distance, given by LevC,F (|C|, |F|),
where |C| and |F| are regarded as candidate URLs and feature
sets that create arbitrary URL patterns. This gives a similarity
value of up to ten. If max(C, F) is less than seven, the pro-
posed model calculates the extra value. We define a similarity
level of more than seven as malicious. LR is used to relieve sus-
picious URLs, but PR is applied to eliminate suspicious URLs
based on the URL length. We assume that long URL forms

(length > 100) are rarely used in distribution URLs; the longest
length was 89 in our empirical study (see Section 5.3.1).

6.3. Model implementation

Our model consisted of 185 lines of code, and composed pattern
sets called to Fip, Fdomain, Fpath, and Ffilename, and whitelist for high
Alexa-ranked benign domains, which were unused as mali-
cious URLs in the past. In our approach, we give a low value
(1.0) because they can also contain pathnames and file-
names in our malicious patterns due to the existing possibility
of malicious URLs.

To be a malicious URL, this model compares geolocation
using geoIP except for host, pathname and filename similar-
ity. It also uses the URL length. We designed this model based
on the rules of blacklists, and we built the core components
using Python.The code for similarity matching using Levenshtein
distance is described as follows:
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In this code, the threshold is the minimum acceptable lev
value. In our model, the threshold is lev (7). This is a real
example between a test URL, http://yjfishing.kr/yjhome/bbs/
data/result/1415260280/index.html, and pattern URLs,
fishingnews.co.kr/yjhome/bbs/data/result/1415260280/index
.html.

7. Evaluation

7.1. Setup of experimental environment

We evaluated the proposed model by designing a test envi-
ronment based on a platform composed of an Intel Core i7-
3610QM 2.30-GHz CPU with 8 GB RAM, 200-GB HDD, and running
64-bit Microsoft Windows 7 as the operating system. Assum-
ing that the user accesses to a malicious webpage, we used
randomly mixed candidate URLs.The lengths of the benign and
malicious candidate URLs varied randomly from 14 to 722
characters.

The benign URLs were collected by crawling the websites
of the Alexa top 1000 by modifying example code from
PhantomJS (2016). All benign URLs were labeled as non-
malicious by VirusTotal and dynamic analysis (Cuckoo, 2016).
Among a collected total of 1612 URLs, 1039 benign URLs with
high Alexa ranks of between 101 and 1,000 were selected for
our model training. The other 573 benign URLs were selected
for a real test.

During the real test, we monitored the maximum detec-
tion rate of the proposed model while generating 1874 URLs,
which comprised approximately 573 benign and 1301 mali-
cious URLs collected over a period of six months. We repeated
this test without the new feature updates.

The evaluation objectives were 1) to verify the effective-
ness of our features from our experimental setup, and 2) to
prove a method to overcome the coverage drawback of the
current blacklist database.

7.2. Evaluation of string matching algorithm

To measure the similarity between URLs, we tested various
string-matching algorithms, such as n-gram, Levenshtein dis-
tance, semantic similarity, and Jaccard. The semantic similarity,
which uses a thesaurus such as WordNet (WordNet, 2015),
exhibited a high matching rate in the URL structure, even
when some segments had complex alphanumeric names.
However, it also produced the same trend in benign candi-
date URLs, leading to high FP rates.The Jaccard similarity coefficient
gave a low matching rate. Its index required the intersection
of finite URL sets divided by the size of the union of the
candidate sets. The intersection requires exact URL string
matching. Therefore, in the detection of malicious URLs that
show subtle distinctions, Jaccard is ineffective. Other
similar matching algorithms, such as the dice coefficient,
give the same results. Therefore, from the results listed in
Table A3 in the Appendix, we chose the fuzzy method based
on the Levenshtein distance, which shows a high similarity
index.

7.3. Training on our classifier

7.3.1. Making three feature sets from distribution URLs
We define a typical URL as: < protocol>://<host>/<path>/
<filename>. From the distribution URLs, we extract the < host>,
<path>, and <filename> strings, and insert them into three sepa-
rate feature sets after optimization. We call these pools Fhost,
Fpath and Ffilename, respectively. Each feature set contained 6105
domain patterns and 799 IP patterns in Fhost, 284 path pat-
terns in Fpath, and 603 filename patterns in Ffilename. Hereafter, we
measured the severity of each candidate URL by comparing
{<host>, <path>, <filename>} with the features in the three
pools.The file size of patterns was reduced up to 77.68% (778688
byte to 173771 byte).

