
On-demand bootstrapping mechanism for
isolated cryptographic operations on commodity
accelerators

Yonggon Kim a, Ohmin Kwon a, Jinsoo Jang b, Seongwook Jin a,
Hyeongboo Baek a, Brent Byunghoon Kang b,*, Hyunsoo Yoon a

a Division of Computer Science, School of Computing, Korea Advanced Institute of Science and Technology
(KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, South Korea
b Graduate School of Information Security, School of Computing, Korea Advanced Institute of Science and
Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, South Korea

A R T I C L E I N F O

Article history:

Received 29 February 2016

Received in revised form 30 May

2016

Accepted 27 June 2016

Available online 1 July 2016

A B S T R A C T

General-Purpose computing on a Graphics Processing Unit (GPGPU) involves leveraging com-

modity GPUs as massively parallel processing units. GPGPU is an emerging computing

paradigm for high-performance and data-intensive computations such as cryptographic op-

erations. Although GPGPU is an attractive solution for accelerating modern cryptographic

operations, the security challenges that stem from utilizing commodity GPUs remain an un-

resolved problem. In this paper, we present an On-demand Bootstrapping Mechanism for

Isolated cryptographic operations (OBMI). OBMI transforms commodity GPUs into a se-

curely isolated processing core for various cryptographic operations while maintaining cost-

effective computations. By leveraging SystemManagement Mode (SMM), a privileged execution

mode provided by x86 architectures, OBMI implements a program and a secret key into the

GPU such that they are securely isolated during the acceleration of cryptographic opera-

tions, even in the presence of compromised kernels. Our approach does not require an

additional hardware-abstraction layer such as a hypervisor or micro-kernel, and it does not

entail modifying the GPU driver. An evaluation of the proposed OBMI demonstrated that

even adversaries with kernel privileges cannot gain access to the secret key, and it also showed

that the proposed mechanism incurs negligible performance degradation for both the CPU

and GPU.

© 2016 Elsevier Ltd. All rights reserved.

Keywords:

Secure systems

Trusted computing technology

Trustworthy execution

GPU security

GPGPU

Cryptographic key protection

SMM

1. Introduction

Cryptography has become an essential component in modern
computer systems. As the amount of data requiring protec-
tion has increased due to the growing importance of security
and privacy, the heavy computational workload of crypto-
graphic operations has also become a challenging problem.To

alleviate the performance bottleneck affecting modern cryp-
tography, several previous works have suggested harnessing
many-core accelerators such as Graphics Processing Units
(GPUs), which can be used as massively parallel architec-
tures. Recent GPUs offer significant improvements in throughput
and performance-per-watt compared to commodity CPUs (Abe
et al., 2012). Leveraging such benefits, several researchers have

* Corresponding author.
E-mail address: brentkang@kaist.ac.kr (B.B. Kang).

http://dx.doi.org/10.1016/j.cose.2016.06.006
0167-4048/© 2016 Elsevier Ltd. All rights reserved.

c om pu t e r s & s e cu r i t y 6 2 (2 0 1 6) 3 3 – 4 8

Available online at www.sciencedirect.com

journal homepage: www.elsevier.com/ locate /cose

ScienceDirect

shown that versatile modern cryptographic operations can be
accelerated efficiently using commodity GPU devices (Harrison
andWaldron, 2009; Lee et al., 2015; Manavski, 2007; Wang et al.,
2014; Zheng et al., 2014). Furthermore, research shows that GPU-
accelerated cryptography can be a cost-effective solution to real-
world cryptographic implementations such as the Secure
Sockets Layer (SSL) and Transport Layer Security (TLS) (Jang
et al., 2011).

Unfortunately, GPUs have several security problems.A recent
study shows that GPU data stored in GPU memory can be re-
trieved from different processes, because the GPU does not flush
its memory after its termination (Lee et al., 2014; Pietro et al.,
2016). Even when implementing an appropriate flushingmecha-
nism for the GPU, malicious users with kernel privileges can
easily access the GPU device memory through MMIO (Maurice
et al., 2014). Various memory-disclosure attacks (Heartbleed;
Blass and Robertson, 2012) and kernel-compromising attacks
show that the kernel-enforced security mechanisms can be by-
passed. If an attacker can manipulate the kernel or the driver,
the secret key can be stolen whenever it is exposed in the GPU
device memory.

To protect the secret key under a broad range of GPU vul-
nerabilities and threats to the underlying host system, we
propose a low-cost key-protection mechanism for general-
purpose computing on a GPU (GPGPU). We leverage System
Management Mode (SMM) and an SMM-based handler func-
tion to implement secure key management, along with a
bootstrapping mechanism that enables the key-protected ex-
ecution of GPU-accelerated cryptography. SMM is a privileged
execution mode for x86 architectures offered by commodity
CPUs. In SMM,only theauthorizedhandler – the so-calledSystem
Management Interrupt (SMI) handler – can be executed. Other
processes, including malicious processes, cannot be executed
in SMM. Because the OS kernel and any malicious processes
are unaware of the SMM execution, we can implement an SMI
handler that transparently manages the GPU device.

