
http://dx.doi.org/10.5573/JSTS.2015.15.1.048 JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.15, NO.1, FEBRUARY, 2015

Manuscript received Feb. 24, 2014; accepted Nov. 24, 2014
1 Department of Electrical and Computer Engineering, Seoul National
University
2 Graduate School of Information Security, Korea Advanced Institute of
Science & Technology
3 DMC R&D Center, Samsung Electronics Ltd.
E-mail : Corresponding to ypaek@snu.ac.kr, brentkang@kaist.ac.kr

Efficient Kernel Integrity Monitor Design for
Commodity Mobile Application Processors

Ingoo Heo1, Daehee Jang2, Hyungon Moon1, Hansu Cho3, Seungwook Lee3,

Brent Byunghoon Kang2, and Yunheung Paek1

Abstract—In recent years, there are increasing
threats of rootkits that undermine the integrity of a
system by manipulating OS kernel. To cope with the
rootkits, in Vigilare, the snoop-based monitoring
which snoops the memory traffics of the host system
was proposed. Although the previous work shows its
detection capability and negligible performance loss,
the problem is that the proposed design is not
acceptable in recent commodity mobile application
processors (APs) which have become de facto the
standard computing platforms of smart devices. To
mend this problem and adopt the idea of snoop-based
monitoring in commercial products, in this paper, we
propose a snoop-based monitor design called S-Mon,
which is designed for the AP platforms. In designing
S-Mon, we especially consider two design constraints
in the APs which were not addressed in Vigilare; the
unified memory model and the crossbar switch
interconnect. Taking into account those, we derive a
more realistic architecture for the snoop-based
monitoring and a new hardware module, called the
region controller, is also proposed. In our experiments
on a simulation framework modeling a production-
quality device, it is shown that our S-Mon can detect
the rootkit attacks while the runtime overhead is also
negligible.

Index Terms—Security, application processor, smart
mobile device, snoop-based integrity monitoring

I. INTRODUCTION

As mobile devices including smartphones and tablets
continue to gain popularity among the general public,
they become our main devices for everyday
communication such as emailing, social networking,
processing financial information and transmitting
personal data. Thus, the potential privacy and security
risks associated with using these devices are also rapidly
growing. Although many security solutions have been
developed to protect the devices from the threats,
unfortunately, most of them suffer from the rootkit
attacks, which are the most threatening and common type
of kernel-level malware that take privileges of operating
system (OS) kernel to intercept and modify system
events with the goal of hiding illicit activity [1]. Since
rootkits themselves are located in the lowest kernel layer
that has the highest privilege level in a system, they can
trick any anti-malware solutions relying on the kernel,
making them ineffective [11]. In other words, after
rootkits compromise the OS kernel, any malicious
behavior cannot be detected by the integrity monitors
that have their root of trust on OS kernel.

To protect the OS kernel integrity from the rootkits,
many security researchers have strived to make their
security monitors independent from the host system that
is being monitored. By separating the execution
environment of monitoring from the host, the integrity of
monitor could be protected from the rootkits. Recent
efforts on this kernel integrity monitoring can be

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.15, NO.1, FEBRUARY, 2015 49

categorized into two groups: hardware-based approaches
[2, 3] and hypervisor-based approaches [4, 5]. Although
the hypervisor-based ones become popular, they have a
critical weakness in that software vulnerabilities in them
can be exploited by malwares to compromise the entire
system. In the hardware-based approaches, they make an
effort to get over the limitation with an independent
hardware monitor that is inherently not reachable from
the host. Since rootkit attacks running on the host cannot
access the monitors, the hardware-based approaches are
more secure than the conventional software-based
solutions [6].

Most of the existing hardware-based solutions make
use of snapshot analysis; they are usually assisted by
some type of hardware component that enables saving of
the memory contents into a snapshot, and then perform
an analysis to find the traces of rootkit attack [2, 6, 7].
Nevertheless, the most critical weakness of the scheme is
that it can inspect only the snapshots collected at a
specific point of time, missing the evanescent changes
which are not exposed in the captured snapshots. Thus,
transient attack, which refers to attacks that do not leave
persistent traces in memory contents but still achieves its
goal by using only momentary and transitory
manipulations [8], easily subverts the snapshot-based
monitors. Moreover, the frequent snapshot-taking to
increase the detection probability would inevitably
degrade the host performance, because it consumes more
memory bandwidth.

To overcome the limitations, Moon et al. [8] propose
Vigilare, a kernel integrity monitor that makes use of
snooping techniques for detecting the transient attack
with low performance overhead. In order to achieve their
goals, they take a fundamentally different approach;
instead of taking snapshots, Vigilare monitors the
operation of the host system by “snooping” the bus
traffic of the host system from a separate independent
system located outside the host system. This provides the
monitoring system with the capability to observe all
activities of the host which are revealed to the system’s
shared bus, and yet being completely independent from
any potential compromise or attacks in the host system.
They demonstrates the effectiveness of this scheme by
showing that their monitor is capable of effectively
coping with transient attacks that violate the integrity of

the immutable regions of the OS kernel and incurs
negligible performance overhead on the host.