7.3.2. Extracting three strings for a candidate URL
The model parses a candidate URL to < host>, <path>, <file-
name> strings. After tokenizing the URL, the model searches
for the highest FRX from X max X Xmax i n: , ,= ( )… by examining
the similarity of FX sets; in this regard, X can be <host>, <path>,

and <filename>. FRXX F∈∑ is the sum of FRX over each element
X of the feature sets. In fact, the model selects the fittest pattern
for which σF XX feature sets= ( ) . < X > is a partial string of a can-
didate URL. It can be <host>, <path>, or <filename>.

7.3.3. Model training
To train the proposed model, we tested our sampled 20,203 dis-
tribution URLs.The model then verified all datasets as malicious.
However, in reality, CL does not always satisfy the condition of
FW ≥ 7 as malicious. The decision as to whether a URL is ma-
licious is determined by the feature sets in order of priority.
For example, the features of Fhost carry the most weight, fol-
lowed by those of Fpath and Ffilename. Thus, the features of Ffilename

that have high similarity do not influence the result of a real
test, because the filename has a high probability of being an
FP. Ffilename only matters when accompanied by high FR from Fhost

and Fpath. It does not affect others by itself. Therefore, unlike
the impact of Fig. 6, our priority is Fhost > Fpath ≈ Ffilename.

Hence, our model gives a differentiated weight to each
feature set based on preference. In the priority index, the high
FR from {Fhost, Fpath, Ffilename}, {Fhost, Fpath}, {Fhost, Ffilename}, and {Fhost} pro-

vides a high malicious probability even though FR∑ ≠ 7 . That
is, FR from {Fhost} or {Fhost, Ffilename} satisfies ≥7, but FR from Fpath

or Ffilename may be <7. Next, the high FR from {Fpath, Ffilename} can
be selected for malicious URLs. However, {Fpath} and {Ffilename} are

Fig. 6 – The average of the similarity probability ratio
related to three finite feature sets.
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too obscure to be used independently because they depend on
other feature sets due to high FP; however, the likeliness of file-
names with a similar (or same) query being malicious is so high
that a future model would independently categorize them as
being malicious. In other cases, the model determines when
CL is ≥7 as malicious. Accordingly, our selective CL model does
not determine malicious URLs, even though FR(filename) = 10. After
all, CL is determined by the above priority order.The model dem-
onstrated a true positive rate of 100.0% in training.

In summary, the similarity measurement applies selective
weights to feature sets based on priority.

7.4. Real test on proposed model

We conducted an evaluation using new distribution URLs gath-
ered from our Collector for a period of six months.There were
no duplicates. The 573 benign URLs were chosen from the top
100 Alexa websites.

After classifying our entry URLs as either benign or mali-
cious, we tested the proposed model. The experiment
demonstrated the effectiveness of our fuzzy-based similarity model
in terms of detection rate of unknown malicious URLs. Table 4
provides a brief summary of the actual test information. It ex-

hibits an effective detection rate without new patterns being
added for the past six months. The results show that our ap-
proaches were validated for malicious URL detection. That is,
current web-filtering systems cannot detect new malicious URLs
without new blacklist updates.

In Table 4, the success rates are 100%, and 70.02% each, with
a total of 573 and 1301 cases (the malicious rate of FW and LR/
PR is 61.26% and 8.76% each). The FP rate for benign URLs is
0%. We assume that the success rate would have been much
higher if a greater diversity had been set up, such as new pat-
terns. The model detected over 911 out of 1031 attempts. 311

< host> and 486 { < path>, <filename>} were confirmed as
malicious. 114 earned with the features of geolocation and URL
length (Table 5).

This model achieves high accuracy in URL mutation. From
this result, we identified meaningful correlations between at-
tackers’ URL manipulation habits related to their habitual
behaviors. Our features alleviate false-positive problems and
augment detection coverage to 70% more than current web-
filtering systems.

In terms of this trend, Fig. 7 shows the changes of TP and
FP in the detection rate with respect to FW threshold changes.
Over the last six months, the average FN rate gradually de-

Table 4 – FP/FN detection rate based on a fuzzy model
without new pattern updates.

