COMPUTERS & SECURITY 67 (2017) 89-106

Available online at www.sciencedirect.com

Computers

&
Security

ScienceDirect

journal homepage: www.elsevier.com/locate/cose

® Invi-server: Reducing the attack surfaces by
making protected server invisible on networks

@ CrossMark

Jaehyun Park, Jiseong Noh ', Myungchul Kim, Brent Byunghoon Kang *

School of Computing, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon

34141, Republic of Korea

ARTICLE INFO

ABSTRACT

Article history:

Received 4 October 2016

Received in revised form 9 January
2017

Accepted 21 February 2017
Available online 1 March 2017

Keywords:

Invisible authentication
Server security

Covert channel

Secret server

One-time password

The advantage of having remote access motivates network administrators to connect mission-
critical servers (e.g., enterprise management systems) as well as public web servers via the
Internet, even though connecting these mission-critical servers to the Internet is not rec-
ommended. These mission-critical or public servers are accessible from any host on the
Internet, allowing cyber attackers to engage the targeted server as part of a process to dis-
cover potential exploits and unpatched vulnerabilities. Although it would be difficult to
eradicate all the potential vulnerabilities in advance, accessibility to a server can be con-
trolled to limit or minimize the chance of exposing a vulnerable surface. We aimed to address
the accessibility issue by designing and prototyping an Invi-server system, in which the IP
and MAC addresses of the protected secret server remain invisible from external scanning
and eavesdropping trials and even from compromised internal hosts on the network. This
Invi-server system can be used as a way to reduce the attack surface of a protected server
while allowing authorized users to send and receive packets via the protected server. We
also implemented a prototype of the Invi-server system to demonstrate that our proposed
system has the ability to reduce the attack surfaces significantly without increasing network
performance overhead to any significant extent.

© 2017 Published by Elsevier Ltd.

1. Introduction

Because of the advantages offered by worldwide connec-
tivity, many services involving confidential information use the
Internet as a medium for their users. For example, compa-

The Internet provides connectivity anywhere in the world and
enables worldwide network services. According to a report pub-
lished in 2014 (Internet Live Stats), around three billion users
were using the Internet in that year which indicates that around
40% of the world population are using the Internet. Further-
more, because of the fast deployment of the IPv6 technology
and the pending era of the Internet of Things, the connectiv-
ity of the Internet is increasing dramatically.

* Corresponding author.

nies allow their employees to access the private network
remotely from home for increasing productivity. Monitoring ser-
vices such as the enterprise network management system (i.e.,
an SNMP aggregator), or equipment monitor of SCADA (Su-
pervisory Control And Data Acquisition) systems are usually
connected to the Internet to provide the instant response to
incidents (Fernandez and Fernandez, 2005). Even though con-
necting these mission-critical servers to the Internet is not

E-mail addresses: jaehyun.park@kaist.ac.kr (J. Park), jiseong.noh@kaist.ac.kr (J. Noh), mck@kaist.ac.kr (M. Kim), brentkang@kaist.ac.kr

(B.B. Kang).

! Co-first author.
http://dx.doi.org/10.1016/j.cose.2017.02.012
0167-4048/© 2017 Published by Elsevier Ltd.

**This paper includes a few updates based on detailed feedbacks from the author of 'SilentKnock'.

mailto:jaehyun.park@kaist.ac.kr
mailto:jiseong.noh@kaist.ac.kr
mailto:mck@kaist.ac.kr
mailto:brentkang@kaist.ac.kr
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/COSE
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2017.02.012&domain=pdf

920 COMPUTERS & SECURITY 67 (2017) 89-106

recommended, the convenience of remote access motivates
network administrators to continue doing so.

However, providing confidential services via the Internet can
be dangerous because the services can be located and tar-
geted by attacks such as a scanning attack or an eavesdropping
attack. First, a scanning attack can be carried out to locate
Internet-connected devices or services. An attacker tries to
collect IP addresses to identify the open ports of the devices
or services throughout the Internet, after which they connect
to these ports to obtain detailed information about the service
running on these ports (e.g., Apache Web servers, and BIND DNS
servers). This enables the attacker to compromise the devices
by exploiting potential vulnerabilities in the service (e.g., scan-
ning attacks are prevalent on the Internet and are used by
human attackers and even self-propagating worms (Shin and
Gu, 2010)). The attackers (or worms) can scan the entire IPv4
address range of the Internet in a very short time, even less
than 45 minutes, by using a well-crafted scanning tool
(Durumeric et al., 2013).

Second, an eavesdropping attack is an attack aimed at lis-
tening to a particular secret communication between two
entities. For example, an attacker would be able to exploit an
Access Point (AP) in a company’s enterprise network and can
collect all of the network traffic transmitted via the victim AP.
Although the communication can be encrypted, knowledge of
an IP address and a port number could be useful for the at-
tacker to exploit the target since this information can indicate
which service is running. As a result, the above two attacks can
create a potential vulnerability to allow attacks, such as a remote
shell execution attack (Metasploit), to mission critical servers.

The need to prevent attacks from targeting potential vul-
nerabilities on a server has led to the proposal of service
vulnerability defense techniques such as a firewall, Intrusion
Detection System (IDS) (Depren et al., 2005; Mell; Roesch, 1999),
and Intrusion Prevention System (IPS) (Koller et al., 2008;
Stiawan et al., 2010; Zhang et al., 2004). The proposed tech-
niques filter unauthorized users or traffic to prevent an attack
on the server. However, these techniques have certain limita-
tions. In the case of a firewall, controlling access toward the
IP address of a client is easily evaded using attack tech-
niques such as IP spoofing (Wang et al., 2011). For IDS and IPS,
it is impossible to detect all the different kinds of zero-day
attacks (Verizon Business Risk Team).

Because it would be an extensive task to filter all mali-
cious traffic, it would be helpful if we could effectively prohibit
illegal traffic toward a secret server during the initial stage of
an attack. This could be accomplished by hiding the IP address
of the secret server to reduce direct attack trials because being
hidden from the Internet inevitably limits direct scanning. One
of the methods to hide the IP address would be to use a proxy-
based server hiding technique. This technique would use the
proxy server to hide the secret server that provides secret ser-
vices, by locating them on an internal network behind the proxy
server. Representative examples of proxy-based techniques are
Reverse Proxy (RP) (Kruegel and Vigna, 2003; Reese, 2008) and
Virtual Private Network (VPN) (Andersson and Madsen, 2005).

Although the proxy-based technique can limit the number
of direct attack paths to the secret server, the proxy server itself
is exploitable by the attacker because it is exposed to the In-
ternet. For example, in the case of VPN, even though the secret

server would be able to hide within the private network, the
existence of a VPN gateway would create a potentially vulner-
able point. An eavesdropper between the VPN gateway and VPN
client could obtain the IP address of the VPN gateway, the spe-
cific program name (i.e.,, OpenVPN or Cisco VPN) and even
version information, which would provide valuable informa-
tion for an attacker. After exploiting the proxy server using that
leaked information, the attacker would be able to reach the in-
ternal servers because the proxy server knows the routing path
to these servers. In this state, the secret server would again be
vulnerable to attacks.

We propose an Invi-server system, a secret server system
that prevents a secret server on an internal network from being
attacked after the Internet-open server that co-locates with the
secret server, such as a public web server or a proxy server, has
been compromised. In the proxy-based technique, the exis-
tence of the secret server can be revealed by the compromised
public-open server. On the other hand, the Invi-server system,
which contains the secret server, is located in front of the public
server, rather than behind it. The Invi-server system hijacks re-
quests to the public server, as a Man-in-the-Middle (MitM) attack,
provides secret services for authenticated requests, by using
the MAC and IP addresses of the public server, and forwards non-
authenticated requests to the public server. Because the public
server does not know about the existence of the Invi-server
system, attacking the secret server through the public server is
highly difficult.

We assume an attacker can use an eavesdropping tech-
nique to listen to all the traffic between clients and servers.
Therefore, all the traffic must be encrypted using an SSL/TLS
(or HTTPS) technique. The secret authentication between the
client and the Invi-server system is implicitly conducted by veri-
fying the shared secret during an SSL/TLS handshake. However,
the method may cause significant overhead to the Invi-server
system because an SSL/TLS handshake is computationally in-
tensive and the system would have to perform the SSL/TLS
handshake for all the clients, even clients of the public
server.

To solve this problem, the system first looks up the TCP
initial sequence number of a TCP SYN packet and checks
whether the number contains an authentication key rather than
just a random number before engaging in an SSL/TLS hand-
shake process. This helps the system reduce the overhead
because it allows SSL/TLS sessions only with authenticated
users (henceforth we refer to this process as candidate client se-
lection). The techniques used by the Invi-server system effectively
degrade malignant trials with the scanner and eavesdropper.

In short, this paper has the following three contributions.

Protecting against scanning and eavesdropping attacks using
a system designed to have no publicly opened IP address.
Because Invi-server does not have its own IP address, direct
attacks using the IP address, such as scanning or eaves-
dropping attacks, are prevented.

Protecting against an internal attack after the public server
has been compromised. Because the Invi-server has no direct
route from the public server, this kind of attack is pre-
vented. Scenario-based analyses are given to compare this
hiding technique based on the Invi-server and a proxy-
based server.

COMPUTERS & SECURITY 67 (2017) 89-106 91

e Lightweight authentication using candidate client selection is
proposed. Invi-server improves the authentication perfor-
mance by using candidate client selection to reduce the
performance overhead to make an SSL/TLS connection with
all client requests. Because Invi-server only causes a slight
degradation in the performance of the existing public server,
deploying Invi-server in networks is feasible for network
operators.

The remaining part of this paper is structured as follows.
First, background knowledge is provided in Section 2. Next, the
threat model and assumptions are given in Section 3. After that,
the design of the Invi-server system, including its compo-
nents and working mechanism, is presented in Section 4. The
implementation is described in Section 5. Three attack sce-
narios in which Invi-server could face threats, i.e., scanning,
eavesdropping, and internal attacks, are discussed in Section
6 by comparing the two existing server models (stand-alone
and proxy-based). Section 7 provides a detailed evaluation of
Invi-server and its performance together with an assessment
of its security. Related work is given in Section 8, and the last
section concludes the paper.

2. Background

In this section, we describe proxy-based server hiding tech-
niques and briefly explain their limitations from the point of
view of security. We subsequently describe two techniques, MitM
and TCP covert channel, both of which are used by Invi-
server to assist with the understanding of the remaining
sections.

2.1. Proxy-based server hiding techniques

A proxy is a system that is widely used for caching and server
security. Especially, the RP and VPN are used as security mea-
sures to restrict the direct access to the servers. Distinct from
being directly connected to an external network, proxy-
based server hiding techniques receive external requests and
forward them to backend servers located behind the proxy. Gen-
erally, the proxy server has a public IP address and backend
servers have private IP addresses. This means the backend
servers are protected against direct attacks from external at-
tackers even though the servers have known vulnerabilities.
However, the IP address of the proxy server is open to the In-
ternet which presents another vulnerable surface. Moreover,
if the proxy server is compromised, the backend servers could
also be compromised.