By implementing a simple bootstrapping mechanismwithin
the SMI handler, we securely upload the secret key into the
GPU cache. Unlike the GPU device memory, even privileged CPU
processes cannot access the GPU cache.There aremultiple types
of GPU caches, and the GPU constant cache can be easily uti-
lized as a key storage by exclusive use of the GPU constant
memory for the secret key. When the SMI handler clears the
remaining footprint of the secret key in the device memory,
the secret key is isolated within the GPU constant cache. Simi-
larly, we can also isolate the entire GPU code at the GPU
instruction cache to prevent any control-flow modifications of
the GPU program.

The main challenge to implementing the bootstrapping
mechanism arises because, although the SMI handler can se-
curely access the GPU device, it is unable to utilize the existing
GPU driver and OS kernel. This is because the OS kernel and
GPU driver are suspended in SMM. Modern GPUs are complex,
and the GPU driver is responsible for controlling the underly-
ing hardware.Without the help of the GPU driver, engineering
efforts to implement the bootstrapping process increase dra-
matically. To overcome this challenge, we split all the GPU
control logics needed for bootstrapping mechanism into two
classes of tasks: security-sensitive tasks, and security-insensitive
tasks. Consequently, security-insensitive tasks can be handled

by the existing GPU driver and rudimentary OS functionality.
We devised two consecutive steps for the bootstrapping process:
one step in normal CPU mode (i.e., protected mode), and the
other in SMM. By delegating most of GPU control logic (i.e.,
security-insensitive tasks) to the first step, we can signifi-
cantly reduce the complexity of the control logic required for
the SMI handler.

With our bootstrapping mechanism, the secret keys used
by GPU-accelerated cryptography are not exposed to attack-
ers. Before bootstrapping, the secret keys are stored in the
protected memory space, which is only accessible by the SMI
handler. In SMM, the secret key and GPU program are safely
uploaded to the GPU caches. Although processor environ-
ments isolated in SMM are only momentarily utilized until the
upload is complete, we can preserve the confidentiality of the
uploaded key and program during the acceleration of crypto-
graphic operations, since GPU caches are inaccessible from any
host processes. If the uploaded GPU program terminates, all
content in the GPU caches is invalidated. Thus, any subse-
quent GPU program cannot retrieve the secret keys.

To minimize the performance degradation incurred by the
proposed mechanism, we devise several optimizations for ef-
ficient bootstrapping. Furthermore, to demonstrate the feasibility
of our bootstrapping mechanism, we implemented a proto-
type using a commodity CPU and GPU. Our prototype includes
GPU-accelerated RSA and AES cryptographic operations, and
results in minimal performance loss. We carefully evaluated
the proposed mechanism in terms of its security, in order to
confirm that it is robust even to attackers with kernel privileges.

Our bootstrapping mechanism is advantageous in many
ways: (i) transparency – we leverage existing GPU drivers and
operating systems,without the need tomodify them; (ii) a small
TCB – our mechanism adds only a few hundred lines of code
for the SMI handler, significantly minimizing the size of the
TCB; (iii) compatibility – our mechanism is based on commod-
ity hardware; and (iv) simplicity and speed – the additional code
required for bootstrapping is relatively simple compared to other
approaches (Sani et al., 2014; Yu et al., 2015).

In particular, our work makes the following contributions:

1. To our best knowledge, we are the first to suggest using the
GPU cache to store cryptographic keys, such that the com-
modity GPU can safely accelerate cryptographic operations
without revealing sensitive information.

2. We suggest an SMM-based bootstrapping mechanism, re-
ferred to hereafter as the On-demand Bootstrapping
Mechanism for Isolated cryptographic operations (OBMI).
OBMI securely uploads the secret key into the GPU cache
in an on-demand fashion.

3. OBMI includes mechanisms for checking the integrity of the
accelerated GPU code.We propose a code-verificationmecha-
nism to guarantee that only reliable code can utilize the GPU
device for cryptographic key-related operations.

4. We implemented a prototype using a commodity Nvidia GPU.
Our evaluation shows that OBMI incurs minimal perfor-
mance overhead and is scalable to multiple secret keys.

5. By exploring several possible attacks, we show the robust-
ness of OBMI. We demonstrate that our approach enables
secure operations on commodity GPUs without increasing
the TCB of the system or degrading its overall performance.

