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Abstract—In recent years, there are increasing 
threats of rootkits that undermine the integrity of a 
system by manipulating OS kernel. To cope with the 
rootkits, in Vigilare, the snoop-based monitoring 
which snoops the memory traffics of the host system 
was proposed. Although the previous work shows its 
detection capability and negligible performance loss, 
the problem is that the proposed design is not 
acceptable in recent commodity mobile application 
processors (APs) which have become de facto the 
standard computing platforms of smart devices. To 
mend this problem and adopt the idea of snoop-based 
monitoring in commercial products, in this paper, we 
propose a snoop-based monitor design called S-Mon, 
which is designed for the AP platforms. In designing 
S-Mon, we especially consider two design constraints 
in the APs which were not addressed in Vigilare; the 
unified memory model and the crossbar switch 
interconnect. Taking into account those, we derive a 
more realistic architecture for the snoop-based 
monitoring and a new hardware module, called the 
region controller, is also proposed. In our experiments 
on a simulation framework modeling a production-
quality device, it is shown that our S-Mon can detect 
the rootkit attacks while the runtime overhead is also 
negligible.    
 

Index Terms—Security, application processor, smart 
mobile device, snoop-based integrity monitoring    

I. INTRODUCTION 

As mobile devices including smartphones and tablets 
continue to gain popularity among the general public, 
they become our main devices for everyday 
communication such as emailing, social networking, 
processing financial information and transmitting 
personal data. Thus, the potential privacy and security 
risks associated with using these devices are also rapidly 
growing. Although many security solutions have been 
developed to protect the devices from the threats, 
unfortunately, most of them suffer from the rootkit 
attacks, which are the most threatening and common type 
of kernel-level malware that take privileges of operating 
system (OS) kernel to intercept and modify system 
events with the goal of hiding illicit activity [1]. Since 
rootkits themselves are located in the lowest kernel layer 
that has the highest privilege level in a system, they can 
trick any anti-malware solutions relying on the kernel, 
making them ineffective [11]. In other words, after 
rootkits compromise the OS kernel, any malicious 
behavior cannot be detected by the integrity monitors 
that have their root of trust on OS kernel. 

To protect the OS kernel integrity from the rootkits, 
many security researchers have strived to make their 
security monitors independent from the host system that 
is being monitored. By separating the execution 
environment of monitoring from the host, the integrity of 
monitor could be protected from the rootkits. Recent 
efforts on this kernel integrity monitoring can be 
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categorized into two groups: hardware-based approaches 
[2, 3] and hypervisor-based approaches [4, 5]. Although 
the hypervisor-based ones become popular, they have a 
critical weakness in that software vulnerabilities in them 
can be exploited by malwares to compromise the entire 
system. In the hardware-based approaches, they make an 
effort to get over the limitation with an independent 
hardware monitor that is inherently not reachable from 
the host. Since rootkit attacks running on the host cannot 
access the monitors, the hardware-based approaches are 
more secure than the conventional software-based 
solutions [6]. 

Most of the existing hardware-based solutions make 
use of snapshot analysis; they are usually assisted by 
some type of hardware component that enables saving of 
the memory contents into a snapshot, and then perform 
an analysis to find the traces of rootkit attack [2, 6, 7]. 
Nevertheless, the most critical weakness of the scheme is 
that it can inspect only the snapshots collected at a 
specific point of time, missing the evanescent changes 
which are not exposed in the captured snapshots. Thus, 
transient attack, which refers to attacks that do not leave 
persistent traces in memory contents but still achieves its 
goal by using only momentary and transitory 
manipulations [8], easily subverts the snapshot-based 
monitors. Moreover, the frequent snapshot-taking to 
increase the detection probability would inevitably 
degrade the host performance, because it consumes more 
memory bandwidth. 