However, although Vigilare suggested a promising
solution for rootkit detection, their prototype designs are
too primitive to be deployed in recent commodity smart
devices. In application processor (AP) platforms which
are de facto the standard computing platforms for smart
devices, there are many design rules to be complied with
to manufacture the overall SoC system. Nevertheless,
unfortunately, the monitor design proposed in Vigilare
do not follow the general design constrainsts of recent
APs, such as unified memory model or crossbar switch
interconnect. Since the design restrictions are not
considered, the previous monitor design of Vigilare
cannot be directly applied to recent commodity products.
Therefore, in order to leverage the deployment of the
snoop-based monitoring in real machines, it is essential
to consider a realistic design for commodity smart
devices.

In this paper, we present a snoop-based integrity
monitor, called S-Mon, which targets commodity smart
devices. Unlike Vigilare, our monitor design strictly
follows the design constraints on mobile AP platforms, in
order to suggest the most realistic monitor design for
commercial products. To derive a practical and realistic
monitor architecture, the design constraints of recent
commodity APs such as the unified memory model and
crossbar switch interconnect are considered in designing
S-Mon. Taking into account those, the architecture of
snoop-based integrity monitor is restructured
substantially, and a hardware module for secure
monitoring in the unified memory model, called region
controller, is also newly proposed. In our experiments on
a simulation environment that models a realistic modern
AP platform, S-Mon shows negligible performance
impact on the host system, while transient rootkit attacks
are successfully detected with our monitor design.

The rest of this paper is organized as follows. Section
2 introduces some backgrounds for OS kernel and the
attack model which S-Mon targets for. After Section 3
introduces the design of Vigilare and its limitations,
Section 4 will give the detailed design of S-Mon which
considers commodity APs. Section 4 will report the
experimental results and we will conclude this paper in
Section 5.

50 INGOO HEO et al : EFFICIENT KERNEL INTEGRITY MONITOR DESIGN FOR COMMODITY MOBILE APPLICATION …

II. ATTACK MODEL

In this section, we will first explain several
backgrounds which are necessary to understand our work.
In particular, for some readers who are not familiar with
system security, we will introduce a set of issues that are
deeply related to the OS kernel integrity and the rootkit
attacks. After that, we will present an attack model for
this study, which aims at subverting the integrity of
Linux kernel. Since most mobile OSes are based on the
Linux kernel, we made our attack model be applicable to
a majority of smart devices.

1. Rootkits and Transient Attack

As discussed in the previous section briefly, rootkit is

a stealthy type of software that is designed to hide the
existence of certain processes or programs from normal
methods of detection and enable continued privileged
access to a system [9]. As shown in Fig. 1, the rootkit is
located in the lowest level of software layers and thus
have the highest privilege to control the whole system.
As a result, once installed, rootkits can modify the host’s
software to provide an attacker with the ability to hide
the existence of chosen processes, files, and network
connections from other users [2]. Therefore, rootkit can
deceive anti-malware software by providing falsified
information, and conventional anti-malware software that
is dependable on the OS kernel’s integrity never detects
the malicious behaviors.

To get over the limitation, many security researches
have tried to make their security monitors independent
from the host system. With the separation from the host,
rootkits cannot compromise the security monitors.
Moreover, the existence of rootkit can be detected with
the snapshot-based monitoring scheme when the rootkit

leave permanent changes on the host.
However, transient attack which do not leave

persistent traces in memory contents, still achieves its
goal by using only momentary and transitory
manipulations [8]. In such scenarios, the evidence of
malicious modification is visible for a short time period
so that detecting the modification becomes difficult. The
soft-timer based rootkit presented by J.Wei et.al. is a
representative example [1].

Fig. 2 shows the difficulties of detecting transient
attacks with the snapshot-based monitoring. Imagine a
snapshot-based integrity monitor with a snapshot period
Pmonitor is launched to detect transient attacks. If the
author of the kernel rootkit can properly adjust the
duration of the attack tactive and the time of dormancy
tinactive, he could completely evade the snapshot-based
monitors; by staying dormant at the time of memory
snapshot and becoming active in between the snapshots,
the rootkit can capably fool the snapshot-based monitor.
The simplest solution to the limitation is to increase the
rate of snapshot-taking but it will inevitably impose a
high performance overhead on the host. Random
snapshot timing is also not a proper solution because the
detection rate would greatly depend on luck and not be
consistent. In conclusion, the conventional snapshot-
based integrity monitors cannot cope with the transient
attacks and it is why the snoop-based monitors such as
Vigialre were proposed.