2.2. Two attack techniques used in Invi-server

Invi-server uses the following two techniques: MitM and TCP
covert channel. MitM is used to provide a service for legiti-
mate users. On the other hand, TCP covert channel is used to
provide candidate client selection which enables lightweight au-
thentication for users.

2.2.1. Man-in-the-Middle attack (MitM)

The term MitM refers to an attack in which an attacker se-
cretly relays a session between two components. In the case
of an ongoing TCP session between a victim client and a victim
server, a malicious attacker firstly intercepts the client’s request
by placing packets on the route used by the session. The at-
tacker then relays all the requests from the client to the server
and vice versa. This enables the attacker to gain access to the
entire contents of the communication between the client and
the server. Likewise, Invi-server uses the MitM to intercept cli-
ent’s sessions. When the client sends a shared secret when
performing the SSL/TLS handshake, Invi-server quickly hijacks
the session and takes over the service to the client.

2.2.2. TCP covert channel and its use in user authentication The
term TCP covert channel refers to the use of a TCP header field
capable of leaking certain information (Ahsan, 2002;
Murdoch and Lewis, 2005). Contrary to normal data transfer
using TCP, the data are inserted into a hardly noticeable field
such as the TCP initial sequence number, low-bits of time stamp,
packet order, or source port number, all of which are origi-
nally partial random values. Among these fields, the TCP
sequence number field, especially the initial sequence number,
is the most effective covert channel because of its length and
randomness. These fields in a covert channel are normally used
by an attacker with the intention of leaking the victim’s
information.

Nevertheless, some research has shown that the covert chan-
nels can be used for the purpose of hiding authentication
(Houmansadr et al., 2011; Vasserman et al., 2009). Silentknock
(Vasserman et al., 2009) assigns an authentication sequence to
the TCP initial sequence number for user authentication. Like-
wise, Cirripede (Houmansadr et al., 2011) uses the TCP initial
sequence number for the purpose of evading censorship.
However, because the TCP initial sequence number is four bytes
long which could be insufficient against brute force attack,
above two systems use additional packets or field (Cirripede
uses mul-tiple TCP SYN packets and Silentknock uses
timestamp field on TCP option which is enabled or not by
different operating systems or users) to meet goal of attack
re-sistance. These additional fields could reveal details of the
use of their system to an eavesdropper, which we do not
intend applying to our system. A four-byte-long Message
Authentication Code (MAC) could be sufficient to prevent a
brute force attack on a relatively slow data link; however, in
the case of an internal network attacker with a fast optic link
(e.g., a 10-GbE interface), the four-byte MAC can be broken in
a few minutes unless additional trial rate limiting
techniques are employed.

In the case of Invi-server, it uses the TCP covert channel to
select a candidate for use as a secret client to attain invisibility
and performance advantages. Different from the previous work,
Invi-server does not finish user authentication with the vali-
dation process of TCP initial sequence number. Invi-server
additionally uses SSL/TLS handshake as user authentication
process in a covert manner. previous work opens the
possibility of using upper layer authentication such as SSH,
but the detailed design and usage of covert authentication in
the upper layer (such as SSL/TLS) with collaborating with TCP
covert channel was not discussed.

Although some research concerning methods that use an
SSL/TLS handshake for user authentication as a covert
authentication channel has been reported (Karlin et al.,
2011; Wustrow et al., 2011), these researchers did not use
the TCP initial sequence number for reducing potential
authorized clients. A disadvantage of their method is that the
method should build all TCP session for each clients, which can
cause significant overhead. Therefore, Invi-server effectively
uses the TCP covert channel for candidate client selection
while authenticating user in SSL/TLS hand-shake with large
number of bits used for authentication.

92 COMPUTERS & SECURITY 67 (2017) 89-106

3. Threat model and assumptions

3.1. Threat model

Our research mainly targets scanning and eavesdropping attacks
launched by attackers from the Internet. The third kind of
attack, namely an internal attack that is launched as a con-
sequence of successfully compromising a publicly accessible
server, also forms the focus of our work. The following three
kinds of attacks are targeted in this paper.

A scanning attack: An attacker tries to scan all public IP ad-
dresses and open ports on the Internet. If a server has a
vulnerable service on an open port, the attacker succeeds
in compromising the server.

An eavesdropping attack: An attacker tries to listen to the
communication between a targeted server and a client to
determine the IP address of the client and the types of trans-
port layer and application layer protocols of the services
provided by the targeted server. After obtaining this service
information, the attacker has an increased possibility of
determining the vulnerabilities of the service, thereby im-
proving the chances of compromising the server.

An internal attack after compromising the public server: If
the attacker succeeds in compromising the publicly opened
server, he/she attempts to scan internal IP addresses from
the compromised server. This attack is a critical threat for
proxy-based server hiding techniques because the proxy
server provides a route to hidden servers located in inter-
nal networks.

The performance of Invi-server will be analyzed regarding
the above three threat models in the attack scenario and analy-
sis presented in Section 6.

3.2. Assumptions

Our target networks on which we deploy the Invi-server are
either campus or enterprise networks running various public

services but need a confidential service. For instance, a company
provides a web service containing company information and
their product information. Although the service is publicly ac-
cessible by all Internet users, the company needs a secret service
for high-level authorized users (hereafter we refer to these users
as secret client) such as a web community for high-ranking
company members. We do not target attackers who can physi-
cally access the secret server. We also do not assume that the
attacker can break the cryptographic methods such as AES or
HMAC. We also assume that the public service uses SSL/TLS
to prevent eavesdropping of the contents of the session between
the client and the server. Lastly, the Invi-server has an SSL/
TLS certificate and a private key of the target public server to
perform an MitM. We additionally assume that no other servers,
except for Invi-server and the target public server, have this
private key.

4. System design
4.1. Overview

The purpose of Invi-server is to provide a secure server free
from falling victim to scanning and eavesdropping attacks.
These attacks are prevented from occurring, by attaching Invi-
server to one of the public servers and by enabling Invi-server
to use the IP address of the public server (Fig. 1). In addition,
to allow authorized users to access services on Invi-server, this
server distributes special clients to its users, termed secret clients.
A secret client has a 20-byte long shared secret key with Invi-
server which is used for authentication. The first 4 bytes of the
key are used for candidate client selection at the network bridge
while the remaining bytes are used for modified SSL/TLS hand-
shake at the secret server, which are described in detail in Section
4.2 and Section 4.3. Invi-server can distinguish between traffic
from secret clients and that from non-secret clients with a cus-
tomized SSL/TLS handshake process. Three components of Invi-
server, namely, i) network bridge, ii) candidate client selection, and
iii) modified SSL/TLS handshake enable secure and invisible

Non-secret Client

~
—— _’_; Attacker
Invisible

Secret Client Authentication

Secret SerV{er

Network Bridge

— Request to Public Server
------ Request to Invi-server

Modified
SSL/TLS
Handshake

Candidate Client
Selection

Public Server

Invi-server

Fig. 1 - Components of Invi-server.

COMPUTERS & SECURITY 67 (2017) 89-106 93

Secret Client Invi-server

A secret client sets the TCP initial sequence
number as a TOTP value

(a) SYN, SEQ = TOTP value b
— » (b)
>
SYN/ACK
TCP < Invi-server compares
Handshake ACK received SEQ to generated a
> TOTP value.
—
Client Hello
R >
>
Server Hello
<
T Pre Master Secret _
SSL/TLS >
Handshake - (9) Client Finished = E(“Finished”, K., R «
>
Server Finished = E(“Finished”, K;,,)
—
Invi-server validates
A secret client sends the B HTTP Connection R D(E(“Finished”, Ky,), Ky,) = “Finished”
“Finished” message « >

encrypted with modified
session key, Ky,

Fig. 2 - Invi-server communication process.

connections with secret clients. We clarify the role of each com-
ponent by describing the overall communication procedure
between a secret client and Invi-server as follows (Fig. 2).

1. A secret client sends a TCP SYN packet, which is the initial
packet of TCP connection, to the public server. The packet
differs from a normal SYN packet in that the initial se-
quence number of the packet contains an one-time password
(OTP) for candidate client selection.

2. Because Invi-server is located in front of the public server,
the packet arrives at Invi-server before it reaches public server.
The network bridge in the Invi-server system forwards all TCP
SYN packets to a candidate client selection module (Section
4.2) to check whether the initial sequence number con-
tains an OTP whereupon the client IP address is inserted
into the candidate client list to allow subsequent packets from
this client. After that, the network bridge forwards further
packets from this client to the internal secret server in the
Invi-server system.

3. The secret client who succeeds the candidate client selection
attempts to conduct an SSL/TLS session with the secret server
through an SSL/TLS handshake. In the process, the secret
client and the secret server conduct the modified SSL/TLS hand-
shake rather than a normal SSL/TLS handshake process. The
modified SSL/TLS handshake contains the client authentica-
tion process by a shared key. A detailed description of the
modified SSL/TLS handshake is in Section 4.3.

4. After a successful SSL/TLS handshake, the secret client and
Invi-server use encryption to communicate each other using
the session key generated in a previous step.

4.2, Candidate client selection

The first component of the process followed by Invi-server is
candidate client selection, which reduces the overhead during client
authentication. Invi-server authenticates a secret client by the
modified SSL/TLS handshake. However, this generates the fol-
lowing overhead. Invi-server should hijack all sessions, i.e., those
from both secret and non-secret clients because Invi-server does
not know a secret client before checking a shared secret by

performing SSL/TLS handshaking. Therefore, Invi-server needs
to create two sessions to enable it to hijack a session: one for
the client and the other for the public server. When it receives
a request from a non-secret client, Invi-server checks all the SSL/
TLS handshake requests from the client and if there is no
shared secret, it forwards the request to the public server. Because

it needs two different SSL/TLS sessions to hijack the session,
encrypting and decrypting overhead is doubled which causes
network delay.

In this state, candidate client selection solves the above problem
by reducing the burden to create two SSL/TLS sessions (one
each for the client and public server) by selecting a potential
candidate as a secret client before the SSL handshake. Fig. 3
shows the impact of this step. As a result of the candidate client
selection, most of the non-secret client requests are forwarded to
the public server without creating a new session in the Invi-
server system. As demonstrated in the figure, Invi-server does
not hijack session for non-candidate clients.

Candidate client selection occurs when the secret client uses
the TCP initial sequence number to mark a secret client (Fig. 2
(a)). Because this number is originally a 32-bit random number,
it is the longest covert channel in the TCP header field. We use
the TCP initial sequence number in authentication. Other fields
in TCP header (e.g. ACK field, windows size, URG pointer, check-
sum, and timestamp in TCP option field) may be detected if
they are used as the authentication purpose. For example, the
TCP standard states the ACK field must be set to 0 in the TCP
SYN packet. If the ACK field were set other than zero, an at-
tacker (especially eavesdropper) would notice of the anomaly.
Second, the value of the URG pointer is also typically set to
zero and is not used unless some special cases. Although the
least significant bit of the TCP timestamp option may be used
as a covert channel (Giffin et al., 2002), the number of bytes it
can contain is limited, and applications use the TCP timestamp
option dependent with its operating system. If the public
server does not use the option, an attacker can catch the
difference through comparing the traffic from the public server
and the secret server. Also, if TCP Window size or TCP
checksum was used to hold the authentication information,
the inherent functions of each congestion control and
integrity check would be lost. Therefore, we did not change

94 COMPUTERS & SECURITY 67 (2017) 89-106

Invi-server

non-secret | SSL Handshake (Forward the HTTP payload
client

SSL Handshake

secret client

_

SSL Handshake

public server

(a) without candidate client selection

coincidental SEQ hit (2—12 probability)

Invi-server

SSL Hapdshake (No participation of Inxj-server)

non-secret
client

SSL Handshake

{
1
1
| .
\

e e o o o e e - -
candidate selection

public server

SSL Handshake

(b) With candidate client selection

Fig. 3 - Process of candidate client selection. (a) Burden of the session MitM for the non-secret client. (b) Reduced burden with

candidate client selection.

the original function of the TCP protocol, but used the TCP initial
sequence number to prevent the attacker from being aware of
the fact that authentication is taking place.