URL Type # URLs FP FN CL

Benign 573 0.00% – 100%
Distribution 1301 – 29.98% 70.02%

Table 5 – Performance results.

Test Fuzzy Prophiler

# benign 573 6.885 s -
# malicious 1301 56.083 s -
Total 1874 62.968 s (0.034 s) 3.297 s/page

Fig. 7 – Variation in detection rate according to manipulation of FW threshold.

Fig. 8 – Monthly FW(avg) of malicious URLs that shows a false negative. FW(avg) means the overall average ratio of FW.
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creased over time, as seen in Fig. 8. However, the gap is very
small. This indicates that attackers leave continuously similar
traces. The FN rate of the model shows its effectiveness when
compared with current web-filtering systems, achieving high
FPs even in the absence of a list of new patterns. The feature
updates enable us to perform identification with higher
accuracy.

7.5. Performance

Our experimental results showed a processing rate of 29.78 ma-
licious URLs per second. This is faster than general machine
learning detection (Canali et al., 2011). ML-based detection re-
quires trade-off in extracting features. In the current Python
mode, the model only executes 1874 URLs in 62.968 s as shown
in Table 1. This algorithm’s performance is O(N), where N is
the number of potential features to be compared. The memory
usage was less than 1.5%.

This model saves resources when deployed on a practical
system, because the datasets of numerous blacklists are reduced
to approximately 77% of their previous size. Thus, this model
can help detection even when using a small-sized system that
requires minimal memory consumption. Employing prior large-
sized features is computationally expensive, and thus degrades
overall performance.

Our dataset and this experiment might be effective only in
our situation, in which we routinely monitored 0.4M domains
in our local area and gathered datasets from the source.
However, we believe that attackers reuse the lexical tokens of
malicious URLs in terms of hostname, pathname, and file-
name.These properties offer alternatives to current blacklisting
systems with limitations of 1:1 matching. In this regard, the
benefits of our model help extend the coverage of blacklist-
ing based on exact matching.

8. Discussion

Our model has several limitations. For example, the similarity-
based matching extends the probability of detection to
suspicious URLs, but it requires additional updated features
because the malicious URLs can be fabricated into new types
that bypass detection. In this circumstance, our URL-centric
approach can determine the validity with feature updates,
which yield even more precise results. That is, the detection
rate can be consistently improved by incorporating addi-
tional feature data.

This model may also detect some default webpages as ma-
licious (despite FPs) such as http://www.example.com/ or

http://www.example.com/index.html. In this case, our model
decides the maliciousness only with the host and a default file-
name. (The test result was 1.05% FP before exception
processing.) Thus, we removed default filenames from Fhost.
Except for this case, our model normally analyzes the remain-
der of the domains.

Malicious URLs without repetition in URL segments in-
crease the size of the feature sets, even though the patterns
are definitely reduced in our model. Individual URL changes
of adversaries are possible, but the execution of a massive attack
leaves some footprints somewhere within the URLs. Cur-
rently, attacks that collect huge amounts of private information
for pharming and phishing or ransomware are industrialized
and systemized. Hence, this tendency is often observed. Natu-
rally, our statistical results include unique malicious URLs.

Another issue concerns the overfitting of our dataset, which
was collected from a Tier-1 ISP. Our dataset reflects Malware
domain Malware domain blocklist (2016), PhishTank (2016), and
other global malicious information. 96.58% of distribution URLs
reflect information about the above malicious providers. Thus,
we conclude that the experimental results are reasonable. The
model also needs improved processing power and would involve
the use of parallel processing in the future.

Finally, in terms of Net neutrality (2016), in collecting ma-
licious URLs from ISP users, we have considered their privacy
issues. We filtered data to minimize privacy information such
as the referer, host, and request URL on inflow packets.

9. Conclusions

Adversaries leave an identifiable landscape within malicious
URLs. Because attackers exhibit the same or similar behavior
when they launch attacks, these traces provide information to
cover a large subset of malicious URLs using relatively few fea-
tures. In this regard, we have described concise concepts for
two types of malicious URLs, which are broadly applicable and
independent of prior URL-based analyses.The properties of the
habit-centric behavior show high detection rate in similarity
matching, which is based on host, path, and filename fea-
tures. We conducted a comprehensive evaluation using a real-
world dataset. This demonstrated that our approach is highly
effective at finding unknown malicious URLs. The model is
capable of performing blacklisting detection and measure-
ments for pre-filtering of malicious URLs. It is especially helpful
when checking massive URL validations. Above all, our ap-
proach overcomes the scope of 1:1 matching coverage of current
web-filtering systems. We believe that our model enriches URL-
only based detection scopes.
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Appendix

Table A1 – Malicious URL examples.