34 c om pu t e r s & s e cu r i t y 6 2 (2 0 1 6) 3 3 – 4 8

The rest of the paper is organized as follows. Section 2 dis-
cusses previous related works. Section 3 describes the
background for OBMI. Section 4 discusses a threat model and
the assumptions of this work. Section 5 gives an overview of
OBMI. Section 6 explains how the OBMI uploads the secret key
into the GPU cache. Section 7 shows how the OBMI guaran-
tees the integrity of the GPU program. Section 8 shows the
evaluation results of OBMI. Section 9 discusses several imple-
mentation issues, and Section 10 concludes the paper.

2. Related works

Several previous works exist for leveraging SMM. For example,
HyperCheck (Zhang et al., 2014) and HyperSentry (Azab et al.,
2010) are SMM-based systems that check the integrity of a
hypervisor. Malt (Zhang et al., 2015) is a debugging frame-
work that employs SMM to studymalware transparently. Several
introspection frameworks are also available that use SMM to
inspect the state of a system (Zhang et al., 2013) or device firm-
ware (Zhang et al., 2014).To the best of our knowledge, however,
no previous works have examined GPU security and the proper
utilization of SMM to realize it.

Besides SMM, several other hardware-assisted trusted ex-
ecution environments (TEE) are available. Intel developed
Trusted eXecution Technology (TXT) (Intel Corporation, 2013),
providing a secure way to establish system software such as
an OS or hypervisor through the Dynamic Root ofTrust for Mea-
surement (DRTM). AMD introduced similar technology, called
the Secure Virtual Machine (SVM) (Advanced Micro Devices,
2005). However, the performance loss incurred byTXT and SVM
are several orders of magnitude higher than the performance
loss from SMM (McCune et al., 2008). Recently, Intel also in-
troduced Software Guard Extensions (SGX) (Intel Corporation,
2014), a safe enclave for executing software. Although SGX
ensures a protected execution that is safe from malicious OS
kernels, it cannot be utilized to securely manage a GPU, because
SGX does not provide access control for I/O devices.TrustZone
(ARM, 2009) is a popularTEE widely deployed onmobile devices.
However, its underlying architecture is ARM, and almost all dedi-
cated GPUs are based on x86 architectures.

Several researchers inspected attacks and defense mecha-
nisms relating to cryptographic keys. The Heartbleed Bug
(Heartbleed), an OpenSSL vulnerability, facilitated memory-
disclosure attacks and exposed cryptographic keys stored in
systemmemory. Cold boot attacks (Halderman et al., 2009) allow
attackers to retrieve sensitive information within the RAM chips
by freezing them. To prevent cold boot attacks, AESSE (Müller
et al., 2010), TRESOR (Müller et al., 2011), and Amnesia
(Simmons, 2011) store AES keys exclusively in CPU registers.
PRIME (Garmany andMuller, 2013) and Copker (Guan et al., 2014)
are cold-boot-resistant implementations of the RSA algo-
rithm that leverage the CPU registers and caches, respectively.
Recently, Mimosa (Guan, 2015) utilized hardware transac-
tional memory to protect cryptographic keys from cold boot
attacks and memory disclosure attacks. Our proposal is sig-
nificantly different from these solutions in two important ways.
First, unlike the above solutions, we do not assume the integ-
rity of the OS kernel. Because a compromised kernel can easily
access the register or the cache within a CPU, all of the above

solutions are infeasible given a compromised OS kernel. Second,
these solutions focus exclusively on CPU computations, and
they cannot be extended to GPU-based cryptographic operations.

Recent research has leveraged hypervisor-based solutions
to isolate the program execution on untrusted operating
systems (Hofmann et al., 2013; McCune et al., 2010). Simi-
larly, hypervisor-based GPU virtualization can be used to isolate
the GPU (Suzuki et al., 2014; Tian et al., 2014) and GPU-
accelerated cryptographic operations. However, hypervisors
require a copious amount of code and are themselves vulner-
able to attack (CVE Details). Moreover, a recent study insists
that the performance degradation incurred by GPU virtualization
is considerable (Liu et al., 2015). Recent works (Sani et al., 2014;
Yu et al., 2015) have implemented a security kernel that iso-
lates the GPU from malicious access, offering protected GPU
functionalities such as a secure display (Yu et al., 2015) or graph-
ics computation (Sani et al., 2014). However, since this approach
entails rewriting the GPU driver within the security kernel, it
is inapplicable to Nvidia GPU devices that have not revealed
its GPU driver’s source code or CUDA platform, making it in-
feasible to modify and re-implement.

PixelVault (Vasiliadis et al., 2014) proposed a key-protection
mechanism utilizing GPU registers. Similar to our proposed so-
lution, PixelVault enables secure cryptographic operations even
with a vulnerable OS kernel. In order to utilize PixelVault,
however, the GPU must be dedicated to single cryptographic
operations.This significantly reduces the flexibility of GPU com-
putations and consumes considerable power. In addition, using
GPU registers to store cryptographic keys is impractical with
large keys due to its limited size. Moreover, GPU registers can
only be manipulated with scalar-type variables and cannot be
shared between different threads. This significantly increases
the complexity of GPGPU programming. However, unlike
PixelVault, we have utilized SMM and the GPU constant cache
to protect cryptographic keys while preserving efficiency and
programmability.