2. Immutable Regions of Linux Kernel

Immutable region is the memory regions that are

critical to the OS kernel integrity and thus any
modifications on the regions are deemed malicious [8].

Fig. 1. OS Kernel Layers and Rootkit.

Fig. 2. The behavior of transient attack [8].

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.15, NO.1, FEBRUARY, 2015 51

Protecting the integrity of the immutable regions should
be the highest priority, since modification to the regions
in the attacker’s favor would be the most critical because
the region constitutes core components in the OS and any
compromise in this region would seriously affect all the
application running on top of the OS.

For example, the immutable region of Linux OS
includes the kernel code region and the system call table.
The kernel code region is the most obvious example of
the immutable region; since the basic functionalities of
the kernel must not be changed after the bootstrap, the
kernel code region should never be modified at runtime.
The system call table is also a representative example of
the immutable region because this table should not be
modified after boot in order to provide many services
consistently. Hijacking the kernel’s system call often
serves as an efficient way to control the kernel in the
favor of an attacker. Modifying the system call table of
the Linux kernel is a popular way to intercept the
execution flow of the victimized system. The Linux
system call table takes a form of an array of pointers.
Each entry in the table points to a corresponding system
calls such as sys_read, sys_write, and many more. The
adversary could effortlessly hijack these system calls by
inserting a function between the system call table and the
actual system call handlers. Most user mode applications
as well as kernel mode ones, rely on the basic system
calls to communicate with file system, networking,
process information, and other functionalities. Therefore,
taking control of the system call table enables one to
control the entire kernel from the bottom. For these
reasons, it is important to focus on monitoring the
immutable regions of the OS kernel. Thus, the attack
model and corresponding monitor discussed in this paper
also target the immutable regions of the OS kernel, as
Vigilare did.

3. Assumptions and Attack Example

In this study, we assume that the host system is already

compromised by an attacker with a rootkit attack.
Therefore, the attacker already has the administrator’s
privilege on the host system and the memory protection of
OS kernel is circumvented. However, the attacker’s
software cannot modify the hardware of the system and
thus all hardware modules including our monitor are secure.

In these assumptions, to test our snoop-based integrity
monitor (i.e., S-Mon), a transient rootkit attack example
which hit the immutable region of Linux kernel is
devised. The rootkit is very similar to the rootkit
proposed in Vigilare [8] and acts as the traditional Linux
kernel rootkits in the wild.

The rootkit repeatedly modify and reverse system call
function pointers in the system call table to hijack the
control flow of the system call, as shown in Fig. 3. To
evade snapshot-based integrity monitoring, the rootkit
repeat its function in a fixed time interval using the
Linux timer as in Fig. 1. Particularly, the example rootkit
hijacks sys_read, sys_write and sys_mkdir system calls to
disturb standard IO or file system. As a side effect of the
rootkit, the host system occasionally fails to handle
standard IO and file system properly. The example
rootkit simply performs the old-fashioned system call
hooking, but the timer-triggered operation allows it to
illustrate the transient rootkit characteristics. As shown in
the experimental results, the capability of detecting the
transient attack is the key difference of the snoop-based
monitoring from the snapshot-based one.

III. ARCHITECTURE DESIGN OF VIGILARE AND

CONSIDERATIONS FOR AP PLATFORMS

In this section, we will introduce the architecture
design of Vigilare which is the first snoop-based monitor
for the OS kernel integrity. Then, we will explain several
design constraints of commodity AP platforms that
should be complied with in order to derive a practical
monitor in these platforms but are violated in Vigilare.

1. Vigilare Architecture Design

Fig. 4 shows the prototype design of Vigilare which

Fig. 3. Rootkit example (systemcall table hooking).

52 INGOO HEO et al : EFFICIENT KERNEL INTEGRITY MONITOR DESIGN FOR COMMODITY MOBILE APPLICATION …

performs snoop-based monitoring. The overall system
mainly consists of two subsystem, the host system being
monitored and the Vigilare system that performs the
monitoring. The Vigilare system is inherently separated
from the host system so that any malicious access of
malwares cannot be reachable to the monitor. As the
figure shows, a dedicated memory module for the
monitoring system is deployed and it contains all the
programs and data used by the monitor processor. By
using the separate memory for the monitoring system and
memory controller inaccessible from the host system, the
dedicated memory becomes physically tamper-free. In
addition, since the host system cannot access any
peripheral of the monitoring system, this configuration
makes the monitoring system be secure from any
potential compromise or attacks in the host system.

As shown in Fig. 4, a hardware module called the
snooper is attached to the host system to detect malicious
memory accesses on the host shared bus. In order to
detect rootkit’s behaviors that modify the immutable
region of the OS kernel, Vigilare inspects all writes
accesses revealed on the bus and check whether each
write address is in the range of the immutable region.
Since the snooper is connected to the host bus as a slave
device, it can snoop all transactions on the bus because
they are broadcasted to all components on the shared bus.
By employing the snooping technique, Vigilare can
detect all transient rootkit attack with negligible overhead
while it is still secure from the rootkit’s threat running on
the host.