As the mark identifying the candidate client is placed in the
same field as the initial sequence number, an attacker who uses
eavesdropping to listen to the traffic would not notice the ex-
istence of the mark. The secret client adds the generated one-
time password (OTP) value to the field containing the initial
sequence number by using the following equation:

initial_sequence_number = TOTP (shared_key, kernel_time) (1)

The secret client and Invi-server use a time-based one-time
password (TOTP) for authentication using shared_key and
kernel_time where shared_key is the first 32-bit value of the pre-
shared 20 bytes pre-shared secret. This 32-bit value is generated
by a pseudo-random function and exchanged securely when
the client program is distributed. As described in RFC 6238 (Raihi
et al., 2011), the TOTP value is generated as a pseudo-random
value. Therefore, an attacker who uses eavesdropping to obtain
information about the packet would not notice that the OTP
value has been input into the initial sequence number field.
After the candidate client selection module receives the client’s
SYN packet with the OTP value, it also calculates the OTP value
in the same way, and checks whether these two values are equal
(Fig. 2 (b)). If the values are the same, the tuple (srcIPAddr,
srcPortNum, dstPortNum) of the request is added to the can-
didate client list and the client request is submitted to the internal
secret server. If not, the request is rapidly forwarded to the public
server (before an SSL/TLS handshake). Although a typical TCP
flow is identified as a 5-tuple, in the case of Invi-server, 3-tuple
is used because destIPAddr is fixed to the IP address of the
public server and the transport layer protocol is fixed to TCP.
Because non-secret clients generate the TCP initial sequence
number in a random way, one non-secret client per 2*? clients
accidentally becomes a candidate with a very low probability.

Client packets other than SYN packets are passed to the in-
ternal secret server when its (srcIPAddr, srcPortNum, dstPortNum)
tuple is in the candidate client list. Ten seconds after the last
packet has arrived from the client, the tuple relating to the client
is deleted automatically.

In summary, candidate client selection is a filtering process to
quickly distinguish candidates of secret clients. In order to do
this, the candidate client selection checks whether an SYN packet,
which starts the TCP session, contains OTP or not, rather than
checks OTP for all other packets. The remaining packets after
the session initiation are checked by the flow information, the
3-tuple of TCP session which is registered in the candidate client
list. In other words, an SYN packet containing OTP opens the
route toward the secret server for remaining packets of the flow.

Alternatively, candidate client list can be structured using se-
quence numbers rather than the 3-tuple of flow information.
If the initial sequence number of an SYN packet of a secret client
matches the TOTP calculated by Invi-server, Invi-server regis-
ters the sequence number, not the 3-tuple of the flow, in
candidate client list. After that, the remaining packets from the
secret client are authenticated by matching (previous se-
quence number in candidate client list + current packet length)
with the sequence number of the current packet. If this check
passes, Invi-server forwards the traffic to the secret server and
updates the value of the candidate client list with the current
sequence number. Both of the methods have trade-off. The
3-tuple based method does not require update of the candi-
date client list for each incoming packets. On the other hand,
the sequence number method has advantage in that only the
sequence number is stored in the list rather than the 3-tuple.
In the current implementation (as described in Section 5), Invi-
server have been implemented with the 3-tuple fashion, but
both methods can be used.

Note that secret clients would not be affected by network
address translators (such as wireless APs assigning private IP
addresses). Because Invi-server registers the session information

COMPUTERS & SECURITY 67 (2017) 89-106 95

of the translated IP address and port number, the secret clients
can access the Invi-server as a usual way. However, if there are
middle boxes which modify the TCP sequence number of the
secret clients, the secret clients may not access Invi-server.

The value of kernel_time is the Linux kernel time of the secret
client and Invi-server. This value can be set manually or syn-
chronized with each other by using a time synchronization
protocol such as network time protocol (NTP) (Mills et al., 2010).
Since the Invi-server cannot be accessible without time syn-
chronization, the secret client and Invi-server perform time
synchronization through a trusted NTP server periodically.
However, time synchronization may show errors due to delays
on the Internet. We set a 30 seconds time step window, which
is recommended by the TOTP standard. With this, a secret client
can pass the candidate client selection even if they do not have
perfect time synchronization. This time step may lead to a se-
curity leak, which we will discuss in Section 7.1.5

4.3. Modified SSL/TLS handshake

Once candidate client selection succeeds, the client and Invi-
server start an SSL/TLS four handshake by using the following
procedure. First, the client sends a client hello message to Invi-
server, after which Invi-server sends a server hello and a server
certificate, which is the same certificate as that sent by the public
server. The reason why Invi-server uses the same certificate with
a public server is that if Invi-server uses different certificate, an
eavesdropper may notice that there exists a different service
between the client and the public server. Because Invi-server
works as though it has the same IP address as the public server,
it is suitable to use a certificate identical to that of the public
server. Invi-server and the secret client use a session key when
they communicate using the SSL/TLS protocol. The key is nec-
essary for authentication of the secret client. The session key,
K, is generated by the following equation:

K., = HMAC_SHA1 (random_number, client_id_key) 2)

HMAC_SHA1 needs 64 bytes of plain text (random_number)
and 16 bytes for the key (client_id_key) to generate a new 16-byte
session key. The random_number is generated by concatenat-
ing client_random and server_random each of which is a 32-byte
pseudo random number, and which is generated during the pre-
vious steps in the handshake. The client_id_key is the least
significant 16 bytes of the shared secret. This key is unique for
each client group who has the same access permission for Invi-
server. The final step of the SSL/TLS handshake procedure on
the client side is sending an encrypted finish message to the
server (Fig. 2 (c)). Invi-server decrypts this message by using each
client_id_key (Fig. 2 (d)). If there is a client_id_key that decrypts
the finish message correctly, the client request is finally for-
warded to the secret server.

If the message is not decrypted to the correct plain text with
any client_id_key, Invi-server establishes a new connection with
the public server and forwards the entire payload to the public
server. In situations such as these, Invi-server runs as an MitM
attacker, forwards the request from the client to the public server,
and forwards the response from the public server to the client.
Note that this situation hardly occurs because only the

connection trials passing the candidate client selection reach the
modified SSL/TLS handshake module.

5. Implementation

We verified the performance of Invi-server by building a testbed
with a secret client and Invi-server prototype. The secret client
is implemented with a TOTP generation module and a modi-
fied SSL/TLS handshake module. The Invi-server prototype is
implemented with a network bridge, a candidate client selection
module, and a modified SSL/TLS handshake module.

5.1. Secret client

Implementation of a secret client consists of two steps. The first
step involves setting the TCP initial sequence number as a TOTP
result and the second step is changing the generated SSL/
TLS session key for a modified SSL/TLS handshake.

5.1.1. Implementing initial sequence number as TOTP value
We implemented the TOTP generation module by modifying
Linux kernel 3.2.0 of Ubuntu 12.04.1 LTS. In the Linux kernel,
a function named secure_tcp_sequence_number() in secure_seq.c
returns a 32-bit random number with which the initial se-
quence number is generated securely. We modified this function
to return a 32-bit TOTP result instead of a random number and
generated the TOTP result by using the current_kernel_time() func-
tion of the ktime library to obtain the current kernel time. After
obtaining the current kernel time, it is divided by 30 to deter-
mine the time synchronization steps as described in the TOTP
standard.

5.1.2. Implementing modified SSL/TLS handshake

Firefox, which was used for web client program, uses NSS
(Network Security Services) as a security library including an
SSL/TLS connection. We modified the NSS such that it was pos-
sible to use a modified session key as described in Section 4.3.
NSS uses PKCS#11 libraries (RSA Laboratories) for their secu-
rity tokens to generate and save their session keys securely.
For implementation, our prototype bypasses the PKCS#11 se-
curity token and uses internal key generation function in NSS.
We modified ssl3_keyAndMacDeriveBypass which is an SSL/
TLS key generation function when bypassing PKCS#11.

5.2. Invi-server

Fig. 4 illustrates the architecture of Invi-server. Invi-server con-
tains a network bridge with a candidate client selection module,
and a secret server with a modified SSL/TLS handshake module.
The network bridge is implemented as a software bridge (linux
bridge, brctl) with customized Netfilter hook handler func-
tions for candidate client selection. It also acts as a spoofer who
makes the IP and MAC addresses of all packets leaving the Invi-
server into those of the public server. We also modified the
OpenSSL library to support our SSL/TLS key generation algo-
rithm. Invi-server is implemented on a Linux system running
kernel version 3.2.0-44 (Ubuntu 12.04.1) and OpenSSL 1.0.1e.
Apache web server version 2.4.4 is used as the web server

96 COMPUTERS & SECURITY 67 (2017) 89-106

Invi-server Architecture

e e e e e e e e e e—
I Netfilter Module

Clients ! br0 Public Server
I @ Network
I Candidate Client Candidate Software Bridge

Selection e Bridge(brctl)
L — — —_——
I Apache Web Server I
I SSL Processing
Module Web Processing
(Modified SSUTLS [T Module ! cocret

I Handshake) I

Fig. 4 - Invi-server architecture.

application and uses our modified OpenSSL. We also tested that
OpenSSH work on our modified OpenSSL. We believe that other
services based on SSL/TLS can also work on Invi-server, such
as VPN and IMAP services.

5.2.1. Network bridge

Network bridge is located in front of the public server. The network
bridge is implemented based on Linux Bridge (using brctl, which
provides a software bridge) and custom functions with the
Netfilter module.

We enabled the secret server to receive requests from au-
thenticated clients with its existence remaining undetected by
using the bridge interface (br0) to assign the secret server the
same IP address as the public server.

Although the two machines in our system have the same
IP addresses, having different MAC addresses can allow eaves-
droppers to identify which packet is sent from which device.
We set the MAC address of the br0 interface to the same address
as the public server. Thus, two different machines use the same
IP address, which causes IP address conflict. We created a con-
crete rule set that ensures that only one host can receive
incoming packets at any given time even though they have the
same IP and MAC addresses.