To overcome the limitations, Moon et al. [8] propose 
Vigilare, a kernel integrity monitor that makes use of 
snooping techniques for detecting the transient attack 
with low performance overhead. In order to achieve their 
goals, they take a fundamentally different approach; 
instead of taking snapshots, Vigilare monitors the 
operation of the host system by “snooping” the bus 
traffic of the host system from a separate independent 
system located outside the host system. This provides the 
monitoring system with the capability to observe all 
activities of the host which are revealed to the system’s 
shared bus, and yet being completely independent from 
any potential compromise or attacks in the host system. 
They demonstrates the effectiveness of this scheme by 
showing that their monitor is capable of effectively 
coping with transient attacks that violate the integrity of 

the immutable regions of the OS kernel and incurs 
negligible performance overhead on the host.  

However, although Vigilare suggested a promising 
solution for rootkit detection, their prototype designs are 
too primitive to be deployed in recent commodity smart 
devices. In application processor (AP) platforms which 
are de facto the standard computing platforms for smart 
devices, there are many design rules to be complied with 
to manufacture the overall SoC system. Nevertheless, 
unfortunately, the monitor design proposed in Vigilare 
do not follow the general design constrainsts of recent 
APs, such as unified memory model or crossbar switch 
interconnect. Since the design restrictions are not 
considered, the previous monitor design of Vigilare 
cannot be directly applied to recent commodity products. 
Therefore, in order to leverage the deployment of the 
snoop-based monitoring in real machines, it is essential 
to consider a realistic design for commodity smart 
devices. 

In this paper, we present a snoop-based integrity 
monitor, called S-Mon, which targets commodity smart 
devices. Unlike Vigilare, our monitor design strictly 
follows the design constraints on mobile AP platforms, in 
order to suggest the most realistic monitor design for 
commercial products. To derive a practical and realistic 
monitor architecture, the design constraints of recent 
commodity APs such as the unified memory model and 
crossbar switch interconnect are considered in designing 
S-Mon. Taking into account those, the architecture of 
snoop-based integrity monitor is restructured 
substantially, and a hardware module for secure 
monitoring in the unified memory model, called region 
controller, is also newly proposed. In our experiments on 
a simulation environment that models a realistic modern 
AP platform, S-Mon shows negligible performance 
impact on the host system, while transient rootkit attacks 
are successfully detected with our monitor design.  

The rest of this paper is organized as follows. Section 
2 introduces some backgrounds for OS kernel and the 
attack model which S-Mon targets for. After Section 3 
introduces the design of Vigilare and its limitations, 
Section 4 will give the detailed design of S-Mon which 
considers commodity APs. Section 4 will report the 
experimental results and we will conclude this paper in 
Section 5. 
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II. ATTACK MODEL 

In this section, we will first explain several 
backgrounds which are necessary to understand our work. 
In particular, for some readers who are not familiar with 
system security, we will introduce a set of issues that are 
deeply related to the OS kernel integrity and the rootkit 
attacks. After that, we will present an attack model for 
this study, which aims at subverting the integrity of 
Linux kernel. Since most mobile OSes are based on the 
Linux kernel, we made our attack model be applicable to 
a majority of smart devices.  

 
1. Rootkits and Transient Attack 

 
As discussed in the previous section briefly, rootkit is 

a stealthy type of software that is designed to hide the 
existence of certain processes or programs from normal 
methods of detection and enable continued privileged 
access to a system [9]. As shown in Fig. 1, the rootkit is 
located in the lowest level of software layers and thus 
have the highest privilege to control the whole system. 
As a result, once installed, rootkits can modify the host’s 
software to provide an attacker with the ability to hide 
the existence of chosen processes, files, and network 
connections from other users [2]. Therefore, rootkit can 
deceive anti-malware software by providing falsified 
information, and conventional anti-malware software that 
is dependable on the OS kernel’s integrity never detects 
the malicious behaviors. 