2. Design Constraints for AP Platforms

In AP platforms which are de facto the standard

platforms for most smart devices, several design
constraints should be followed for efficient design and

rapid manufacturing. However, in the architecture design
of Vigilare above, two design constraints for the
platforms are violated; unified memory model and
crossbar switch interconnect.

Firstly, the Vigilare system assumes a dedicated
memory model that a dedicated memory module for the
monitoring software code and data is given.
Unfortunately, the memory model is generally not
acceptable in AP platforms. In general, many commercial
AP platforms contain a limited number of DDR DRAM
modules as a main memory due to their expensive costs.
Therefore, although the required memory capacity is
small, requiring the additional memory module would
hamper AP vendors to adopt the monitoring hardware.
Thus, the memory space for the newly installed
monitoring system should be allocated from the existing
memory modules and it would consequently forms a
unified memory model between the host and the
monitoring system. Therefore, in order to adopt the
snoop-based monitoring into AP platforms, this unified
memory model should be employed.

Secondly, Vigilare assumes that the host processor is
connected to the main memory via a shared bus such as
AMBA AHB bus. In most commercial APs, however, the
host processor and the main memory are connected
through crossbar switch instead of shared bus [17].
Shared bus is rather old-fashioned interconnect that all
components shares a communication channel and thus it
might incur frequent bus contention when multiple
transactions want to use the shared channel. On the other
hand, crossbar interconnect provides multiple channels
between masters and slaves in a matrix manner and
therefore it can reduce the communication overhead
significantly. It is the reason why the crossbar switch is
widely used in modern AP platforms and thus the design
of the snoop-based monitor should consider the
interconnect type to be deployed in the realistic platforms.
In the next section, we will discuss how these design
constraints are considered in our S-Mon.

IV. S-MON : A PRACTICAL MONITOR DESIGN

FOR AP PLATFORMS

In this section, the design of S-Mon, which is a snoop-
based monitor that considers commodity AP platforms,
will be introduced. After the overall design is shown in

Fig. 4. Architecture design of Vigilare [8].

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.15, NO.1, FEBRUARY, 2015 53

Section 4.1, the further detailed design considerations for
modern AP platforms will be given in Section 4.2.

1. Overall System Design

The overall system design with S-Mon is presented in

Fig. 5. As the figure shows, the overall system consists of
the host system being monitored and S-Mon system that
observes the host activities to detect malicious rootkit
attacks. For the host system, an ARM Cortex-A9 dual
processor [12] is used for the host processor and an ARM
NIC-301 AXI crossbar switch interconnect [13] is
integrated to connect the host processor, memory
controller and other peripherals. It is assumed that the
host processor runs at 1 GHz and has separate 32 KB
instruction/data caches. The host system uses 1 GB
DDR3 SDRAM as a main memory and has some
peripherals such as UART and timer. The NIC-301 and
DDR3 SDRAM commonly operate at 500 MHz. The
host runs the OS kernel which is an embedded Linux
kernel 2.6.38. It is noteworthy that the specifications for
the host are very similar with the recent AP platforms
such as Samsung Exynos 4 [14].

The design of S-Mon system is derived from
Vigilare’s prototype [8] which is described in the
previous section. Fig. 5 shows that S-Mon is
implemented as a separate system that consists of a
monitor processor, the snooper and other peripherals
such as UART. The monitor processor is also an ARM
Cortex-A9 processor and has 32 KB instruction/data
caches, running at 1 GHz. Unlike Vigilare, S-Mon
system does not have its own dedicated memory module
and thus a small section of main memory module is
allocated for monitoring software, in order to reduce the

production costs.
With the given hardware components, S-Mon also

performs snoop-based monitoring that snoops the write
memory traffic to find malicious behaviors of rootkits
which hit the immutable regions of the OS kernel. To
achieve this goal, the snooper module is located between
the crossbar switch system interconnect and the memory
controller. For each write request from the host, the
snooper inspects the physical address of the transaction
and check whether it is in the range of the addresses
which corresponds to the immutable region. If it is, the
write attempt is regarded as malicious behavior of
rootkits.

After the snooper finds any attempt to corrupt the
immutable region, it is reported to the monitor processor
through the S-Mon system bus. In the current prototype,
if the existence of rootkit is detected, it is announced via
the UART interface in S-Mon system. Since the output
interface is not reachable from the host, the reporting
process is also secure and trustworthy. In the next
subsection, the detailed design considerations of S-Mon,
which is for adopting the snoop-based monitor to the
recent AP platforms, will be discussed.