More specifically, the concrete rule set is as follows. br0
accepts authorized packets (SYN packet with OTP or in candi-
date client list) and drops the others. Conversely, the interface
connected to the public server drops authorized packets and
accepts the others. With these two rules, the network bridge pre-
vents the secret server and the public server from receiving same
packets. For broadcasting traffic, brO drops all incoming and
outgoing packets of the internal secret server. The reason for
dropping all the broadcasting traffic is to prevent the possi-
bility of the Invi-server being exposed. However, if all the
broadcasting traffic is being dropped, Address Resolution Pro-
tocol (ARP) cannot work. It causes the secret server could not
send packet to secret client. In order to solve this problem, when-
ever a secret client is successfully authenticated, the network bridge

registers the IP address to its MAC address mapping informa-
tion of the secret client in the br0’s ARP table.

5.2.2. Custom functions with Netfilter module for candidate
client selection

All the packets that are passed to or from the public server pass
through the bridge. Packets that are received by an interface
are identified and checked for an error and sent to a Netfilter
hook, named NF_INET_PRE_ROUTING which is the first hook
after the packet arrives at the host. This hook is used as in-
coming packet inspection with a user-defined handler function
along with the NF_INET_PRE_ROUTING hook. We imple-
mented a customized function named preRoutingHookEntryFunc(),
which compares the current one time password value gener-
ated by Equation (1) with the TCP initial sequence number field
value of packets and marks the source IP address, source port
number, and destination port number of the matched packet
on the candidate_client_list. If the incoming packet is not a TCP
packet, it is regarded as a forwarded packet. Algorithm 1 pres-
ents the pseudo-code of this function.

Algorithm 1 Candidate client selection on prerouting hook
pkt = Incoming packet on prerouting hook

if pkt.prot = TCP and pkt.tcp-hdr = SYN and pkt.ip_hdr.dest = PUB-
LIC_.SERVER-ADDR then

cur_time = get_current_time();
TOTP_result = generate TOT P(shared key,cur_time)
if pkt.tcp_hdr.seq_num = TOTP _result then
add_candidate_client_list(packet.ip_header.src,
packet.tep_header.sre, packet.tep_header.dst)
end if
end if

After the packet passes through the NF_INET_PRE_ROUTING
hook, it enters the Routing Decision Module that actually for-
wards the packet to its destination. In our implementation, each

COMPUTERS & SECURITY 67 (2017) 89-106 97

packet is copied and passed into either the NF_INET_LOCAL_IN
or NF_INET FORWARD hook. Once a packet arrives at
NF_INET_LOCAL _IN, the packet proceeds to the secret server in
the local host unless it is dropped inside the invoked function
associated with the hook. On the other hand, if a packet is
NF_INET_FORWARD, it is forwarded to another interface unless
it is dropped. We implemented a kernel module that consists
of function sets that handle each hook. On NF_INET_LOCAL_IN
hook, a function named locallnHookEntryFunc() is called, which
looks up the candidate_client_list, and accepts the packet if its
source IP address is on the list, or drops it otherwise. The ac-
cepted packet on this function is passed to the hook and
delivered to a local process. On the NF_INET FORWARD hook,
forwardHookEntryFunc() is called and performs the opposite action.
The accepted packet is passed through another hook named
NF_INET_POSTROUTING and finally leaves the host. These func-
tions ensure that only one copy of duplicated packets is received
at the destination.

5.2.3. Modified SSL/TLS handshake

Packets that are passed to the NF_INET_LOCAL_IN hook are
special as they do not reach the public server. Those packets
are delivered to and handled by a local process. OpenSSL 1.0.1e
was used with some modification in order to support the key
generation formula described in Section 4.3. We changed
OpenSSL to use the modified session key to receive the client
finish message.

6. Attack scenario and analysis

In this section, we provide three attack scenarios for Invi-
server, whereas the other server models, i.e., stand-alone and
proxy server models, are evaluated together. The three attack
scenarios are a scanning attack, an eavesdropping attack, and

1) Scanning

Attacker
ff—-

2) Eavesdropping Switch/Router

Public Server Secret Server

~.. X
3) Attack after compromising the public server
(Internal Scanning)

(a) Stand-alone server model

\m eeeeeeeeeen. 1) Scanning

Attacker
N

>
2) Bavesdropping |\ o i Bridge

o

Secret Server

Invi-server

an internal attack after compromising the public server. An at-
tacker would “succeed” in attacking the secret server in each
of the three attack scenarios, by achieving the following goals.

e A scanning attack: Finding IP addresses and open ports of
services that could be accessed by the attacker.

e An eavesdropping attack: Finding metadata which con-
tains an IP address and the port information of the sender
or receiver, or protocol information of the communication
of a secret server.

¢ An internal attack after compromising a public server: a secret
server is accessible (or scannable) after compromising a pub-
licly opened server (a public server).

The server models and the three attacks associated with
them are shown in Fig. 5. In our scenario, we assume that all
server models contain public and secret servers, and have known
web vulnerabilities, such as SQL-injection, XSS, or other types
of vulnerabilities (for example CVE 2013-2251, which is a vul-
nerability of Apache Struts that enables the execution of
arbitrary files). Thus, if the attacker successfully scans or uses
eavesdropping to obtain the service information of the tar-
geted server, we assume the attacker would be able to
compromise the targeted server. We discuss the three attacks
for each of the three server models in detail in the remaining
part of this section. The results of the attacks are summa-
rized in Table 1.

6.1. Scanning attack

Fig. 5 (a) shows the three attack scenarios and the network ar-
chitecture of server model based on a stand-alone server. As
shown in the figure, a public server which is opened to all users
and a secret server which is open to limited users are on the
same network. Note that both of the two servers have public

1) Scanning
Attacker
B ——

2) Eavesdropping Proxy Server

Public Server Secret Server
3) Attack after compromising ~ . . %
the public server :
(Internal Scanning)

(b) Proxy-based server model

Public Server

3) Attack after compromising

the public server
(Internal Scanning)

(¢) Invi-server model

Fig. 5 — Network topologies of three server models and three attack scenarios for each server model.

98 COMPUTERS & SECURITY 67 (2017) 89-106

Table 1 - Attack possibility of each three attack scenarios.

Attack type Stand-alone server model

Proxy server model Invi-server

Scanning attack The public server and the secret
server are scannable

Metadata of the public server and
the secret server are revealed
More vulnerable than external

scanning attack

Eavesdropping attack

Internal attack after
compromising a
public server

The public server and the proxy
server are scannable

Metadata of the proxy server is
revealed

The secret server is scannable

Only the public server is scannable

Metadata of the public server is
revealed
The secret server is unscannable

IP addresses which can be accessed by any Internet users. The
secret server adopts application layer ID/PW-based authentica-
tion as is the case for many other web servers. In this state,
an attacker succeeds in performing IP and port scanning on
both the public server and the secret server. The use of several
vulnerability-scanning tools (Kals et al., 2006; Metasploit) enables
the attacker to find vulnerabilities in the secret server by using
the scanned IP address of this server.

In the proxy server model, the proxy server has a public IP
address and forwards requests to the public server behind the
proxy server. Fig. 5 (b) shows three attack scenarios and the
network architecture of the proxy server model. The internal
servers, i.e., the public server and the secret server, communi-
cate with each other using their internal private IP addresses
in the same subnet, whereas the proxy server has both a public
IP address, which it uses for external communications, and a
private IP address, for internal communications. In this situ-
ation, the proxy server forwards traffic of authenticated users
to the secret server by determining the users’ IP address (a well-
known proxy server, Apache mod_proxy, adopts this method).
Scanning the proxy server reveals the following two types of
services: the service running on the public server of which re-
quests are forwarded by the proxy server and services running
on the proxy server itself such as the SSH server. Neither of
these two services reveals direct attack routes for the secret server
because the attacker is not authorized to access the secret server.
Therefore, in the proxy server case, an attacker cannot attain
the goal of scanning a secret server.

In the case of the Invi-server, it is unscannable because it
does not have its own IP address and only requests from au-
thorized clients who succeed in passing candidate client selection
are forwarded to Invi-server. Therefore, direct scanning and
finding vulnerabilities are prevented because Invi-server is in-
visible to unauthorized clients.

6.2. Eavesdropping attack

The use of eavesdropping to listen to a communication of the
secret server in the stand-alone server model reveals informa-
tion containing the IP address of both the client and server,
and the service port (which is 80 for a web service). An at-
tacker obtaining this information can launch a vulnerability-
scanning attack.

The use of eavesdropping to intercept the communication
between a proxy server and its client does not directly reveal
the main subject (IP address of either the public server or secret
server) of the communication. Rather than that, it reveals the

IP address of the proxy server itself. It means that the eaves-
dropping does not reveal the communication metadata of the
secret server. The internal IP addresses of the public server and
the secret server are not exposed to the eavesdropper. Thus,
eavesdropping also fails in the case of the proxy server model.

In the case of Invi-server, although the attacker obtains the
communication information between the secret client and the
secret server, the metadata reveals the IP address of the public
server. Therefore, the attacker tends to mistakenly recognize
that only the public server exists in the network. Moreover, re-
quests of the attacker for vulnerability scanning go to the public
server and not to the Invi-server because he/she does not have
authentication.

6.3. Internal attack after compromising a public server

As mentioned above, a stand-alone server model is vulner-
able to scanning and eavesdropping attacks. If an attacker
compromises the public server, the possibility of compromis-
ing the secret server can increase significantly for the following
reasons. First, if the secret server and the public server are in the
same subnet, as in Fig. 5 (a), the attacker can infer the IP address
of the secret server by using broadcast packets (e.g., Address Reso-
lution Protocol (ARP) of IPv4 or Neighbor Discovery Protocol of
IPv6) generated by the secret server. Thus, the attacker can de-
termine the existence of secret server without scanning or
eavesdropping. Second, an internal attack is more vulnerable
than an external attack because firewalls are usually located
on the border between public and private networks. There-
fore, an attack from the public server cannot be filtered by the
firewall which makes it easier to establish the vulnerabilities
of the secret server.

As described in the previous section, direct scanning or
eavesdropping fails to succeed in their goals in the case of the
proxy server model. However, there exist several paths to com-
promise the secret server behind the proxy server as shown in
Fig. 6. The first path involves compromising the public server
by exploiting its possible vulnerabilities and scanning the secret
server with the compromised public server. This is possible since
the secret server is accessible if an attacker were to reach the
internal network. If the existence of the internal network were
to become known, the situation would no longer differ from
the stand-alone case in terms of the scanning capability. An
attacker could find a vulnerability of the secret server, which
they could then exploit.

The second path entails compromising or bypassing the
proxy server to access the secret server directly. If the proxy server
has a running service with a vulnerability such as a vulnerable

COMPUTERS & SECURITY 67 (2017) 89-106 99

Bypass
rerverse proxy
(CVE-2011-3368

Root shell
exploit

Server IP
address
known

Accessible

Service scanning
(nmap)

remote root

remote shell

@O : Prevented in Invi-server

access

access

Shell exploit
(CVE-2011-2202)

remote shell
access

database
access

Fig. 6 — Attack paths to the secret server in the proxy server model. Text in each circle presents states of an attacker’s
capability after attacks (arrows) are conducted. The red arrows are attack paths which experimented with reported
vulnerabilities of the proxy server model. Marked arrows are attack paths prevented in Invi-server.

SSH server, the attacker could compromise the proxy server.
Moreover, there also exists a reverse proxy bypass vulnerabil-
ity which is quite a dangerous vulnerability that enables an
attacker to directly access any servers in the internal network
without compromising any internal servers.