Other research has investigated GPU vulnerabilities (Lee
et al., 2014; Maurice et al., 2014; Miele, 2015; Pietro et al., 2016).
We analyzed every threat reported in this research in order to
confirm that the proposed mechanism efficiently protects GPU
acceleration even in presence of privileged malware.

3. Background

3.1. SMM

SMM (Advanced Micro Devices, 2013; Intel Corporation, 2016)
is a special operating mode for x86 CPUs originally designed
for system-management tasks such as power management and
system hardware control. For isolated execution environ-
ment, SMM supports two kinds of protection: temporal and
spatial protections. In terms of spatial protection, SMM sup-
ports the protected memory area, called SMRAM, to which only
SMMhas access. Normal tasks, including those of the hypervisor
and kernel, cannot access SMRAM.The latest commodity pro-
cessors support up to 4 GB of SMRAM, which is sufficient for
security-related purposes such as OBMI.

In terms of temporal protection, SMM supports exclusive
execution. When a special interrupt is called, all cores enter

35c om pu t e r s & s e cu r i t y 6 2 (2 0 1 6) 3 3 – 4 8

SMM and the SMI handler processes. However, all tasks running
in the cores are suspended at the same time.The state of each
task is automatically saved within the SMRAM. After the SMI
handler finishes, the saved states are restored and sus-
pended tasks are resumed. In addition, all of the caches are
flushed when entering and exiting SMM.There are no shared
resource between tasks in SMM and normal tasks. With ex-
clusive execution, the SMI handler cannot be interrupted from
other tasks, including the kernel and hypervisor.

3.2. GPU architecture and memory hierarchy

The overall architecture for a general Nvidia GPU is shown in
Fig. 1.We assumed a dedicated GPU on the grounds that these
are more common and suitable for high performance compu-
tations. The GPU consists of hundreds of processing cores
compartmentalized by several streamingmultiprocessors (SMs).

Each SM contains multiple execution units (known as CUDA
cores or stream processors), scheduler units, registers, and
caches. GPU devices contain dedicated DRAMmemory, and they
are controlled through multiple on-chip memory controllers.
Massive amounts of data can be transferred between the device
memory and the host memory using DMA or MMIO (Fujii et al.,
2013).

To enable general-purpose processing on a GPU,Nvidia offers
a programming environment called CUDA. In this paper, we
utilize the CUDA framework for cryptographic operations on
GPUs. Further, we used an Nvidia GPU, a dedicated GPU, for the
prototype implementation.

During the execution of the CUDA program, the GPU device
concurrently executes the same GPU code (called the GPU
kernel), for a vast number of GPU threads.Themulti-granularity
of the GPU software abstractions is shown in Fig. 2, along with
the respective GPU hardware units.The GPU block is a unit for
scheduling thread chunks. The GPU blocks are distributed
among SMs, and each SM executes only a single GPU block at
a time.Within an SM, a chunk of GPU threads is divided into
several warps. A warp is the basic unit of execution in an SM,
consisting of 32 threads and executed with the same instruc-
tion in lockstep. By scheduling multiple warps within a single
SM, GPGPU can hide memory latency, thus maximizing the uti-
lization of the processing cores.

Nvidia CUDA offers multiple memory regions with unique
characteristics for distinct purposes.There is both on- and off-
chip memory for GPUs, as shown in Fig. 1. On-chip memory
includes the register and shared memory, whereas off-chip
memory includes local, global, constant, and texture memory.
Recent research shows that the device memory of GPUs is
subject to severe security problems that risk information leakage
(Lee et al., 2014; Pietro et al., 2016). This is because the device

Fig. 1 – GPU architecture and memory hierarchy.

Fig. 2 – GPU abstraction.

36 c om pu t e r s & s e cu r i t y 6 2 (2 0 1 6) 3 3 – 4 8

memory can be easily accessed by a host process throughMMIO.
Moreover, GPUs are vulnerable to timing attacks that exploit
the inappropriate flush timing of the data in each memory
region. The lifespan of the variables stored in GPU memory
regions (e.g., shared memory, off-chip memory) might exceed
the lifespan of the GPU kernel. In this way, the subsequent GPU
kernel can retrieve sensitive information from the previous GPU
kernel (Lee et al., 2014; Pietro et al., 2016).