Malicious IP Examples Malicious Domain Examples

110.34.196.117/cake.php www.zilphotography.com/.errordocs/FOZ4fFXK.php
110.34.196.125/cake.php ropeholders.info/.errordocs/sQodNA2k.php

103.251.36.92/index.html iambrucehan.com/.errordocs/75yYodGX.php
103.251.38.103/index.html www.wigsislandstudio.com/.errordocs/GQsvQJzH.php
103.251.37.211/index.html www.cleanenergyhi.com/.errordocs/6UhfUL3J.php
103.251.37.213/sb.html ozactivity.com/.errordocs/wEXfiNFD.php
103.251.37.214/sb.html perivaleproductions.com/.errordocs/zB0ypBk9.php
103.251.37.213/main.html live-counter.net/?click=13950265
103.251.37.214/main.html hosttracker.net/?click=6621593
103.251.37.213/index.html hostverify.net/?click=1110828
103.251.37.214/index.html webexperience13.com/?click=85009921
1.226.83.40/ts/index.html thedeadpit.com/?click=341881
1.226.83.40/ts/dy.html internetcountercheck.com/?click=13218787
113.10.187.41/oacs19/29.html google-ana1yticz.com/?click=172078
113.10.187.42/oacs19/29.html coaipr.org/aqgy.html?i = 1958545
113.10.187.41/oacs19/man.html petalconsultancy.info/aqgy.html?i = 1958545
113.10.187.42/oacs19/man.html lindsethcpas.com/aqgy.html?i = 1958545
126.19.87.31/2222/tiancai.html innerbath.com.au/crpy.html?j = 1958545
126.19.87.31/2222/index.html stevebeam.com/wrpy.html?i = 1958545
116.81.235.128/3333/tiancai.html ptsolutionsgroup.com/crgt.html?i = 1958545
116.81.235.128/3333/index.html morehead-motorsports.com/eqgy.html?i = 1958545
126.114.226.40/3333/shifu.html petalconsultancy.info/aqgy.html?i = 1958545
126.114.226.40/3333/index.html cronicadelcorrugado.com/mqpt.html?i = 1958545
103.240.197.28/b.html tvpasiones.com/arpy.html?i = 1958545
103.240.197.30/c.html abinnetsol.ca/eqgy.html?i = 1958545
103.240.197.33/c.html eastmead1.ipower.com/hrpt.html?i = 1958545
103.240.197.35/k.html wheresweems.com/argt.html?i = 1958545
103.240.197.36/j.html bestdeckshoes.com/oqpt.html?i = 1958545
103.240.197.37/v.html lindsethcpas.com/aqgy.html?i = 1958545
113.10.187.41/live3/qq.html burtcasey.net/wrpt.html?i = 1958545
113.10.187.42/live3/qq.html 3diporn.com/eqgy.html?i = 1958545
113.10.187.41/live2/qq.html kirtidan.com/mqpt.html?i = 1958545
113.10.187.42/live2/qq.html budgetcancun.com/oqpy.html?i = 1958545
113.10.187.41/code0002/qq.html prmd.biz/wrpy.html?i = 1958545

Table A2 – Landing URLs used in Alexa top 100.

Landing URL Distribution URL

http://l.facebook.com/lsr.php?u=http%3A%2F%2Fwww.duzonbiz.co.kr%2Fkey%2Fv3k.html&ext=
1424074132&hash=AcnLdlvGrTbcTzTqzyVNC7QqyiAk4ctqMDAzdmxsPHkZEjv-

(2015-02-16) http://www.duzonbiz
.co.kr/key/v3k.html

http://www.google.com/url?url=http://www.korailtour.com/UserFiles/gg/index.html&rct=j&frm=
2&q=&esrc=s&sa=U&ei=VcHCVO2KDYf8ygOZ0YCICQ&ved=0CBQQFjAA&usg=AFQjCNE_7SO
lEFqdS9l_cxgNPcFU6Et1yg