On the other hand, Invi-server eliminates the potential paths
for attacks that exist in the proxy server model. Invi-server does
not have its own IP address; thus, internal network scanning
via a compromised public server does not reveal the existence
of the secret server. This eliminates the first path of the reverse
proxy case. The second path is also cut because Invi-server is
installed as a bridge form. Because a network bridge performs
MAC layer routing rather than application layer routing, the
possibility of bypassing the bridge is low. This supports the fact
that there were no bypass vulnerability reports about brctl, one
of the widely used software bridges in Linux systems, which
Invi-server adopts as a bridge application. Presumably, the
network bridge software has no reported vulnerabilities because
the input size of the program is quite fixed and small (<64 bytes).

6.4. Experiment of the attack scenario

We investigated whether the attack paths in Fig. 6 are feasible
in a real environment by building a network topology as in Fig. 5
(b) and (c) with virtual machines. We use the mod_proxy module
in Apache HTTP server 2.2.4 as a proxy server and run a web
application using Apache Struts2 version 2.3.15. We test the two
vulnerability paths from the “server IP address known” state to
the “secret server remote shell access” state which contains in-
termediate states and red arrows. We first access the secret server
using a reverse proxy bypass vulnerability (CVE-2011-3368) as
the upper red arrow in the figure. After that, we successfully
obtain a shell of the secret server with the remote program ex-
ecution vulnerability of Apache Struts2 (CVE-2013-2251).

We experiment with the second path, which is the lower
path in the figure. We first compromise the public server with
the remote code execution vulnerability of Apache Struts2. After
that, IP address and open port scanning for the internal IP ad-
dresses is conducted in the public server using nmap, a scanning

tool. In our experiment, the private IP address of the secret server
is revealed by the scanning resulting in a web service on the
secret server becoming accessible. Finally, we reach the remote
shell of the secret server using the Apache Struts2 vulnerability.

On the other hand, when we try to compromise Invi-
server, neither of the above two paths enables us to do so. As
mentioned above, bypassing the bridge software vulnerabil-
ity has not reported yet. Moreover, internal network scanning
with a compromised public server and nmap does not reveal any
clue of the existence of Invi-server. Consequently, Invi-server
is robust to all three of these attacks, whereas neither the stand-
alone server model nor the proxy server model fails to prevent
all of these attacks.

7. Evaluation
7.1. Security evaluation

Next, we demonstrate the advantage in terms of security
aspects of Invi-server by considering the possibility of a brute
force attack on Invi-server in this section. Next, difficulty of
inferring the existence of secret communication is carefully
considered. Furthermore knocking methods which uses TCP
covert channel as their authentication method are compared
with Invi-server. Some security issues containing possible
threats revealing the Invi-server, problems under time syn-
chronization, and forward secrecy are also considered on this
section.

7.1.1. Possibility of brute force attack on Invi-server

There are two cases in which users who are not approved as
the secret client send requests to Invi-server; an unintentional
user, usually a public client who wants to send a request to a
public server and an intentional user, or an attacker, who wants
to access Invi-server through a brute force attack. In both of
these cases, there is the possibility of the candidate client se-
lection succeeding because the TCP initial sequence number is

100 COMPUTERS & SECURITY 67 (2017) 89-106

originally a random number. The possibility of this case suc-
ceeding is 1/2%2 because the sequence number is 32 bits long.

After the candidate client selection, the unintentional user or
the attacker may succeed with the modified SSL/TLS hand-
shake because of the coincidental generation of the same
session key. The probability of having the same session key is
much higher than the case of candidate client selection, which
is 1/2'%. Thus, the entire probability of both of candidate client
selection and modified SSL/TLS handshake succeeding is 1/2%2 x 1/
2128 = 1/2'%0 which means that coincidental access to Invi-
server is almost impossible.

Furthermore, Invi-server can easily find an attacker who con-
tinually tries to access it. The situation is improved by the fact
that there are many existing detection schemes continu-
ously try to connect to a specific target (Jung et al., 2004; Nychis
et al., 2008). Moreover, application layer authentication such
as an ID/Password-based login can prevent coincidental access
of the critical data on Invi-server. If the application layer au-
thentication of a client fails more times than a specified
threshold, Invi-server transparently forwards subsequent re-
quests from the client to the public server.

7.1.2. Difficulty of inferring the existence of secret
communication

We argue that Invi-server has advantage in terms of difficulty
of inferring the existence of their secret communication. This
is attributable to the existence of the public server which hides
the communication between Invi-server and a secret client. Con-
sequently, an attacker cannot distinguish communication
between Invi-server and a secret client from the communica-
tion between the public sever and public client. In the following,
we will show how two types of communication, a public client
to a public server and a secret client to a secret server, are
indistinguishable.

We show that these two types of communication are in-
distinguishable by focusing on possible points that could be
used to distinguish them. Since the application layer of both
types of communication is encrypted, we only focus on their
differences the MAC layer (MAC header), IP layer (IP header),
transport layer (TCP header), and session layer (SSL/TLS
handshake).

First, because Invi-server changed its MAC and IP ad-
dresses to the same as that of the public server, the information
on the MAC and IP layers are indistinguishable. Second, Invi-
server changes its TCP initial sequence number to an OTP value
for candidate client selection which may inadvertently enable an
attacker to distinguish between the two types of communi-
cation. However, the changed TCP initial sequence number is
hard to distinguish because the OTP value is pseudo-randomly
generated.

Lastly, the modified SSL/TLS handshake of Invi-server can
provide a clue for differentiating between the two types of com-
munication. However, the process conducted during the
modified SSL/TLS handshake is exactly the same as that of a
normal SSL/TLS handshake process except for the way the
session key is changed. Even though the session key is changed,
an attacker cannot guess whether this has occurred because
the session key is originally hidden from the attacker in the
Diffi-Hellman key exchange protocol. Therefore, there are no

clues to distinguish the two types of communication from the
attacker’s point of view.

7.1.3. A comparison to knocking methods

We compare the Invi-server with knocking methods because
both methods use the network layer covert channel for au-
thenticating users. The comparison in this section shows the
advantages of Invi-server, which involves not only hiding the
authentication method used in secret communication, but also
hiding the existence of the secret communication itself.

Port knocking is a network layer authentication method that
opens a port in the server after some port sequences are re-
ceived correctly in the form of an initial packet from the client.
Krzywinski (2003) proposed this idea in 2003; however, weak-
ness was found when an attacker tried a replay attack after
watching the port sequence.

The problem of port knocking occurs because the authen-
tication is only performed by a static sequence of ports and
IP address. Several mechanisms have been proposed (Degraaf
et al., 2005; Graham-Cumming, 2004; Worth) to solve this
problem by improving the security by introducing cryptogra-
phy into the port sequences (e.g., randomly changing the port
sequences as in one time pass code). However, these studies
were limited in terms of hiding the presence of authentica-
tion method and the existence of secret communication
channel between the client and the secret server, because they
did not use the standard TCP field or additional packets for au-
thentication. These mechanisms would enable a local network
snooper to easily find a system with a port knocking method
and its existence of secret channel along with the IP ad-
dresses of the clients and the secret servers.

PROVIDE (Koch and Bestavros, 2016) proposes a DNS-
based key (the knocking sequences) distribution method for
clients of knocking methods. However, this method could be
broken by the attacker who contacts the DNS server because
its target attacks are limited to horizontal IP scanners.

The TCP initial sequence number field as authentication
method was proposed by introducing Silentknock (Vasserman
et al.,, 2009), so that in Silentknock the authentication method
can be hidden from external observers, whereas in the port
knocking (Krzywinski, 2003), the authentication method can
be snooped by the attacker. An RFC information draft (Kirsch
and Grothoff, 2015) also has proposed a method to embed-
ding an authentication token to TCP initial sequence number
with the similar manner of Silentknock. The most improved
scheme among the knocking methods would be Silentknock,
however, by design Silentknock does not hide the existence of
communication channel between the client and the secret server.

In the following, we will provide more detailed comparison.
(In our discussion, we will use Silentknock as a representative
knocking scheme.) One of the main difference between knock-
ing methods and Invi-server is the existence of the public server.
We use the IP and MAC addresses of the public server in reply
packets to the authorized users. Unauthorized users will also
receive the packets with the same IP and MAC addresses. Since
the contents can be encrypted, the snooper may not be able to
distinguish between packets from Invi-Server and those from
public-server, both of which have the same IP and MAC ad-
dresses (of the public server).

COMPUTERS & SECURITY 67 (2017) 89-106 101

Secret Client (SC) Snooper (SN) Secret Server (SS)

—— Original Packet
> — Spoofed Packet

P1 = (srcIP = SC, dstIP = SS)

|P2 = (srcIP =SS, dstIP = SC

P1’ = (srcIP = SC, dstIP = SS)

Snooper notices a
secret communication
between SC and SS

No Reply

(a) Inferring the secret communication of knocking method

Secret Client (SC) Snooper (SN) Secret Server (SS) Public Server (PS)

P1 = (srcIP = SC, dstIP= PS)

P2 = (srclP = PS, dstIP = SC)

P1’ = (srcIP = SC, dstIP = PS)

P3 = (srcIP = PS, dstIP = SN

(b) Inferring the secret communication of Invi-server

Fig. 7 - Inferring the existence of secret communications.

Moreover, Invi-server offers an advantage in a client enu-
meration attack. We define a client enumeration attack as
enumeration by a powerful snooper of the IP addresses of clients
who connect to the secret server and the compromising of one
of the vulnerable clients when they connect the secret server.
If the number of enumerated IP addresses of the clients in-
creases, the possibility of successful attacks also increases.

In the following, we will show how knocking schemes fail
to hide the existence of their secret server. Next, we compare
the security of the knocking scheme and Invi-server from the
viewpoint of a client enumeration attack.

Inferring the existence of a secret server using a knock-
ing method: The advantage of a secret server using a knocking
method is that a snooper cannot infer which network authen-
tication method is used. This advantage is attributable to the
fact that the authentication cannot be distinguished with a
normal TCP handshake (Vasserman et al., 2009). However, an
attacker can infer the existence of a secret server and some au-
thentication method by the following process.

First, a snooper (SN) uses eavesdropping to access a TCP SYN
packet from a secret client (SC) who successfully connects to a
secret server (SS) (Fig. 7 (a)). After that, the attacker replays the
captured packets with spoofed IP address to the SS. Since re-
playing a normal TCP SYN packet results a response from the
server, if there is no response, the attacker can infer some au-
thentication scheme exists in the SS and the SC is an authorized
user. Although this would not destroy the authentication of the
secret server SS, it would be easier to attack the SCs using the

enumerated IP addresses. The attacker can enumerate the IP
addresses by collecting the IP addresses of clients who suc-
cessfully connect to the secret server.

On the other hand, in the case of Invi-server, a snooper in
Fig. 7 (b) cannot infer the existence of any authentication
scheme. If the attacker replays the TCP SYN packets of a client
of a secret client SC or a public client, the request always suc-
ceeds in connecting to a public server. From the point of view
of the attacker, the attacker thinks there is only a public
server because the captured packet of the SS and the replied
packet from PS are hardly distinguishable as described in
Section 7.1.2.