With the Fermi architecture (Wittenbrink et al., 2011), the
GPU device adds a data cache consisting of dedicated per-SM
cache and per-GPU shared cache, generally referred to as the
L1 and L2 cache, respectively. The L1 cache is located within
each SM, and used exclusively by each SM. The L2 data cache
is utilized by all SMs, and is much larger than the L1 cache.
Texture memory and constant memory also have their own
cache (Nvidia Corporation, 2015; Wong et al., 2010).

Unlike off-chip memory or shared memory, data in caches
have the same lifespan as a GPU kernel.When the GPU kernel
terminates, the cache invalidates its content such that next
GPU kernel can fill it again with off-chip data through cache
misses. Unlike GPU device memory, there is no explicit way
to access or manipulate the GPU cache. As a result, the host
process or subsequently launchedmalicious GPU kernel cannot
access the data content that is stored and used within the GPU
cache.Thus, we leverage the cache to provide safe key storage
and cryptographic operations on a GPU.Although a recent pro-
posal (Lee et al., 2014) warns of attacks that can retrieve the
content within the data cache for global memory, we utilize
only constant cache, which is not vulnerable to such attacks.

3.3. GPU device control

The kernel and GPU drivers have the important role of man-
aging and controlling the GPU device, and use the Peripheral
Component Interconnect Express (PCIe) standard to interface
with it. For Nvidia GPUs, the details for controlling the GPU
device with the GPU driver are not documented or exposed,
but the GPU driver uses an I/O port or MMIO to access and
control the GPU device in the same manner as an ordinary I/O
device does. In the reverse-engineering community, consider-
able effort has revealed the internal mechanism of Nvidia GPUs
(Envytools; Nouveau). Based on this, an open-source GPU driver
for Nvidia, named nouveau, has been released as an official
Linux kernel module. Nouveau is limited in terms of perfor-
mance (Larabel, 2014) and functionality (e.g., nouveau does not
provide support for CUDA), but the efforts devoted to reverse
engineering the proprietary driver have uncovered pertinent
information regarding the underlying hardware mechanism.
The reverse-engineering community enlisted several low-
level channels for accessing the GPU device memory, and we
leveraged one of these channels for our bootstrapping
mechanism.

4. Threat model and assumption

An attacker can manipulate the host memory using various
memory-disclosure attacks by exploiting a vulnerability in the
software (Heartbleed) or through direct memory access (DMA)

(Blass and Robertson, 2012). We assume that an attacker can
compromise the operating system and execute arbitrary privi-
leged code. In this situation, the attacker can modify any CUDA
program or cryptographic key, provided that these are located
within the host memory. Moreover, malicious users can alter
the CUDA API or GPU driver, such that the integrity and con-
fidentiality of GPU executions operated by the GPU driver cannot
be guaranteed.

As described in the Section 3 and in previous works (Lee
et al., 2014; Maurice et al., 2014; Pietro et al., 2016), the GPU
memory region is vulnerable to malicious MMIO access or
timing attacks. Content in the GPU register can also be exposed
to the device memory through a register-spilling mechanism
(Micikevicius, 2011). Since an attacker with kernel privileges
can easily exploit these vulnerabilities, we aim to provide a
defense mechanism resilient to such vulnerabilities.

By utilizing SMM, we implement a small trusted code,
namely the SMI handler, to manage cryptographic keys and
operate our bootstrapping mechanism.We exclude the kernel
and GPU driver from the TCB.This way, the TCB includes only
the BIOS and the underlying hardware, as shown in Fig. 3.
During the boot sequence, the SMI handler is installed through
the BIOS, and the integrity of the BIOS can be verified withTPM-
based attestation. We assume the existence of external
administration station, which is responsible for managing im-
portant credentials. We also assume that a trusted system
administrator will obtain the master key from the external ad-
ministration station during the secure booting sequence. After
this secure boot, the master key is securely stored within the
SMRAM, and it can be leveraged to create a secure channel
between the SMI handler and the external administration
station.

In this paper, we do not deal with data confidentiality or
data integrity. We assume that the data are stored and pro-
cessed within the device memory and that it can be exposed
to the attacker. Although it is also possible to secure the data
using an additional cryptographic key, we have focused on a
mechanism for protecting the cryptographic key and GPU
kernel. Moreover, we ignore denial-of-service attacks. Our
mechanism does not guarantee the availability of the GPU
device or cryptographic operations.

We do not consider physical access to the machine by a ma-
licious user. Attackers with physical access might be capable
of subverting the SMRAM with a cold boot attack. This issue
is orthogonal to our bootstrapping mechanism, and such an
attack on the SMM is beyond the scope of this paper. Subvert-
ing the firmware of the device (Zaddach et al., 2013) is another

Fig. 3 – Trusted component diagram.

37c om pu t e r s & s e cu r i t y 6 2 (2 0 1 6) 3 3 – 4 8

attack vector. However, we exclude such attacks in this paper,
because the capability of GPU firmware has not yet been suf-
ficiently explored. Furthermore, the recent GPU model offers
a security mechanism to protect the GPU firmware from ma-
licious behavior (Falcon Security).