To get over the limitation, many security researches 
have tried to make their security monitors independent 
from the host system. With the separation from the host, 
rootkits cannot compromise the security monitors. 
Moreover, the existence of rootkit can be detected with 
the snapshot-based monitoring scheme when the rootkit 

leave permanent changes on the host. 
However, transient attack which do not leave 

persistent traces in memory contents, still achieves its 
goal by using only momentary and transitory 
manipulations [8]. In such scenarios, the evidence of 
malicious modification is visible for a short time period 
so that detecting the modification becomes difficult. The 
soft-timer based rootkit presented by J.Wei et.al. is a 
representative example [1]. 

Fig. 2 shows the difficulties of detecting transient 
attacks with the snapshot-based monitoring. Imagine a 
snapshot-based integrity monitor with a snapshot period 
Pmonitor is launched to detect transient attacks. If the 
author of the kernel rootkit can properly adjust the 
duration of the attack tactive and the time of dormancy 
tinactive, he could completely evade the snapshot-based 
monitors; by staying dormant at the time of memory 
snapshot and becoming active in between the snapshots, 
the rootkit can capably fool the snapshot-based monitor. 
The simplest solution to the limitation is to increase the 
rate of snapshot-taking but it will inevitably impose a 
high performance overhead on the host. Random 
snapshot timing is also not a proper solution because the 
detection rate would greatly depend on luck and not be 
consistent. In conclusion, the conventional snapshot-
based integrity monitors cannot cope with the transient 
attacks and it is why the snoop-based monitors such as 
Vigialre were proposed.  

 
2. Immutable Regions of Linux Kernel 

 
Immutable region is the memory regions that are 

critical to the OS kernel integrity and thus any 
modifications on the regions are deemed malicious [8]. 

 

Fig. 1. OS Kernel Layers and Rootkit. 
 

 

 

Fig. 2. The behavior of transient attack [8]. 
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Protecting the integrity of the immutable regions should 
be the highest priority, since modification to the regions 
in the attacker’s favor would be the most critical because 
the region constitutes core components in the OS and any 
compromise in this region would seriously affect all the 
application running on top of the OS.  

For example, the immutable region of Linux OS 
includes the kernel code region and the system call table. 
The kernel code region is the most obvious example of 
the immutable region; since the basic functionalities of 
the kernel must not be changed after the bootstrap, the 
kernel code region should never be modified at runtime. 
The system call table is also a representative example of 
the immutable region because this table should not be 
modified after boot in order to provide many services 
consistently. Hijacking the kernel’s system call often 
serves as an efficient way to control the kernel in the 
favor of an attacker. Modifying the system call table of 
the Linux kernel is a popular way to intercept the 
execution flow of the victimized system. The Linux 
system call table takes a form of an array of pointers. 
Each entry in the table points to a corresponding system 
calls such as sys_read, sys_write, and many more. The 
adversary could effortlessly hijack these system calls by 
inserting a function between the system call table and the 
actual system call handlers. Most user mode applications 
as well as kernel mode ones, rely on the basic system 
calls to communicate with file system, networking, 
process information, and other functionalities. Therefore, 
taking control of the system call table enables one to 
control the entire kernel from the bottom. For these 
reasons, it is important to focus on monitoring the 
immutable regions of the OS kernel. Thus, the attack 
model and corresponding monitor discussed in this paper 
also target the immutable regions of the OS kernel, as 
Vigilare did. 

 
3. Assumptions and Attack Example 

 
In this study, we assume that the host system is already 

compromised by an attacker with a rootkit attack. 
Therefore, the attacker already has the administrator’s 
privilege on the host system and the memory protection of 
OS kernel is circumvented. However, the attacker’s 
software cannot modify the hardware of the system and 
thus all hardware modules including our monitor are secure. 

In these assumptions, to test our snoop-based integrity 
monitor (i.e., S-Mon), a transient rootkit attack example 
which hit the immutable region of Linux kernel is 
devised. The rootkit is very similar to the rootkit 
proposed in Vigilare [8] and acts as the traditional Linux 
kernel rootkits in the wild.  