2. Design Considerations for AP Platforms

Although the basic functionality of S-Mon is the same

as Vigilare, the detailed architecture for S-Mon differs
from the Vigilare’s prototype because the newly
proposed design seriously considers realistic AP design
environments as opposed to the previous work. As
described in the previous section, there are two design
restrictions that should be complied with to adopt the
snoop-based monitor in AP platforms. The first is the
unified memory model that the host and the monitoring
system share the same memory module. The second is
the crossbar switch interconnect which affects the
location of the snooper. The following will discuss the
detailed implementation issues.

As discussed earlier, for the AP design environments,
the dedicated memory module for the monitoring system
would not be acceptable due to the increase of production
costs. For this reason, the proposed architecture in this
paper adopts the unified memory model where the
memory for monitoring is allocated from the main
memory module. Nevertheless, although the memory

Fig. 5. The proposed design of S-Mon.

54 INGOO HEO et al : EFFICIENT KERNEL INTEGRITY MONITOR DESIGN FOR COMMODITY MOBILE APPLICATION …

model meets the conventional AP design rules, it would
make the monitoring system vulnerable. It is because the
memory sections for S-Mon system reside in the main
memory module and thus the host is now able to access
the region to subvert the kernel integrity. Therefore, the
memory region accessible from the host is no longer
deemed as secure.

In order to keep the monitoring system secure from the
rootkit attacks even when the unified memory model is
employed, a hardware logic called the region controller
is implemented in the snooper, as shown in Fig. 6. The
region controller has been embedded in the snooper and
specifically drops all memory operation requests from
the host system to the memory region of S-Mon. At first,
the range checker module checks whether each memory
access address is in the range of S-Mon region. If it is not
a transaction toward S-Mon region, the region controller
passes it to the memory controller to access the host
memory region. However, in the case of accesses to the
S-Mon region, the transactions from the host should be
denied. For this purpose, the region controller
discriminate the requests of the host with transaction ID
of AXI protocol, being supported by the ID checker.
Since AXI interconnection protocol supports transaction
IDs to identify the master of the transaction, the ID
checker can classify the master of the memory access and
thus drop the all accesses from the host. By using the
region controller, the memory region of S-Mon is still
physically temper-free and secure from the potential
attacks of rootkits even in the unified memory model.

As shown in Fig. 4, the snooper hardware module in
the prototype of Vigilare is connected to the main bus as

a slave device observing all signals on the bus. By
inspecting all write memory traffic on the bus, the
snooper is able to detect any suspicious traffic that
attempts to compromise the kernel. However, for a
crossbar switch interconnect such as AXI NIC-301, the
location of the snooper hardware module should be
reconsidered. It is because communication traffics
between two modules are not revealed to the other
modules on the crossbar interconnect, which
consequently would make the snooper hardware
ineffective to detect the rootkit attacks.

To snoop the suspicious memory traffics on the crossbar
switch interconnect, the snooper hardware of S-Mon is
located at the front of the memory controller. The location
of the snooper has an advantage in that, it does not depend
on the interconnection types of the system. Because all
memory requests are finally transferred to the memory,
any malicious write transactions of the rootkits can be
detected at the location. With the design consideration, the
snooper hardware and the snoop-based monitoring scheme
can be adoptable modern AP platforms where crossbar
switch is usually used as main interconnect.

V. EXPERIMENTAL RESULTS

To evaluate the effectiveness of our S-Mon, we have
developed a prototype on a simulation framework based
on Carbon SoC Designer Plus [15]. This simulation tool
provides cycle-accurate simulation and rapid prototyping
for evaluating realistic AP platforms. The detailed
specifications are the same as in Section 4. Commodity
processors, interconnect and memory were given as
library models that support cycle-accurate simulation for
the corresponding modules. On the other hand, several
customized hardware modules such as the snooper and
the region controller had to be designed with Verilog
HDL language and translated to simulation components
with Carbon Model Studio [16]. By employing this
accurate simulation framework, we have obtained
reliable experimental results.

1. Performance

If a dedicated memory module is used for integrity

monitoring as in Vigilare, this does not affect the
performance of the host because there is no resource

Fig. 6. The internal structure of region controller.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.15, NO.1, FEBRUARY, 2015 55

sharing between the host and the integrity monitor. In
contrast, when the unified memory model is employed as
in our S-Mon, the two system should share a memory
module and it consequently incurs resource competition.
For this reason, the performance impact of the unified
model should be evaluated before adopting the snoop-
based monitoring into AP platforms where the stringent
performance requirements must be met.

To compare the performance impact of the memory
models, both the unified memory model and the
dedicated memory model are implemented. As described
in the previous section, S-Mon is basically implemented
with the unified memory model. For the dedicated
memory model, an additional memory module is given to
S-Mon and the monitoring software is allocated to the
memory. Since the required memory capacity for S-Mon
is under 1 MB, a 32 MB DDR memory is given for the
dedicated memory model. To evaluate the performance
impact on the host, the performance of the host system is
measured with STREAM benchmark [10] which is
widely used for measuring the memory bandwidth of a
system. The data size for the experiments is 10000 and
the iteration is 3. In addition, to better compare the
snoop-based monitoring scheme with traditional
snapshot-based method, a snapshot-based integrity
monitor is also implemented. The snapshot monitor uses
the DMA to get the snapshot of the immutable regions of
the host kernel periodically and it is assumed that the
region for snapshot is 4 KB.