Client enumeration attack: Since Invi-server and the knock-
ing scheme use a shared key, it is hard to break the
authentication itself. Rather than that, an attacker can enu-
merate the IP address of their clients and try to compromise
the clients rather than directly attack the secret server. As de-
scribed previously, clients of a secret server using a knocking
scheme can be enumerated by an eavesdropper. In the case of
Invi-server, packets from both the secret server and public server
are enumerated without identifying the source of the packets.
Since the payload is encrypted, the attacker cannot distin-
guish whether the reply is from the secret server or from the public
server. In this case, the attacker would have to enumerate all
possible IP addresses of both public clients and secret clients. As-
suming the number of secret client of the knocking scheme is
Ns, the burden of attacking the client of knocking scheme, Binoc,
can be calculated by Equation (3) where k is a constant value.

102 COMPUTERS & SECURITY 67 (2017) 89-106

Brnock = k/Ns (3)

In the case of Invi-server, there are additional clients known
as public clients who are the users of the public server. Assum-
ing that the number of public clients is N, the burden of attacking
Invi-server clients, Biwi, is calculated by Equation (4).

Blnui:BknockX(Ns+Np)/Ns:kX(Ns+Np)/N52 (4)

If N, is zero which means there are no public clients, By is
equal to Binoa- If N, increases, By, increases concurrently which
means the hardness of attacking a client increases. Because
N, is larger than N, a client of Invi-server is protected against
a client enumeration attack than a client of the knocking
scheme. This evidently shows that installation of Invi-server
into a public server will provide enhanced security against these
attacks. For example, if Invi-server has 50 clients while its at-
tached public server has 10,000 clients, the possibility to find a
secret client among the enumerated IP addresses of clients is
around 0.4%.

7.1.4. Possible threats revealing the Invi-server

In Section 6 and Section 7.1, we have described that Invi-
server is difficult to be detected. However, the Invi-server may
not cover all kinds of attacks. Here we describe possible threats
that Invi-server can be found and how to respond these threats.

Eavesdropping on the back and forth of Invi-server con-
currently: Invi-server cannot be found with one of the external
scanning, eavesdropping and internal attack. However, it could
be detected if both external and internal eavesdropping and in-
ternal eavesdropping occur at the same time. For example,
suppose an attacker sniffs a packet between an Invi-server and
a secret client on one of switches or routers, and compromise a
public server at the same time. If the attacker observes the packet
P1 (srcIPAddr = secret_client, dstIPAddr = public_server) and the reply
packet P2 (srcIPAddr = public_server, dstIPAddr = secret_client) in the
switches or routers while the P1 and P2 are not generated in
the public server, she may notice the existence of Invi-server and
suspect that the srcIPAddr is a secret client’s IP address.

This attack also can be performed by observing the ARP Table
without sniffing the packets directly. If there is ARP informa-
tion for a secret client’s IP address in switch or router between
Invi-server and secret client, but there is no information in the
compromised public server, there is suspicious about the ex-
istence of Invi-server.

Imposing heavy load on the public server and analyzing
the response time: If an attacker imposes heavy traffic such
as denial of service (DoS) attack on a public server, the re-
sponse time difference between from the public server and from
the Invi-server grows and she can suspect the existence of the
Invi-server. This attack is easier to perform because she does
not need to compromise the public server unlike the above men-
tioned attacks. As a defense against this attack, the Invi-
server network bridge can add some delay by performing timing
analysis on the traffic going to and from the public server. Al-
ternatively, if the traffic delay from the public server exceeds a
certain threshold, Invi-server can be disabled. These issues will
be resolved in future research.

Getting the IP addresses of secret clients with external
channel: In addition to above two attacks, if the fact of using

the Invi-server and the IP address of a secret client is exposed
on external path (e.g., a personal e-mail containing the infor-
mation is compromised), the attacker may collect these facts
and discover the existence of a secret client.

Possible defense: If the IP address of a secret client is exposed,
an attacker can eavesdrop the TCP initial sequence number of
the secret client and spoof it to pass the candidate client selec-
tion. However, even if the attacker passes the candidate client
selection, the attacker must pass the modified SSL/TLS hand-
shake to access the secret server. In order to access the secret
server, the attacker can try a brute force attack to find out the
remaining 16 bytes of the shared_key. To prevent such attack,
if attack attempts are periodically detected, in other word au-
thentication failure in the modified SSL/TLS handshake for a
particular shared_key exceeds a certain threshold, Invi-server
revokes the shared_key. When the revocation is performed, an
administrator of the Invi-server sends the revocation facts se-
curely to the users who used the shared_key and recommends
to change the IP addresses of the users.

7.1.5. Problems under time synchronization

As described in Section 4.2, on the candidate client selection
process, the secret client and the Invi-server perform Time-
based OTP generation procedure with Linux kernel time.
However, due to the time step, the OTP value may remain un-
changed within the same time step At. An attacker who can
collect initial TCP sequence number will notice that the TCP
sequence number is used as an authentication method.

In the current state, we set a limit on the connection to the
Invi-server within At so that the same TCP sequence would not
be used again. In other words, a secret client is allowed to send
one SYN packet within At. This degrades the usability of Invi-
server. In order to compensate this, OTP could be generated
with additional sequence bits. The sequence bits start with 0
when the new time step starts, and increase by 1 for each time
of sending a new SYN packet. This OTP could be imple-
mented by revising the Equation (1) to TOTP(shared_secret |
sequence_bits, kernel time) where the mark “/” means con-
catenation. Invi-server would pre-calculate possible OTP
sequences of which the sequence_bits ranges from zero to
certain threshold. A hash table can be used for fast matching
of a client’s OTP with pre-calculated OTPs of set of the se-
quence bits.

7.1.6. Forward secrecy

The session key K, generated in the modified SSL/TLS hand-
shake cannot provide forward secrecy since both values of the
client_random and server_random are exposed in plaintext. If an
attacker, who obtained a shared_key of a secret client and saves
a client_random and a server_random in a session, she could
decrypt the data of the session.

In order to provide forward secrecy, a scheme to perform
ephemeral Diffie-Hellman (DHE) key exchange can be consid-
ered. As an example, how ECDHE (Elliptic Curve DHE) keys can
be exchanged is described as follows. Suppose that a secret client
and Invi-server have a pre-shared elliptic curve domain (such
as Curve25519 (Bernstein, 2006)). When the modified SSL/TLS
handshake starts, the secret client and Invi-server generates a
32-byte private key and a 32-byte public key in the pre-
shared ECDHE domain. Then, the secret client inserts the

COMPUTERS & SECURITY 67 (2017) 89-106 103

generated public key into the client_random value and sends it
to the Invi-server. Likewise, the Invi-server inserts its public
key into server_random and sends it to the client. After the
server_hello, the secret client and Invi-server generate shared_secret
with each other’s exchanged public key. If the concatenated
value of the 32-byte shared_secret and a 32-byte zero is used
instead of the random_number in Equation (2), the session_key
K could provide forward secrecy.

7.2. Performance evaluation

In this section, the performance of Invi-server is evaluated. Since
Invi-server is attached to the existing public server, the packet
processing time caused by the network bridge and candidate client
selection module incur performance degradation to the public
server which may create a service obstacle. The additional packet
processing time of the Invi-server attached to a public server
compared to a single public server is as follows:
Tpublic,ouerhead = Tnenuork,bridge + Tcandidate,client,selection (S)
In order to measure this overhead, we measure the time
taken in two different modules; the network bridge module
(Section 6) and the candidate client selection module (Section 7.2.2).
On the other hand, the additional packet processing time
in the Invi-server compared to single public server is as follows:

leui,cuerhead = Tnetwork,bridge + Tcandidate,client,selection + Tmodiﬁed,SSL,TLS,handshake

(6)

When comparing Equations (5) and (6), the time differ-
ence between two round trip times (RTTs), from a client to the
secret server and from a client to the public server, occurs only
in a modified SSL/TLS handshake module. If the time difference
is significant, an attacker could find the existence of Invi-
server by eavesdropping and analyzing the packets to Invi-
server and the public server. Therefore, we check the processing
overhead in the modified SSL/TLS handshake module. Note that
this overhead only occurs during handshake time because after
the handshake, the modified SSL/TLS module works exactly
same as the normal SSL/TLS module.

We built a testbed comprising a secret client, the Invi-
server, and a public server, with a topology similar to that in
Fig. 1. Note that the clients in our testbed are directly at-
tached to Invi-server, which is different from the figure. The
hardware specification of each component in our testbed is as
follows:

e Secret/public client : Intel Core i7-2600 3.40GHz, 8 GB RAM,
Realtek Gigabit Ethernet card

e Invi-server : Intel Core i5-3570 3.40GHz, 4 GB RAM, two Intel
Gigabit Ethernet card

e Public server : Intel Pentium E5700 3.00GHz, 4 GB RAM,
Realtek Gigabit Ethernet card

7.2.1. Network bridge overhead

After installing Invi-server, additional overhead is incurred for
all packets because of the packet bridging overhead in the
network bridge. In order to obtain the time of the overhead, the
RTTs of the client to the public server with and without a network
bridge were measured using a ping test, hrping (cFos Software).

—&— with Invi-server
—&— w/o Invi-server

05 r

Cumulative Probability

s s s

0 100 200 300 400 500 600 700 800
Microseconds (xs)

Fig. 8 - Round trip time to a public server without a network
bridge (triangular marks) and to a public server with a
network bridge (circular marks).

The triangular marks in Fig. 8 show the cumulative distri-
bution of the RTT of the request from a client to a public server
without passing through the network bridge. The RTT result
without the network bridge is on average 330 us. This RTT result
is smaller than the RTT from the client to the public server with
the network bridge which shows average 415 us. The differ-
ence between these two results is 85 us which is referred to
as the network bridge overhead.

Since the average RTT on the Internet is around 100 ms ac-
cording to a report (Internet Traffic Report), RTT generated by
the bridge is negligible. Furthermore, if we use a custom hard-
ware bridge based on Application-Specific Integrated Circuits
(ASIC) rather than a software bridge, the overhead could be ex-
pected to be much lower than it currently is. We leave it as
future work to implement the Invi-server network bridge as a
hardware bridge.

7.2.2. Candidate client selection overhead

In the candidate client selection module, there are two different
situations in which incoming packets are processed. If a packet
is a TCP SYN packet, the candidate client selection module gen-
erates an OTP value and compares it with the initial sequence
number of the packet. If the packet is not a TCP SYN packet,
Invi-server searches the candidate client list to check whether
the (srcIPAddr, srcPortNum, dstPortNum) tuple is in the list. If
the number of tuples in the candidate client list increases, the
searching time increases. We measured the processing time
of the two above-mentioned cases by sending packets 1000
times for each case using a customized packet generator in the
secret client.

Table 2 shows the resulting processing time of the two cases.
The resulting processing time of the first case is 9 us on average.
In the meanwhile, the resulting processing time of the second
case varies according to the number of tuples in the candi-
date client list. The result shows that the processing time linearly
increases as the number of tuples increases. If the candidate
client list contains 100,000 tuples, which means that 100,000

104 COMPUTERS & SECURITY 67 (2017) 89-106

Table 2 - Processing time of candidate client selection
module.