5. Design overview

In general, OBMI controls the GPU in two different ways, as
shown in Fig. 4. By using the CUDA APIs, OBMI can utilize the
GPU with various API functions in the samemanner as a typical
GPGPU program. However, security-related tasks cannot be un-
dertaken in this manner, because attackers can compromise
the CUDA APIs or device driver with a vulnerable OS kernel.
To control the GPU device securely, we suggest an additional
channel operated in SMM and triggered by the SMI. Any user
application can trigger the SMI through OBMI’s library. In this
way, users can launch secure cryptographic operations on com-
modity GPU devices. The main proposed component of our
solution is the SMI handler, which safely manages the secret
key and initiates the necessary GPU kernel in SMM.

5.1. Using the GPU device driver

The first step of our bootstrapping mechanism for securing GPU
devices involves the proprietary GPU driver, which has a ver-
satile API for GPGPU. In the case of the Nvidia GPU, for example,
various CUDA APIs exist, allowing users to easily manipulate
GPU resources. These CUDA APIs provide an easy and effi-
cient way to control the underlying GPU for our bootstrapping
mechanism. OBMI delegates several security-unrelated tasks
to the CUDA APIs and the underlying proprietary GPU driver.
Before accelerating cryptographic operations on the GPU, several
ordinary tasks must be completed. These tasks are not di-

rectly related to cryptography, but they are essential to GPGPU
acceleration. First, the required GPU control structures must
be allocated, along with the necessary device memory. More-
over, data must be copied to the device memory, and the GPU
kernel must be assigned to the GPU device in order to launch
it using a command queue. We leverage the proprietary GPU
driver without any modification, and efficiently process all of
the above tasks.

5.2. User library interface

Any user application requiring the secure acceleration of cryp-
tographic operations can initiate our bootstrapping mechanism
through the OBMI library interface.When the proprietary GPU
driver properly initializes all GPU resources, the library trig-
gers the SMI, which changes the CPU execution mode to SMM,
such that the security-related tasks for our mechanism can be
accomplished. In SMM, OBMI uploads the necessary secret key
for cryptographic operations into the GPU device, which are
initially stored in SMRAM, as shown in Fig. 4.Although the OBMI
library can be altered maliciously, all sensitive data are ma-
nipulated only in SMM. Therefore, no security vulnerabilities
exist.

5.3. Key-protected execution

The proposed SMM-based bootstrapping mechanism can se-
curely upload the secret key into the GPU cache that the host
cannot access. However, it is useless if the GPU kernel has been
compromised when it utilizes the uploaded secret key. More-
over, instructions for the GPU kernel are located in the GPU
device memory, to which the host has access. Thus, a mali-
cious GPU code-injection attack is possible during GPU
acceleration. In order to guarantee the integrity of the GPU
kernel and prevent such an attack, we also leverage SMM to
safely isolate the authenticated GPU kernel within the GPU in-
struction cache. As a result, OBMI allows only two kinds of
authenticated programs access to the secret key: the SMI
handler, and an authenticated GPU kernel. We discuss this
mechanism in detail in Section 7.

The GPU kernel and secret key uploaded by the SMI handler
are stored within the instruction cache and the constant cache,
respectively. However, because the GPU cache is a hardware-
managed structure, there is no way to control internal cache
operations such as evictions of cache lines. Fortunately, we
observe that the GPU cache is organized such that each dif-
ferent memory type uses its own dedicated cache structure.
Instructions for the GPU are thus cached in a dedicated in-
struction cache that is sufficiently large to store the GPU
program and implement various cryptographic operations
(Vasiliadis et al., 2014). Moreover, constant memory in the GPU
has its own dedicated cache (Wong et al., 2010).We show that
the constant cache and instruction cache can store all codes
and secret keys for cryptographic operations such as RSA or
AES.

After the GPU kernel code and secret key are uploaded, the
GPU begins its acceleration, and the CPU exits from SMM.During
the GPU acceleration of these cryptographic operations, the CPU
can execute any arbitrary malicious code and even access the

Fig. 4 – Diagram of the overall design of the proposed
solution.

38 c om pu t e r s & s e cu r i t y 6 2 (2 0 1 6) 3 3 – 4 8

GPU device memory. However, attackers doing so cannot obtain
any sensitive information, because the SMI handler clears every
footprint of the GPU kernel and secret key in the device memory
before returning from SMM. The security analysis in Section
8.3 shows that the proposed OBMI mechanism successfully pre-
vents the key from being exposed through several possible
attacks. After the cryptographic operation ends and the GPU
kernel terminates, the user applications can copy the result-
ing data from the device memory using the CUDAAPI. However,
the cache-uploaded secret key and GPU kernel are automati-
cally invalidated, such that the attackers are unable to access
them.