The rootkit repeatedly modify and reverse system call 
function pointers in the system call table to hijack the 
control flow of the system call, as shown in Fig. 3. To 
evade snapshot-based integrity monitoring, the rootkit 
repeat its function in a fixed time interval using the 
Linux timer as in Fig. 1. Particularly, the example rootkit 
hijacks sys_read, sys_write and sys_mkdir system calls to 
disturb standard IO or file system. As a side effect of the 
rootkit, the host system occasionally fails to handle 
standard IO and file system properly. The example 
rootkit simply performs the old-fashioned system call 
hooking, but the timer-triggered operation allows it to 
illustrate the transient rootkit characteristics. As shown in 
the experimental results, the capability of detecting the 
transient attack is the key difference of the snoop-based 
monitoring from the snapshot-based one. 

III. ARCHITECTURE DESIGN OF VIGILARE AND 

CONSIDERATIONS FOR AP PLATFORMS 

In this section, we will introduce the architecture 
design of Vigilare which is the first snoop-based monitor 
for the OS kernel integrity. Then, we will explain several 
design constraints of commodity AP platforms that 
should be complied with in order to derive a practical 
monitor in these platforms but are violated in Vigilare. 

 
1. Vigilare Architecture Design 

 
Fig. 4 shows the prototype design of Vigilare which 

 

Fig. 3. Rootkit example (systemcall table hooking). 
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performs snoop-based monitoring. The overall system 
mainly consists of two subsystem, the host system being 
monitored and the Vigilare system that performs the 
monitoring. The Vigilare system is inherently separated 
from the host system so that any malicious access of 
malwares cannot be reachable to the monitor. As the 
figure shows, a dedicated memory module for the 
monitoring system is deployed and it contains all the 
programs and data used by the monitor processor. By 
using the separate memory for the monitoring system and 
memory controller inaccessible from the host system, the 
dedicated memory becomes physically tamper-free. In 
addition, since the host system cannot access any 
peripheral of the monitoring system, this configuration 
makes the monitoring system be secure from any 
potential compromise or attacks in the host system. 

As shown in Fig. 4, a hardware module called the 
snooper is attached to the host system to detect malicious 
memory accesses on the host shared bus. In order to 
detect rootkit’s behaviors that modify the immutable 
region of the OS kernel, Vigilare inspects all writes 
accesses revealed on the bus and check whether each 
write address is in the range of the immutable region. 
Since the snooper is connected to the host bus as a slave 
device, it can snoop all transactions on the bus because 
they are broadcasted to all components on the shared bus. 
By employing the snooping technique, Vigilare can 
detect all transient rootkit attack with negligible overhead 
while it is still secure from the rootkit’s threat running on 
the host. 

 
2. Design Constraints for AP Platforms 

 
In AP platforms which are de facto the standard 

platforms for most smart devices, several design 
constraints should be followed for efficient design and 

rapid manufacturing. However, in the architecture design 
of Vigilare above, two design constraints for the 
platforms are violated; unified memory model and 
crossbar switch interconnect.  

Firstly, the Vigilare system assumes a dedicated 
memory model that a dedicated memory module for the 
monitoring software code and data is given. 
Unfortunately, the memory model is generally not 
acceptable in AP platforms. In general, many commercial 
AP platforms contain a limited number of DDR DRAM 
modules as a main memory due to their expensive costs. 
Therefore, although the required memory capacity is 
small, requiring the additional memory module would 
hamper AP vendors to adopt the monitoring hardware. 
Thus, the memory space for the newly installed 
monitoring system should be allocated from the existing 
memory modules and it would consequently forms a 
unified memory model between the host and the 
monitoring system. Therefore, in order to adopt the 
snoop-based monitoring into AP platforms, this unified 
memory model should be employed. 