(2016-02-01) http://www.korailtour
.com/UserFiles/gg/index.html

http://webcache.googleusercontent.com/search?q=cache:f3h3Cq-Aer4J:www.hyunjinsn.com/
+&cd=1&hl=ko&ct=clnk&gl=kr

(2015-12-14) http://www.wonartschool
.com/xe/libs/PEAR/view.html

http://yandex.ru/clck/jsredir?from=yandex.ru%3Bsearch%3Bweb%3B%3B&text=&etext=908.1vNg2
-G_cw8lJCLRBthLM0kjY94_4GOVdgllaUV2Iyd3SZMpI_s09gbsMXpaQObG.bfe5ebfa9ebea90c7c0fe
4daacc03ed318203d59&uuid=&state=AiuY0DBWFJ4ePaEse6rgeAjgs2pI3DW9J0KiE5XNXd0dp0ZM
wFHoviUoYa6nzP7MFsomsouu4qcHbQqcq9usxGGO7RUCBA3CQOuv8Jg-Hj9QrokjqARXAhk_ZBegv
2NHoKEopnuLoVMWYZiPqM4fPRV81es3G38m59_Blx_owikL3-IrlWDWd7PQ5JPN3hN4-uArkW6PSO
iSO-qJhCUR3Q&data=UlNrNmk5WktYejR0eWJFYk1LdmtxdERJZnBDcW5pYTVPTjE4Mm42NHdyZm
ZPWDV4cnByVVNBTVFpS29iUkFhaE9NYkp4TFQ1WXZ2RzZCSXFlOU95emw3VnVPMFNvckxUY3Zz
czl0Ukp1TEZiNlJvcm5rVVBLUQ&b64e=2&sign=cdaa450e91e8a20642b38a47b1c1c638&keyno=0&l10n
=ru&cts=1450587773490&mc=5.24638133345

(2015-12-20) http://infobank.kit
.ac.kr/yy/1.html
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Table A3 – Matching rate based on similarity algorithms and defined features.

Type Malicious URL Case 1 Malicious URL Case 2 n-gram Fuzzy

Domain 1 05f.info 0lg.info 0.60 0.75
Domain 2 aa.sswangima.com aa.wangma1q.com 0.72 0.84
Subdomain 1 fae.UglyAs.com faf.UglyAs.com 0.87 0.93
Subdomain 2 aetaavaa.stuppoint.com:8000 aengopho.stuppoint.com:8000 0.64 0.78
Subdomain 3 01030242424.kt.io 01033383304.kt.io 0.55 0.71
Similar filename 75yYodGX.php wEXfiNFD.php 0.17 0.42
Path 1 with filename /.errordocs/75yYodGX.php /.errordocs/wEXfiNFD.php 0.43 0.7
Path 2 with filename 01030242424.kt.io/sms.php 01033383304.kt.io/head_bak.php 0.41 0.55
Path 3 with query live-counter.net/?click=13950265 hosttracker.net/?click=6621593 0.58 0.54
Path 4 with query consultancy.info/aqgy.html?i = 1958545 coaipr.org/aqgy.html?i = 1958545 0.61 0.7
Path 5 with query innerbath.com.au/crpy.html?j = 1958545 stevebeam.com/wrpy.html?i = 1958545 0.64 0.72
Same IP, different filename 103.251.37.213/index.html 103.251.37.213/main.html 0.79 0.88
Same IP, different path 113.10.187.41/live3/qq.html 113.10.187.41/code0002/qq.html 0.66 0.79
/24 IP prefix, same filename 110.34.196.117/cake.php 110.34.196.125/cake.php 0.84 0.91
/24 IP prefix, different filename 103.240.197.28/b.html 103.240.197.37/v.html 0.76 0.86
/24 IP prefix, different path 1.226.83.219/image/dav.html 1.226.83.40/ts/dy.html 0.53 0.69
/16 IP prefix 103.251.37.243 103.251.38.100 0.56 0.71
/16 IP prefix, same port 174.139.104.78:5920 174.139.165.116:5920 0.63 0.77
/16 IP prefix, same filename 1.234.27.81/k/index.html 1.234.3.185:1234/index.html 0.70 0.71
/16 IP prefix, different filename 1.234.51.238/ad.htm 1.234.91.43/good/good18.htm 0.53 0.61
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