5.4. Pre-bootstrapping key management

The main focus of our paper is the key-protection mecha-
nism during the GPU acceleration of cryptographic operations.
However, the key must be properly managed before the ac-
celeration for complete key protection. For this purpose, we
leverage the SMRAM and SMI handler in order to perform key
management operations safely.

First, we provide a dynamic key-generation API through the
OBMI library to generate new cryptographic keys. For this
purpose, we implement a pseudo-random function based on
SHA256 within the SMI handler.When the SMI handler is called,
it returns the key index and stores the newly generated key
within the SMRAM. Then, user applications can request any
cryptographic operations by pointing out the index of the key.
These are only used for limited session time, after which they
are securely destroyed by the SMI handler.

In modern cryptography, a cryptographic protocol utilizes
a temporary session key. In a protocol such as SSL/TLS, several
session keys are newly generated during the handshaking pro-
tocol. In the evaluation (Section 8), we show that the SMI
handler can also be utilized to provide an efficient and secure
key-generation process.

Unlike temporarily used session keys, some secret keys, such
as RSA keys,might require long-term secure storage (e.g., across
a power cycle). In order to support this kind of secret keys, we
assume an external administration station in which any cre-
dentials requiring long-term protection are stored.We can also
establish a secure channel between the external station and
the SMI handler using a master key obtained during secure
booting, as described in Section 4. Using the secure channel,
credentials initially stored in the external station can be de-
ployed into the SMRAM, such that OBMI can utilize them for
accelerated cryptographic operations.

6. Bootstrapping the secret key

In this section, we describe how the GPU cache can be used
as a safe place for the secret key. Then, we explain how the
secret key is uploaded to the GPU cache in an on-demand
fashion.

6.1. Constant cache: safe key storage within GPUs

To perform cryptographic operations, the cryptographic key
should be stored where the GPU program can access it. Global

memory and shared memory are the most common places to
store variables, but they are inappropriate for storing private
keys, owing to the security flaws discussed in Section 3.

Registers can be used to store private information, and
PixelVault has already shown that GPU registers can be used
for storing cryptographic keys (Vasiliadis et al., 2014). However,
when registers are used to store keys, every single thread should
preserve a sufficient number of registers to store the keys,
because registers are allocated to each thread independently
and cannot be shared among different threads. This risks in-
curring a significant degradation in performance, because
registers have a limited capacity for each multiprocessor. More-
over, it is impossible to leverage a register for key storage when
the key size is large. For example, the total key size with our
implementation for RSA decryption is 1024 bytes.This exceeds
the register limitation per thread – i.e., 63 32-bit registers per
thread – on CUDA Compute Capability 2.0.

The GPU cache is a protected space in which (i) no pro-
grams running on the CPU can access the cache; and (ii) all
content in the cache is inaccessible when the GPU kernel fin-
ishes. Thus, we can use the GPU cache as a private key
container, provided that we can safely establish the key in the
cache and delete any remaining footprints in the device
memory. One problem with using the cache as a key con-
tainer is that the internal hardware mechanism controls the
cache-replacement policy, making it difficult to ensure that the
key will remain in the cache indefinitely without eviction. For-
tunately, constant memory (i.e., memory space for constant
variables declared with the type qualifier “__constant__”) uti-
lizes a dedicated cache that is separate from other data caches
(Cheng et al., 2014; Nvidia Corporation, 2015). Consequently,
when programmers use the constant memory exclusively for
the secret key, the GPU constant cache can be used as a key
container that avoids the problem of cache eviction.

6.2. On-demand key-uploading process

One of the requirements for the secure key-uploading process
is the guarantee that no malicious process, including the OS
kernel, can interrupt the process. To achieve this require-
ment, we use the SMI handler to guarantee that the entire
process takes place in SMM. However, even though the SMI
handler has the highest privilege among CPU programs, writing
data to the GPU cache is unavailable. Therefore, to write the
secret key onto the GPU cache, we use both the SMI handler
and an authenticated GPU kernel.The overall process is shown
in Fig. 5. First, the SMI handler reads the secret key from the
SMRAM. The SMI handler then copies it to the GPU constant
memory using MMIO. To fill the GPU constant cache with the
secret key, the GPU device executes an authenticated GPU device
code that performs read operations on the secret key. Finally,
the SMI handler removes the remaining key footprint in the
GPU device memory. Because the constant memory is unsafe,
all steps are executed in SMM, with the exception of Step 1.