Fig. 7 compares the performance of the host for six
configurations. Three configurations for the snapshot
monitors show that the snapshot-based monitoring
scheme with shorter intervals slows down the host
system significantly. Although the size of snapshot is
minimized for brief comparison, the performance
degradation is still substantial. Since the actual size of
the immutable region is about 1 MB (we just assumed 4
KB), the slowdown must be worsened when the snapshot
is performed on the entire immutable region. This
provides a plausible reason why the snapshot-based
monitoring is not promising in mobile devices.

In contrast, the snoop-based monitoring scheme brings
the overhead down to negligible level. As expected, the
dedicated memory model does not degrade the
performance of the host at all. Meanwhile, the unified
memory model shows 2.87% overhead compared to the

base case because the monitor processor requires the
code and data in the main memory module. However, the
number should be regarded as the worst case due to the
characteristic of STREAM benchmark. Consider that
most operations in STREAM benchmark require memory
read/write so that the required memory bandwidth is
maximized. In this case, the performance of the
benchmark can be easily degraded by the small number
of memory requests from the monitoring system. In fact,
although the memory operations for monitoring are not
so frequent and most of them are handled within the
cache of the monitor processor, the performance of host
is slightly slowed down. Moreover, since generally the
mobile devices do not always require the peak memory
bandwidth, the small 2.87% performance overhead can
be amortized in real applications.

To justify our claim, we have measured the
performance of the host when the unified memory model
is employed, for eight applications from SPEC CPU
2006 benchmark [19]. Fig. 8 shows the performance
comparison between S-Mon and the base case for the
applications. This results show that, in most applications,
the performance overhead of S-Mon with the unified
memory model is negligible and it is about 0.8% in
average. Therefore, we can conclude that the runtime
performance overhead of S-Mon is acceptable in the
realistic unified memory model.

2. Security Evaluation

Another objective of our experiments was to show the

Fig. 7. Cycle counts for six configurations (Base : The host
system without monitoring. Dedicated : S-Mon with the
dedicated memory model. Unified : S-Mon with the unified
memory model. Snap : Snapshot-based monitoring scheme and
the numbers within parentheses indicate the period of the
snapshot).

56 INGOO HEO et al : EFFICIENT KERNEL INTEGRITY MONITOR DESIGN FOR COMMODITY MOBILE APPLICATION …

detectability of our S-Mon on transient rootkit attacks.
To demonstrate the ability to detect the attacks, the
rootkit sample described in Section 2 was built and the
probability of detecting a pulse of an attack is measured
when S-Mon is employed. The rootkit example for this
experiment is implemented to meet the definition of
transient attack in Section 2 and Fig. 2 shows how the
rootkit example works. It modifies the system call table
of the Linux kernel to hook some of the system calls.
After tactive, it removes its hooks by modifying the system
call table as it has been before. After tinactive, it hooks the
system call as it did before. If the host system is
compromised by this sample attack, it cannot service
appropriate system calls related to user’s standard I/O. In
this experiment, 100 pulses are generated and how many
of them were detected by S-Mon is measured. We varies
the duration of the attack tactive from 2 ms to 50 ms, while
the time of dormancy tinactive is changed from 10 ms to 1 s.

In this experiment, for all timing configurations, S-
Mon detects all the pulses of attacks by snooping the
write memory traffics to the system call table regions.
However, the timings that S-Mon detects the rootkit
behaviors are not consistent. The reason why S-Mon
cannot detect all purse at the same timing is that the
realistic design in this paper considers write-back cache
type. In case of write-back cache, the write attempts from
the host may not be seen immediately on the bus,
because the cache does not commit all the memory
updates immediately to the memory [8]. However, as
Vigilare stated, because most caches write back dirty
cache lines even when it is restored to original value, any
write attempts on the immutable region generates the
corresponding write traffic on the links between caches
and memory, where the snooper snoops. The
experimental results confirms that the snoop-based
monitoring is still valid when the host system uses write-

back cache system.

3. Additional Overhead for S-Mon

In this paper, we propose the region controller to

securely protect the memory region for S-Mon. To
estimate the area overhead, we have measured the size of
the newly proposed module with Synopsys Design
Compiler [18] and a commercial 45 nm process library.
Table 1 shows the estimated area for the region controller.
As shown in the table, the region controller only
occupies 85.73 µm2 in 45 nm process, which is
acceptable overhead in recent AP platforms.