Secondly, Vigilare assumes that the host processor is 
connected to the main memory via a shared bus such as 
AMBA AHB bus. In most commercial APs, however, the 
host processor and the main memory are connected 
through crossbar switch instead of shared bus [17]. 
Shared bus is rather old-fashioned interconnect that all 
components shares a communication channel and thus it 
might incur frequent bus contention when multiple 
transactions want to use the shared channel. On the other 
hand, crossbar interconnect provides multiple channels 
between masters and slaves in a matrix manner and 
therefore it can reduce the communication overhead 
significantly. It is the reason why the crossbar switch is 
widely used in modern AP platforms and thus the design 
of the snoop-based monitor should consider the 
interconnect type to be deployed in the realistic platforms. 
In the next section, we will discuss how these design 
constraints are considered in our S-Mon. 

IV. S-MON : A PRACTICAL MONITOR DESIGN 

FOR AP PLATFORMS 

In this section, the design of S-Mon, which is a snoop-
based monitor that considers commodity AP platforms, 
will be introduced. After the overall design is shown in 

 

Fig. 4. Architecture design of Vigilare [8]. 
 



JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.15, NO.1, FEBRUARY, 2015 53 

 

Section 4.1, the further detailed design considerations for 
modern AP platforms will be given in Section 4.2. 

 
1. Overall System Design 

 
The overall system design with S-Mon is presented in 

Fig. 5. As the figure shows, the overall system consists of 
the host system being monitored and S-Mon system that 
observes the host activities to detect malicious rootkit 
attacks. For the host system, an ARM Cortex-A9 dual 
processor [12] is used for the host processor and an ARM 
NIC-301 AXI crossbar switch interconnect [13] is 
integrated to connect the host processor, memory 
controller and other peripherals. It is assumed that the 
host processor runs at 1 GHz and has separate 32 KB 
instruction/data caches. The host system uses 1 GB 
DDR3 SDRAM as a main memory and has some 
peripherals such as UART and timer. The NIC-301 and 
DDR3 SDRAM commonly operate at 500 MHz. The 
host runs the OS kernel which is an embedded Linux 
kernel 2.6.38. It is noteworthy that the specifications for 
the host are very similar with the recent AP platforms 
such as Samsung Exynos 4 [14]. 

The design of S-Mon system is derived from 
Vigilare’s prototype [8] which is described in the 
previous section. Fig. 5 shows that S-Mon is 
implemented as a separate system that consists of a 
monitor processor, the snooper and other peripherals 
such as UART. The monitor processor is also an ARM 
Cortex-A9 processor and has 32 KB instruction/data 
caches, running at 1 GHz. Unlike Vigilare, S-Mon 
system does not have its own dedicated memory module 
and thus a small section of main memory module is 
allocated for monitoring software, in order to reduce the 

production costs. 
With the given hardware components, S-Mon also 

performs snoop-based monitoring that snoops the write 
memory traffic to find malicious behaviors of rootkits 
which hit the immutable regions of the OS kernel. To 
achieve this goal, the snooper module is located between 
the crossbar switch system interconnect and the memory 
controller. For each write request from the host, the 
snooper inspects the physical address of the transaction 
and check whether it is in the range of the addresses 
which corresponds to the immutable region. If it is, the 
write attempt is regarded as malicious behavior of 
rootkits.  

After the snooper finds any attempt to corrupt the 
immutable region, it is reported to the monitor processor 
through the S-Mon system bus. In the current prototype, 
if the existence of rootkit is detected, it is announced via 
the UART interface in S-Mon system. Since the output 
interface is not reachable from the host, the reporting 
process is also secure and trustworthy. In the next 
subsection, the detailed design considerations of S-Mon, 
which is for adopting the snoop-based monitor to the 
recent AP platforms, will be discussed. 