Tsyn Tothers (1S)
(us) 1000 10,000 100,000
tuples tuples tuples
Average 8.93 1.47 13.91 125.67
Deviation 1.54 0.66 1.30 12.50
(ms)
6
5],\%
: —
3 4.819481 4.566893 4.476911
2
1
0

Public server without
bridge

Public server with
bridge

Invi-server with bridge

Fig. 9 - SSL/TLS handshake time comparison between Invi-
server, public server with bridge, public server without
bridge.

concurrent candidate clients are connected to Invi-server, the
processing time is around 126 us. This result means that the
overhead of the candidate client selection module is also neg-
ligible compared to the RTT of each packet (around 0.12% of
the average RTT of the Internet).

7.2.3. Modified SSL/TLS handshake overhead
Since the time difference of the connection time to Invi-
server and the public server after the SSL/TLS handshake is
almost the same, we only estimate the SSL/TLS handshake time
to check the overhead resulting from the modified SSL/TLS
handshake module. The SSL/TLS handshake time was esti-
mated for the three cases: Invi-server, public server with the
network bridge, and public server without the network bridge.
We used apache benchmark (ab) version 2.3 in both the public
client and the secret client to check the handshake time. The
elapsed time between client_hello to server_finish was tested
by transmitting the handshake packets 1000 times in each of
the three cases and the results are plotted in Fig. 9. Invi-
server shows an average of 4.81 ms for an SSL/TLS handshake.
This value does not lead to a large difference between the public
server with the network bridge (average 4.56 ms) and the public
server without the network bridge (average 4.47 ms). The per-
formance overhead of the modified SSL/TLS handshake module
is approximately 0.25 ms (0.25% of the average RTT of the In-
ternet) that is enough to conceal the existence of Invi-server
from attackers conducting a timing analysis to the difference
in the response time.

8. Related work

A detailed comparison with other network level layer authen-
tication such as proxy-based scheme (in Section 6), and

knocking method (in Section 7.1.3) has been presented in pre-
vious sections. In this section we describe other research related
to our Invi-Server mechanism; network randomization and
decoy routing.

8.1. Network randomization

After the advent of the Software-Defined Network (SDN) scheme
and the Openflow protocol (McKeown et al., 2008), which is a
well-designed SDN interface, controlling network-wide poli-
cies, such as routing and security, has become easier and this
leverages network randomization techniques.

Network randomization studies (Duan et al., 2013; Jafarian
et al.,, 2012) claim that convictions about either constantly
changing IP addresses of hosts or routing policies in a network
would help decrease the success possibility of scanning, DDoS,
and worm propagation attacks. As one of the network ran-
domization studies, Random Host Mutation (RHM) (Jafarian
et al,, 2012) is a proposed method that constantly changes the
IP addresses of hosts and effectively diminishes the effect by
using a scanning attack and self-propagating worms. Another
study, Random Route Mutation (RRM) (Duan et al., 2013), pro-
poses constantly changing the routing policies of the network
to reduce the possibility of eavesdropping and DDoS attacks
for certain routes in the network.

The problem of network randomization studies is that vul-
nerability scanning would still be possible by exploiting the
Domain Name Service (DNS). The network randomization tech-
nique involves updating the current IP address of a host to the
DNS server for remote access whenever the IP address changes.
An attacker can obtain the current IP address of the target host
via a DNS query and can launch vulnerability scanning of the
host. On the other hand, in our proposed system, an attacker
who knows the IP address of the internal host to which Invi-
server is attached will hardly be able to access our Invi-
server, nor is vulnerability scanning of the Invi-server system
likely to be conducted. Another problem with network ran-
domization studies is that the entire network infrastructure
requires an SDN environment to enable the proposed methods
to be used. In our proposed system, however, the system is
simply deployed by attaching it to one of the public servers in
the network. In view of a network administrator who wants
to provide a secret service to clients, deploying the Invi-
server system is much easier than deploying an SDN
environment to set up the network randomization technique.

8.2. Decoy routing

In 2011, three similar papers about decoy routing were pub-
lished (Houmansadr et al., 2011; Karlin et al., 2011; Wustrow
et al., 2011). Decoy routing is designed to evade censorship when
the client is in control of censorship that blocks some IP ad-
dresses because of political reasons. If a client in the censorship
area using a decoy routing system sends a request for con-
verting their destination to a blocked destination, the decoy
router installed in ISP converts the destination he wants to
reach. Because the user’s request should remain invisible from
the censorship, all three papers use TCP and an SSL/TLS covert
channel for authenticating clients.

COMPUTERS & SECURITY 67 (2017) 89-106

105

For example Cirripede (Houmansadr et al., 2011) uses the
TCP initial sequence number for client authentication. On the
other hand, Telax (Wustrow et al., 2011) and decoy routing
(Karlin et al., 2011) use the SSL nonce field, which is a random
field in the SSL protocol. Although they use a covert authen-
tication mechanism similar to Invi-server, the goal of decoy
routing is quite different from that of Invi-server. Their goal
is to allow the client unrestricted Internet access, whereas that
of Invi-server is to ensure the server to be protected remains
invisible to clients who do not have the pre-shared key (that
is used to generate OTP number). Furthermore, since the
primary goal of decoy routing systems is to provide service for
many unspecified persons who would like to bypass the cen-
sorship (rather than to support a few authorized users), these
decoy routing methods can obviously be detected by an at-
tacker (who can also be a user of decoy routing service) because
of the obtrusive packets; for example, Cirripede client sends
12 SYN packets for key distribution with the server.

All the three routers described above were rarely adopted
in the real world. Further, a study suggested that Decoy routers
could be detected (Schuchard et al., 2012). Recently, a new decoy
router has been proposed (Bocovich and Goldberg, 2016).
Slitheen introduces a better mimic technique to defend timing
analysis attack. However, this requires significant resources of
decoy routers and makes it hard to deploy in the real world.

In contrast, the primary goal of Invi-server is to ensure the
protected server remain invisible to unauthorized accesses,
while allowing pre-authorized users to engage and access the
protected server.

. Conclusions

Invi-server can be used to reduce the attack surface of a pro-
tected server by using the network access control and can be
used to make scanning and eavesdropping attacks difficult. The
proposed system reduces the attack surfaces by using both a
network bridge and an authentication mechanism embedded
in the TCP initial sequence number and the SSL/TLS hand-
shake, which provides invisibility for Invi-server. The attack
scenarios show that the system removes the paths to reach
Invi-server and increases the difficulty of launching attacks from
the internal network and by using an external scanner and
eavesdropper. Our experiments with the prototype show that
the Invi-server system produces less than 0.5 ms overhead when
using the Invi-server as a web server. In the future, we plan
to implement the Invi-server network bridge as a hardware bridge
for performance purposes. We also plan to implement Invi-
server client as an application version without kernel
modification for improved usage. The problems under time syn-
chronization and forward secrecy will also be considered in the
future work.

Acknowledgments

We appreciate discussions and detailed feedbacks from Dr.
Vasserman, the main author of 'SilentKnock' paper. This
research was a part of the project titled “SMART-Navigation
project”, funded by the Ministry of Oceans and Fisheries, Korea.
This work was also supported by the ICT R&D
program,

MSIP/IITP (RO126-16-1005, Development of High Reliable Com-
munications and Security SW for Various Unmanned Vehicles).

REFERENCES

Ahsan K. Covert channel analysis and data hiding in TCP/IP,
Ph.D. thesis, University of Toronto; 2002.

Andersson L, Madsen T. Provider provisioned Virtual Private
Network (VPN) terminology, Tech. Rep.; 2005 doi:10.17487/
RFC4026.

Bernstein DJ. Curve25519: New Diffie-Hellman Speed Records,
International Workshop on Public Key Cryptography, Springer;
2006, pp. 207-228, doi:10.1007/11745853_14.

Bocovich C, Goldberg I. Slitheen: perfectly imitated decoy routing
through traffic replacement, in: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications
Security, ACM; 2016, pp. 1702-1714, doi:10.1145/
2976749.2978312.

cFos Software, Ping utility hrping; 2013, http://www.cfos.de/en/
ping/ping.htm. [Accessed 07 March 2017].

Degraaf R, Aycock J, Jacobson M. Improved port knocking with
strong authentication, in: 21st Annual Computer Security
Applications Conference (ACSAC’05); 2005, IEEE; doi:10.1109/
csac.2005.32.

Depren O, Topallar M, Anarim E, Ciliz MK. An intelligent
intrusion detection system (IDS) for anomaly and misuse
detection in computer networks. Expert Syst App 2005;29:713-
22. d0i:10.1016/j.eswa.2005.05.002.

Duan Q, Al-Shaer E, Jafarian H, Efficient random route mutation
considering flow and network constraints, in: IEEE Conference
on Communications and Network Security (CNS), IEEE (2013),
doi:10.1109/cns.2013.6682715.

Durumeric Z, Wustrow E, Halderman JA, ZMap: Fast Internet-
wide scanning and its security applications, in: USENIX
Security, Citeseer (2013).

Fernandez JD, Fernandez AE. SCADA systems: vulnerabilities and
remediation.] Computing Sci Colleges 2005;20:160-8.

Giffin J, Greenstadt R, Litwack P, Tibbetts R. Covert messaging
through TCP timestamps, in: International Workshop on
Privacy Enhancing Technologies, Springer; 2002, pp. 194-208.
doi:10.1007/3-540-36467-6_15.

Graham-Cumming J. Practical secure port knocking. Dr. Dobb’s
Journ 2004;29:51-3.

Houmansadr A, Nguyen GT, Caesar M, Borisov N. Cirripede:
circumvention infrastructure using router redirection with
plausible deniability, in: Proceedings of the 18th ACM
conference on Computer and communications security, ACM,;
2011. doi:10.1145/2046707.2046730.

Internet Live Stats. Internet user statistic in the world; 2014,
http://www.internetlivestats.com/internet-users/ [Accessed
07 March 2017].

Internet Traffic Report, Average response time for Internet traffic;
2016, http://www.internettrafficreport.com/ [Accessed 07
March 2017].

Jafarian JH, Al-Shaer E, Duan Q. Openflow random host mutation:
transparent moving target defense using software defined
networking, in: Proceedings of the first workshop on Hot
topics in software defined networks, ACM; 2012. doi:10.1145/
2342441.2342467.

Jung J, Paxson V, Berger AW, Balakrishnan H. Fast portscan
detection using sequential hypothesis testing, in: IEEE
Symposium on Security and Privacy, IEEE; 2004. doi:10.1109/
SECPRI.2004.1301325.