When S-Mon is employed in an AP, the software code
and data for monitoring should be given to the monitor
processor. It includes the codes for the management of S-
Mon such as the configuration of the snooper and the
information related to the immutable regions. Although
they occupy the additional memory space in the main
memory, the required space is relatively small. In the
current prototype, the additional memory space for the
software code and data for S-Mon is about 273 KB.
Since most commercial APs have a main memory
module which can contain more than 1 GB, the
additional space can be acceptable in most APs.

VI. CONCLUSIONS

This paper proposes S-Mon, a design of snoop-based
kernel integrity monitor that considers commodity AP
design environment. To adopt the snoop-based
monitoring scheme to commodity APs, the unified
memory model and crossbar switch interconnect are
considered in designing our S-Mon. To this end, several
design changes are discussed for realistic implementation
and the resulting architecture is prototyped on a cycle-
accurate simulation environment. In the experiments in
this paper, it is demonstrated that S-Mon is capable of
effectively coping with transient attacks that violate the
integrity of the immutable regions of the OS kernel,

Fig. 8. The execution time of the host normalized to the base
for eight applications from SPEC CPU 2006 benchmark.

Table 1. Synthesis Results for Region Controller
Combinational Area (µm2) 46.39
Buffer/Inverter Area (µm2) 5.82

Non-Combinational Area (µm2) 33.52
Total Area (µm2) 85.73

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.15, NO.1, FEBRUARY, 2015 57

while the performance degradation of S-Mon is still
acceptable even though the unified memory model is
imposed. As this paper shows, S-Mon is not only
promising against threatening rootkit attacks, but also
acceptably designed for modern smart devices
manufactured with AP SoC platforms where practical
design constraints exists.

ACKNOWLEDGMENTS

This work was partly supported by the Engineering
Research Center of Excellence Program of Korea
Ministry of Science and ICT & Future Planning (MSIP) /
National Research Foundation of Korea (NRF) (Grant
NRF-2008-0062609), the IT R&D program of
MSIP/KEIT [K10047212], the National Research
Foundation of Korea (NRF) grant funded by the Korea
government (MSIP) (No. 2014R1A2A1A10051792) and
the Brain Korea 21 Plus Project in 2014. Also, this
research was supported by MOTIE (The Minister of
Trade, Industry and Energy), Korea, under the Brain
Scouting Program (HB609-12-3002) by the NIPA
(National IT Promotion Agency) and Samsung DMC
R&D Center (IO120903-05075-01).

REFERENCES

[1] J. Wei, B. Payne, J. Giffin, and C. Pu, “Soft-timer
driven transient kernel control flow attacks and
defense,” In Computer Security Applications
Conference, 2008. ACSAC 2008. Annual, pages
97-107, dec.2008.USENIX Security Symposium.

[2] N. L. Petroni, Jr., T. Fraser, J. Molina, and W. A.
Arbaugh, “Copilot - a coprocessor-based kernel
runtime integrity monitor,” In Proceedings of the
13th conference on USENIX Security Symposium
– Volume 13, SSYM'04, pages 13-13, Berkeley,
CA, USA, 2004.USENIX Association

[3] X. Zhang, L. van Doorn, T. Jaeger, R. Perez, and R.
Sailer, “Secure coprocessor-based intrusion
detection,” In Proceedings of the 10th workshop on
ACM SIGOPS European workshop, EW 10, pages
239-242, New York, NY, USA, 2002. ACM.

[4] T. Garfinkel and M. Rosenblum, “A virtual
machine introspection based architecture for
intrusion detection,” In Proceedings of Network

and Distributed Systems Security Symposium, Feb
2003. Internet Society

[5] J. Rhee, R. Riley, D. Xu, and X. Jiang, “Defeating
dynamic data kernel rootkit attacks via vmm-based
guest-transparent monitoring,” In Availability,
Reliability and Security, 2009. ARES '09.
International Conference on, pages 74-81, march
2009. IEEE.

[6] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang,
and N. C. Skalsky, “Hypersentry: enabling stealthy
in-context measurement of hypervisor integrity,” In
Proceedings of the 17th ACM conference on
Computer and communications security, CCS '10,
pages 38-49, New York, NY, USA, 2010. ACM.

[7] J. Wang, A. Stavrou, and A. Ghosh, “Hypercheck:
A hardware-assisted integrity monitor,” In S. Jha, R.
Sommer, and C. Kreibich, editors, Recent
Advances in Intrusion Detection, volume 6307 of
Lecture Notes in Computer Science, pages 158-177.
Springer Berlin /Heidelberg, 2010.

[8] H. Moon, H. Lee, J. Lee, K. Kim, Y. Paek and
Brent B. Kang, “Vigilare: toward snoop-based
kernel integrity monitor,” Proceedings of the 2012
ACM conference on Computer and communi-
cations security. ACM, 2012.