 
2. Design Considerations for AP Platforms 

 
Although the basic functionality of S-Mon is the same 

as Vigilare, the detailed architecture for S-Mon differs 
from the Vigilare’s prototype because the newly 
proposed design seriously considers realistic AP design 
environments as opposed to the previous work. As 
described in the previous section, there are two design 
restrictions that should be complied with to adopt the 
snoop-based monitor in AP platforms. The first is the 
unified memory model that the host and the monitoring 
system share the same memory module. The second is 
the crossbar switch interconnect which affects the 
location of the snooper. The following will discuss the 
detailed implementation issues. 

As discussed earlier, for the AP design environments, 
the dedicated memory module for the monitoring system 
would not be acceptable due to the increase of production 
costs. For this reason, the proposed architecture in this 
paper adopts the unified memory model where the 
memory for monitoring is allocated from the main 
memory module. Nevertheless, although the memory 

 

Fig. 5. The proposed design of S-Mon. 
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model meets the conventional AP design rules, it would 
make the monitoring system vulnerable. It is because the 
memory sections for S-Mon system reside in the main 
memory module and thus the host is now able to access 
the region to subvert the kernel integrity. Therefore, the 
memory region accessible from the host is no longer 
deemed as secure.  

In order to keep the monitoring system secure from the 
rootkit attacks even when the unified memory model is 
employed, a hardware logic called the region controller 
is implemented in the snooper, as shown in Fig. 6. The 
region controller has been embedded in the snooper and 
specifically drops all memory operation requests from 
the host system to the memory region of S-Mon. At first, 
the range checker module checks whether each memory 
access address is in the range of S-Mon region. If it is not 
a transaction toward S-Mon region, the region controller 
passes it to the memory controller to access the host 
memory region. However, in the case of accesses to the 
S-Mon region, the transactions from the host should be 
denied. For this purpose, the region controller 
discriminate the requests of the host with transaction ID 
of AXI protocol, being supported by the ID checker. 
Since AXI interconnection protocol supports transaction 
IDs to identify the master of the transaction, the ID 
checker can classify the master of the memory access and 
thus drop the all accesses from the host. By using the 
region controller, the memory region of S-Mon is still 
physically temper-free and secure from the potential 
attacks of rootkits even in the unified memory model. 

As shown in Fig. 4, the snooper hardware module in 
the prototype of Vigilare is connected to the main bus as 

a slave device observing all signals on the bus. By 
inspecting all write memory traffic on the bus, the 
snooper is able to detect any suspicious traffic that 
attempts to compromise the kernel. However, for a 
crossbar switch interconnect such as AXI NIC-301, the 
location of the snooper hardware module should be 
reconsidered. It is because communication traffics 
between two modules are not revealed to the other 
modules on the crossbar interconnect, which 
consequently would make the snooper hardware 
ineffective to detect the rootkit attacks.  

To snoop the suspicious memory traffics on the crossbar 
switch interconnect, the snooper hardware of S-Mon is 
located at the front of the memory controller. The location 
of the snooper has an advantage in that, it does not depend 
on the interconnection types of the system. Because all 
memory requests are finally transferred to the memory, 
any malicious write transactions of the rootkits can be 
detected at the location. With the design consideration, the 
snooper hardware and the snoop-based monitoring scheme 
can be adoptable modern AP platforms where crossbar 
switch is usually used as main interconnect. 

V. EXPERIMENTAL RESULTS 

To evaluate the effectiveness of our S-Mon, we have 
developed a prototype on a simulation framework based 
on Carbon SoC Designer Plus [15]. This simulation tool 
provides cycle-accurate simulation and rapid prototyping 
for evaluating realistic AP platforms. The detailed 
specifications are the same as in Section 4. Commodity 
processors, interconnect and memory were given as 
library models that support cycle-accurate simulation for 
the corresponding modules. On the other hand, several 
customized hardware modules such as the snooper and 
the region controller had to be designed with Verilog 
HDL language and translated to simulation components 
with Carbon Model Studio [16]. By employing this 
accurate simulation framework, we have obtained 
reliable experimental results. 