Kals S, Kirda E, Kruegel C, Jovanovic N. Secubat: a web
vulnerability scanner, in: Proceedings of the 15th
international conference on World Wide Web, ACM; 2006.
doi:10.1145/1135777.1135817.

http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9010
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9010
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9015
http://dx.doi.org/10.17487/RFC4026
http://dx.doi.org/10.17487/RFC4026
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9020
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9020
http://dx.doi.org/10.1007/11745853_14
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9025
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9025
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9025
http://dx.doi.org/10.1145/2976749.2978312
http://dx.doi.org/10.1145/2976749.2978312
http://www.cfos.de/en/ping/ping.htm
http://www.cfos.de/en/ping/ping.htm
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9035
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9035
http://dx.doi.org/10.1109/csac.2005.32
http://dx.doi.org/10.1109/csac.2005.32
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9040
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9040
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9040
http://dx.doi.org/10.1016/j.eswa.2005.05.002
http://dx.doi.org/10.1109/cns.2013.6682715
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9045
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9045
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9050
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9050
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9050
http://dx.doi.org/10.1007/3-540-36467-6_15
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9055
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9055
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9060
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9060
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9060
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9060
http://dx.doi.org/10.1145/2046707.2046730
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9065
http://www.internetlivestats.com/internet-users/
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9070
http://www.internettrafficreport.com/
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9075
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9075
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9075
http://dx.doi.org/10.1145/2342441.2342467
http://dx.doi.org/10.1145/2342441.2342467
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9080
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9080
http://dx.doi.org/10.1109/SECPRI.2004.1301325
http://dx.doi.org/10.1109/SECPRI.2004.1301325
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9085
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9085
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9085
http://dx.doi.org/10.1145/1135777.1135817

106 COMPUTERS & SECURITY 67 (2017) 89-106

Karlin J, Ellard D, Jackson AW, Jones CE, Lauer G, Mankins DP,
et al.,, Decoy routing: toward unblockable internet
communication, in: USENIX Workshop on Free and Open
Communications on the Internet; 2011.

Kirsch], Grothoff C. Tcp stealth; 2015.

Koch W, Bestavros A. Provide: hiding from automated network
scans with proofs of identity, in: Hot Topics in Web Systems
and Technologies (HotWeb), 2016 Fourth IEEE Workshop on,
IEEE; 2016, pp. 66-71, d0i:10.1109/HotWeb.2016.20.

Koller R, Rangaswami R, Marrero J, Hernandez I, Smith G, Barsilai
M, et al., Anatomy of a real-time intrusion prevention system,
in: International Conference on Autonomic Computing (ICAC),
IEEE; 2008. d0i:10.1109/ICAC.2008.24.

Kruegel C, Vigna G. Anomaly detection of web-based attacks, in:
Proceedings of the 10th ACM conference on Computer and
communications security, ACM; 2003. doi:10.1145/
948109.948144.

Krzywinski M. Port knocking from the inside out. SysAdmin Mag
2003;12:12-7.

McKeown N, Anderson T, Balakrishnan H, Parulkar G, Peterson L,
Rexford J, et al. OpenFlow: enabling innovation in campus
networks. ACM SIGCOMM Comp Comm Rev 2008;38:69-74.
doi:10.1145/1355734.1355746.

Mell P. Understanding intrusion detection systems. EDPACS
2011;29:1-10. http://dx.doi.org/10.1201/1079/
43273.29.5.20011101/31414.1.

Metasploit. Penetration testing software; 2016, https://
www.metasploit.com/ [Accessed 07 March 2017].

Mills D, Martin J, Burbank J, Kasch W, Network time protocol
version 4: protocol and algorithms specification (2010).
doi:10.17487/RFC5905.

Murdoch §J, Lewis S. Embedding covert channels into TCP/IP, in:
Information Hiding, Springer, (2005), pp. 247-261, doi:10.1007/
11558859_19.

Nychis G, Sekar V, Andersen DG, Kim H, Zhang H, An empirical
evaluation of entropy-based traffic anomaly detection, in:
Proceedings of the 8th ACM SIGCOMM conference on Internet
measurement, ACM (2008). doi:10.1145/1452520.1452539.

Raihi DM, Machani S, Pei M, Rydell J. TOTP: time based one time
password algorithm, 2011. doi:10.17487/RFC6238.

Reese W. Nginx: The high-performance web server and reverse
proxy. Linux J 2008;2008:2.

Roesch M. Snort: lightweight intrusion detection for networks, in:
13th Systems Administration Conference (LISA); 1999.

RSA Laboratories. Pkcs #11: cryptographic token interface
standard; 2004, https://www.cryptsoft.com/pkcs1ldoc/
STANDARD/pkcs-11v2-20.pdf. [Accessed 07 March 2017].

Schuchard M, Geddes J, Thompson C, Hopper N. Routing around
decoys, in: Proceedings of the 2012 ACM conference on
Computer and communications security, ACM; 2012, pp. 85-
96. doi:10.1145/2382196.2382209.

Shin S, Gu G. Conficker and beyond: a large-scale empirical
study, in: Proceedings of the 26th Annual Computer Security
Applications Conference, ACM; 2010. doi:10.1145/
1920261.1920285.

Stiawan D, Abdullah AH, Idris MY. The trends of intrusion
prevention system network, in: International Conference on
Education Technology and Computer (ICETC), IEEE; 2010.
doi:10.1109/ICETC.2010.5529697.

Vasserman EY, Hopper N, Tyra J. SilentKnock: practical, provably
undetectable authentication. Int J Info Sec 2009;8:121-35.
doi:10.1007/s10207-008-0070-1.

Verizon Business Risk Team. Data breach investigations report;
2015, https://msisac.cisecurity.org/whitepaper/documents/
1.pdf [Accessed 07 March 2017].

Wang Z, Qian Z, Xu Q, Mao Z, Zhang M. An untold story of
middleboxes in cellular networks, ACM SIGCOMM Comp
Comm Rev 2011;41:374-85. d0i:10.1145/2018436.2018479.

Worth D. COK: cryptographic one-time knocking. USA: Black Hat;
2004.

Wustrow E, Wolchok S, Goldberg I, Halderman JA. Telex:
anticensorship in the network infrastructure, in: USENIX
Security Symposium; 2011.

Zhang X, Li C, Zheng W. Intrusion prevention system design, in:
Computer and Information Technology, International
Conference on, IEEE Computer Society; 2004. doi:10.1109/
CIT.2004.1357226.

Jaehyun Park received his B.S. degree in computer science from
Korea Advanced Institute of Science and Technology (KAIST),
Daejeon, Korea, in 2012. He received his M.S. degree in computer
science from KAIST in 2014. Currently, he is a Ph.D. student in School
of Computing at KAIST. His research interests include security on
mobility management, network security, and security issues in
Software-defined Networking (SDN).

Jiseong Noh received the B.S. degree in Computer Science and En-
gineering from Soongsil University, South Korea in 2012. He also
received the M.S. degree in Information Security from KAIST (Korea
Advanced Institute of Science and Technology), South Korea in 2014.
He is pursuing a Ph.D degree in the School of Computing at KAIST.
His research interests include software-defined networking (SDN),
SDN security, secure network authentication, and trusted execu-
tion environment (TEE) applications.

Myungchul Kim received his B.A. in Electronics Engineering from
Ajou University in 1982, M.S. in Computer Science from the Korea
Advanced Institute of Science and Technology (KAIST) in 1984, and
Ph.D. in Computer Science from the University of British Colum-
bia, Vancouver, Canada, in 1993. Currently, he is with the faculty
of KAIST as a Professor. He has served as a member of Program
Committees for many conferences including IWTCS, IEEE ICDCS,
and IFIP FORTE. He has published over 100 conference proceed-
ings, book chapters, and journal articles in the areas of computer
networks, wireless mobile networks, protocol engineering, and
network security.

Brent Byunghoon Kang is currently an associate professor at the
GSIS (Graduate School of Information Security) at KAIST (Korea Ad-
vanced Institute of Science and Technology). Before KAIST, he has
been with George Mason University as an associate professor in
the Volgenau School of Engineering. Dr. Kang received his Ph.D. in
Computer Science from the University of California at Berkeley, and
M.S. from the University of Maryland at College Park, and B.S. from
Seoul National University. He has been working on systems secu-
rity area including OS kernel integrity monitor, trusted execution
environment, hardware-assisted security, botnet malware defense,
and DNS analytics.

http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9090
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9090
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9090
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9090
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9095
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9100
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9100
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9100
http://dx.doi.org/10.1109/HotWeb.2016.20
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9105
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9105
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9105
http://dx.doi.org/10.1109/ICAC.2008.24
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9110
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9110
http://dx.doi.org/10.1145/948109.948144
http://dx.doi.org/10.1145/948109.948144
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9115
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9115
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9120
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9120
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9120
http://dx.doi.org/10.1145/1355734.1355746
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9125
http://dx.doi.org/10.1201/1079/43273.29.5.20011101/31414.1
http://dx.doi.org/10.1201/1079/43273.29.5.20011101/31414.1
https://www.metasploit.com/
https://www.metasploit.com/
http://dx.doi.org/10.17487/RFC5905
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9135
http://dx.doi.org/10.1007/11558859_19
http://dx.doi.org/10.1007/11558859_19
http://dx.doi.org/10.1145/1452520.1452539
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9140
http://dx.doi.org/10.17487/RFC6238
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9145
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9145
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9150
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9150
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9155
https://www.cryptsoft.com/pkcs11doc/STANDARD/pkcs-11v2-20.pdf
https://www.cryptsoft.com/pkcs11doc/STANDARD/pkcs-11v2-20.pdf
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9160
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9160
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9160
http://dx.doi.org/10.1145/2382196.2382209
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9165
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9165
http://dx.doi.org/10.1145/1920261.1920285
http://dx.doi.org/10.1145/1920261.1920285
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9170
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9170
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9170
http://dx.doi.org/10.1109/ICETC.2010.5529697
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9175
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9175
http://dx.doi.org/10.1007/s10207-008-0070-1
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9180
https://msisac.cisecurity.org/whitepaper/documents/1.pdf
https://msisac.cisecurity.org/whitepaper/documents/1.pdf
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9185
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9185
http://dx.doi.org/10.1145/2018436.2018479
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9190
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9190
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9195
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9195
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9195
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9200
http://refhub.elsevier.com/S0167-4048(17)30038-X/sr9200
http://dx.doi.org/10.1109/CIT.2004.1357226
http://dx.doi.org/10.1109/CIT.2004.1357226

	 Invi-server: Reducing the attack surfaces by making protected server invisible on networks
	 Introduction
	 Background
	 Proxy-based server hiding techniques
	 Two attack techniques used in Invi-server
	 Man-in-the-Middle attack (MitM)
	 TCP covert channel and its use in user authentication

	 Threat model and assumptions
	 Threat model
	 Assumptions

	 System design
	 Overview
	 Candidate client selection
	 Modified SSL/TLS handshake

	 Implementation
	 Secret client
	 Implementing initial sequence number as TOTP value
	 Implementing modified SSL/TLS handshake

	 Invi-server
	 Network bridge
	 Custom functions with Netfilter module for candidate client selection
	 Modified SSL/TLS handshake

	 Attack scenario and analysis
	 Scanning attack
	 Eavesdropping attack
	 Internal attack after compromising a public server
	 Experiment of the attack scenario

	 Evaluation
	 Security evaluation
	 Possibility of brute force attack on Invi-server
	 Difficulty of inferring the existence of secret communication
	 A comparison to knocking methods
	 Possible threats revealing the Invi-server
	 Problems under time synchronization
	 Forward secrecy

	 Performance evaluation
	 Network bridge overhead
	 Candidate client selection overhead
	 Modified SSL/TLS handshake overhead

	 Related work
	 Network randomization
	 Decoy routing

	 Conclusions
	 Acknowledgments
	 References