[9] Rootkits, part 1 of 3: A growing threat, April 2006.
MacAfee AVERT Labs Whitepaper.

[10] J. D. McCalpin, “Memory bandwidth and machine
balance in current high performance computers,”
IEEE Computer Society Technical Committee on
Computer Architecture (TCCA) Newsletter, pages
19-25, Dec.1995.

[11] Lee, Hojoon, et al., “KI-Mon: A Hardware-assisted
Event-triggered Monitoring Platform for Mutable
Kernel Object,” Presented as part of the 22nd
USENIX Security Symposium. USENIX, 2013.

[12] LTD ARM co., “a9 processor,” 2011.
[13] LTD ARM co., “AMBA Network Interconnect

(NIC-301) Technical Reference Manual,” 2009.
[14] LTD Samsung Electronics co. Exynos 4, 2011,

http://www.samsung.com/global/business/semicon
ductor/

[15] Carbon Design Systems, Carbon SoC Designer
Plus., http://www.carbondesignsystems.com/soc-
designer-plus

[16] Carbon Design Systems, Carbon Model Studio.,
http://www.carbondesignsystems.com/carbon-

58 INGOO HEO et al : EFFICIENT KERNEL INTEGRITY MONITOR DESIGN FOR COMMODITY MOBILE APPLICATION …

model-studio/
[17] Na, Sangkwon, Sung Yang, and Chong-Min Kyung,

“Low-power bus architecture composition for
AMBA AXI,” Journal of Semiconductor Technology
and Science 9.2 (2009): 1.

[18] Synopsys, Inc., Synopsys Design Compiler,
http://www.synopsys.com/Tools/Implementation/R
TLSynthesis/DesignCompiler/Pages/default.aspx

[19] J. L. Henning, “Spec cpu2006 benchmark
descriptions,” ACM SIGARCH Computer Architecture
News, vol. 34, no. 4, pp. 1–17, 2006.

Ingoo Heo received a B.S. degree in
Electrical Engineering from Seoul
National University, Korea, in 2009.
He is currently working towards the
Ph.D degree in electrical and
computer engineering from Seoul
National University. His recent

research interests are security hardware and data leak
prevention using dynamic information flow tracking.

Daehee Jang received the B.E.
degree in Computer Science from
Hanyang University, South Korea, in
2011. He also received the M.E.
degree at Graduation School of
Information Security from Korea
Advanced Institute of Science and

Technology (KAIST), South Korea, in 2014. He is
currently working toward the Ph.D. degree at the
Graduation School of Information Security from Korea
Advanced Institute of Science and Technology (KAIST),
South Korea, since 2014. His main research interests
include reverse engineering, rootkit analysis.

Hyungon Moon received B.S.
degrees in Electrical Engineering and
in Mathematical Science from Seoul
National University, Korea, in 2010.
He is currently working towards the
Ph.D degree in electrical and
computer engineering from Seoul

National University. His research interests include
designing operating systems and computer architectures
for system security.

Hansu Cho is a senior engineer at
Samsung DMC R&D Center. Dr.
Cho has received his Ph. D. in
Electrical Engineering and Computer
Science from the University of
California, Irvine. His research areas
include system level design meth-

odology, ESL simulation, High Level Synthesis, ASIP
Design, and SoC Security.

Seungwook Lee is a principal
engineer at Samsung DMC R&D
Center. Dr. Lee has received his Ph.
D. in Information & Communication
Engineering from Sungkyunkwan
University in 2006. He researched on
secure processor architecture and

security performance analysis for his thesis. His current
research interests include system level design, SoC
architecture optimization, high speed SoC simulation,
SoC power and thermal simulation, ASIP Design and
secure SoC architecture.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.15, NO.1, FEBRUARY, 2015 59

Brent Byunghoon Kang is currently
an associate professor at the GSIS
(Graduate School of Information
Security) at KAIST (Korea Advanced
Institute of Science & Technology).
Before KAIST, he has been with
George Mason University as an

Associate Professor in the Volgenau School of
Engineering. Dr. Kang received his Ph.D. in Computer
Science from the University of California at Berkeley,
and M.S. from the University of Maryland at College
Park, and B.S. from Seoul National University. He has
been working on systems security area including OS
kernel integrity monitor, advanced botnet malware
defense, server ghosting and DNS analytics. He is
currently a member of the IEEE, the USENIX and the
ACM.

Yunheung Paek received the B.S.
and M.S. degrees in computer
engineering from the Seoul National
University, Korea in 1988 and 1990,
respectively. He received his Ph.D.
degree in computer science from
University of Illinois at Urbana-

Champaign in 1997. Currently he is a professor at the
department of electrical and computer engineering, Seoul
National University, Korea. His research interests
include system security with hardware and hypervisor,
secure processor design against various types of threats,
and encryption hardware. He is also working on mobile
cloud computing and re-targetable compiler.