 
1. Performance 

 
If a dedicated memory module is used for integrity 

monitoring as in Vigilare, this does not affect the 
performance of the host because there is no resource 

 

Fig. 6. The internal structure of region controller. 
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sharing between the host and the integrity monitor. In 
contrast, when the unified memory model is employed as 
in our S-Mon, the two system should share a memory 
module and it consequently incurs resource competition. 
For this reason, the performance impact of the unified 
model should be evaluated before adopting the snoop-
based monitoring into AP platforms where the stringent 
performance requirements must be met. 

To compare the performance impact of the memory 
models, both the unified memory model and the 
dedicated memory model are implemented. As described 
in the previous section, S-Mon is basically implemented 
with the unified memory model. For the dedicated 
memory model, an additional memory module is given to 
S-Mon and the monitoring software is allocated to the 
memory. Since the required memory capacity for S-Mon 
is under 1 MB, a 32 MB DDR memory is given for the 
dedicated memory model. To evaluate the performance 
impact on the host, the performance of the host system is 
measured with STREAM benchmark [10] which is 
widely used for measuring the memory bandwidth of a 
system. The data size for the experiments is 10000 and 
the iteration is 3. In addition, to better compare the 
snoop-based monitoring scheme with traditional 
snapshot-based method, a snapshot-based integrity 
monitor is also implemented. The snapshot monitor uses 
the DMA to get the snapshot of the immutable regions of 
the host kernel periodically and it is assumed that the 
region for snapshot is 4 KB. 

Fig. 7 compares the performance of the host for six 
configurations. Three configurations for the snapshot 
monitors show that the snapshot-based monitoring 
scheme with shorter intervals slows down the host 
system significantly. Although the size of snapshot is 
minimized for brief comparison, the performance 
degradation is still substantial. Since the actual size of 
the immutable region is about 1 MB (we just assumed 4 
KB), the slowdown must be worsened when the snapshot 
is performed on the entire immutable region. This 
provides a plausible reason why the snapshot-based 
monitoring is not promising in mobile devices.  

In contrast, the snoop-based monitoring scheme brings 
the overhead down to negligible level. As expected, the 
dedicated memory model does not degrade the 
performance of the host at all. Meanwhile, the unified 
memory model shows 2.87% overhead compared to the 

base case because the monitor processor requires the 
code and data in the main memory module. However, the 
number should be regarded as the worst case due to the 
characteristic of STREAM benchmark. Consider that 
most operations in STREAM benchmark require memory 
read/write so that the required memory bandwidth is 
maximized. In this case, the performance of the 
benchmark can be easily degraded by the small number 
of memory requests from the monitoring system. In fact, 
although the memory operations for monitoring are not 
so frequent and most of them are handled within the 
cache of the monitor processor, the performance of host 
is slightly slowed down. Moreover, since generally the 
mobile devices do not always require the peak memory 
bandwidth, the small 2.87% performance overhead can 
be amortized in real applications.  

To justify our claim, we have measured the 
performance of the host when the unified memory model 
is employed, for eight applications from SPEC CPU 
2006 benchmark [19]. Fig. 8 shows the performance 
comparison between S-Mon and the base case for the 
applications. This results show that, in most applications, 
the performance overhead of S-Mon with the unified 
memory model is negligible and it is about 0.8% in 
average. Therefore, we can conclude that the runtime 
performance overhead of S-Mon is acceptable in the 
realistic unified memory model.  

 
2. Security Evaluation 

 
Another objective of our experiments was to show the 

 

Fig. 7. Cycle counts for six configurations (Base : The host 
system without monitoring. Dedicated : S-Mon with the 
dedicated memory model. Unified : S-Mon with the unified 
memory model. Snap : Snapshot-based monitoring scheme and 
the numbers within parentheses indicate the period of the 
snapshot). 
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detectability of our S-Mon on transient rootkit attacks. 
To demonstrate the ability to detect the attacks, the 
rootkit sample described in Section 2 was built and the 
probability of detecting a pulse of an attack is measured 
when S-Mon is employed. The rootkit example for this 
experiment is implemented to meet the definition of 
transient attack in Section 2 and Fig. 2 shows how the 
rootkit example works. It modifies the system call table 
of the Linux kernel to hook some of the system calls. 
After tactive, it removes its hooks by modifying the system 
call table as it has been before. After tinactive, it hooks the 
system call as it did before. If the host system is 
compromised by this sample attack, it cannot service 
appropriate system calls related to user’s standard I/O. In 
this experiment, 100 pulses are generated and how many 
of them were detected by S-Mon is measured. We varies 
the duration of the attack tactive from 2 ms to 50 ms, while 
the time of dormancy tinactive is changed from 10 ms to 1 s.  

In this experiment, for all timing configurations, S-
Mon detects all the pulses of attacks by snooping the 
write memory traffics to the system call table regions. 
However, the timings that S-Mon detects the rootkit 
behaviors are not consistent. The reason why S-Mon 
cannot detect all purse at the same timing is that the 
realistic design in this paper considers write-back cache 
type. In case of write-back cache, the write attempts from 
the host may not be seen immediately on the bus, 
because the cache does not commit all the memory 
updates immediately to the memory [8]. However, as 
Vigilare stated, because most caches write back dirty 
cache lines even when it is restored to original value, any 
write attempts on the immutable region generates the 
corresponding write traffic on the links between caches 
and memory, where the snooper snoops. The 
experimental results confirms that the snoop-based 
monitoring is still valid when the host system uses write-

back cache system. 
 

3. Additional Overhead for S-Mon 
 
In this paper, we propose the region controller to 

securely protect the memory region for S-Mon. To 
estimate the area overhead, we have measured the size of 
the newly proposed module with Synopsys Design 
Compiler [18] and a commercial 45 nm process library. 
Table 1 shows the estimated area for the region controller. 
As shown in the table, the region controller only 
occupies 85.73 µm2 in 45 nm process, which is 
acceptable overhead in recent AP platforms.  

When S-Mon is employed in an AP, the software code 
and data for monitoring should be given to the monitor 
processor. It includes the codes for the management of S-
Mon such as the configuration of the snooper and the 
information related to the immutable regions. Although 
they occupy the additional memory space in the main 
memory, the required space is relatively small. In the 
current prototype, the additional memory space for the 
software code and data for S-Mon is about 273 KB. 
Since most commercial APs have a main memory 
module which can contain more than 1 GB, the 
additional space can be acceptable in most APs. 

VI. CONCLUSIONS 

This paper proposes S-Mon, a design of snoop-based 
kernel integrity monitor that considers commodity AP 
design environment. To adopt the snoop-based 
monitoring scheme to commodity APs, the unified 
memory model and crossbar switch interconnect are 
considered in designing our S-Mon. To this end, several 
design changes are discussed for realistic implementation 
and the resulting architecture is prototyped on a cycle-
accurate simulation environment. In the experiments in 
this paper, it is demonstrated that S-Mon is capable of 
effectively coping with transient attacks that violate the 
integrity of the immutable regions of the OS kernel, 

 

Fig. 8. The execution time of the host normalized to the base 
for eight applications from SPEC CPU 2006 benchmark. 
 

Table 1. Synthesis Results for Region Controller 
Combinational Area (µm2) 46.39  
Buffer/Inverter Area (µm2) 5.82  

Non-Combinational Area (µm2) 33.52  
Total Area (µm2) 85.73  
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while the performance degradation of S-Mon is still 
acceptable even though the unified memory model is 
imposed. As this paper shows, S-Mon is not only 
promising against threatening rootkit attacks, but also 
acceptably designed for modern smart devices 
manufactured with AP SoC platforms where practical 
design constraints exists. 
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