The stub GPU code depicted in Fig. 5 includes nothing other
than a loop that waits for the copy of authenticated GPU code.
The detailed mechanisms related to injecting and executing
authenticated GPU code are described in the next section.
Briefly, the GPU driver launches the stub GPU code in normal
CPU mode.This stub code exists merely to initialize the CUDA

39c om pu t e r s & s e cu r i t y 6 2 (2 0 1 6) 3 3 – 4 8

kernel. By launching the stub GPU code with the CUDAAPI and
leveraging the GPU code-injection mechanism described in
Section 7.1, we can easily execute arbitrary GPU code even in
SMM without any re-implementation of the GPU driver.

After validating the authenticated GPU code (Steps 1 to 3,
described in the Section 7), the SMI hander uses MMIO to
perform the first copy operation (Step 4). To write the secret
key to the constant memory, the exact memory address is
needed. Fortunately, we can locate the physical address for the
device memory, because it is fixed for constant data.We imple-
mented RSA and AES cryptographic algorithms to determine
whether the cryptographic keys are always stored in same
physical address in device memory. The results showed that
the cryptographic keys are spread throughout the device
memory, as shown in Fig. 6, and their locations are always the

same. The static behavior of constant memory derives from
the non-preemptive execution model of modern GPUs. This
means that only a single program utilizes the entire GPU device
memory. Moreover, unlike the sophisticated memory manage-
ment of the OS with CPU memory, it is presumed that GPU
device manages device memory with simple memory
virtualization, optimized for accelerating a single program.The
deterministic property of the constant memory allows us to
update its content with simple MMIO operations. We lever-
aged the PRAMIN region within the GPU MMIO region, which
maps a 1 MB segment of the device memory (Maurice et al.,
2014; Nouveau). Each device memory region, including the con-
stant memory, can be acquired through PRAMIN by setting its
base address through MMIO.

Next, the secret key is uploaded into the constant cache by
executing the authenticated GPU code (Step 5). The authenti-
cated GPU code is implemented in a way to access each piece
of the secret key, thus filling the constant cache with the secret
key through the cold cache miss. In our prototype, this au-
thenticated GPU code executes cryptographic operations such
as RSA or AES. In doing so, the authenticated GPU code uploads
both the secret key and the GPU code itself into the GPU caches.
After this uploading process, the authenticated GPU code within
the cache benignly executes cryptographic operations lever-
aging the secret key isolated in the constant cache.

The size of the GPU constant memory is 64 KB, and the size
of the GPU constant cache is smaller.The GPU device has mul-
tiple levels of the constant cache, and their sizes are 2 KB, 8 KB
and 32 KB for the L1, L2, and L3 caches, respectively (Wong et al.,
2010). One thing to consider is that the L2 and L3 caches are
shared with instruction memory (Wong et al., 2010). Thus, we
need to test whether the secret key is evicted during the ex-
ecution of GPU code when the total size of the secret key
exceeds 2 KB, the size of L1 constant cache. Cryptographic op-
erations with a single key do not present a problem, because
both RSA and AES use a key size of 1024 bytes and 176 bytes,
respectively. However, when cryptographic operations withmul-
tiple keys are needed, the limited size of the L1 constant cache
is potentially problematic. For AES, this can be especially dis-
advantageous, since AES operations with multiple keys are
common.To evaluate the scalability of our mechanism, we ex-
perimented with various numbers of AES keys. Our evaluation
shows that the key is evicted only when the total size of the
key exceeds 47,520 bytes.This result indicates that we can safely
accelerate AES with multiple keys up to 270.Therefore, the pro-
posed mechanism is scalable to multiple keys.

7. Bootstrapping program: running
authenticated GPU code

In this section, we describe the bootstrapping process for the
authenticated GPU kernel. Executing authenticated GPU code
is a prerequisite for bootstrapping the secret key, as de-
scribed in the previous section. Moreover, the integrity of the
GPU kernel must be ensured in order to protect crypto-
graphic keys during accelerated cryptographic operations. Using
the proposed mechanism, we can securely execute arbitrary,
authenticated GPU code without any tampering. This is

Fig. 5 – Bootstrapping process. Step (1): the GPU driver
initially executes a simple GPU stub code. Step (2): the SMI
handler injects an authenticated GPU code into the GPU
device memory. Step (3): the SMI handler verifies that the
injected GPU code is running. Step (4): the SMI handler
copies the secret key from SMRAM to the GPU constant
memory. Step (5): the GPU executes the injected GPU code
such that it fills the GPU constant cache with the secret key.
Step (6): the SMI handler removes the footprint of the
secret key in the GPU constant memory.

Fig. 6 – Memory layout for the secret key.

40 c om pu t e r s & s e cu r i t y 6 2 (2 0 1 6) 3 3 – 4 8

possible because we upload the entire code into the GPU in-
struction cache in SMM.

The main challenge to bootstrapping the GPU kernel is to
securely upload the entire code into the instruction cache.
Whereas the SMI handler can securely upload the GPU kernel,
it lacks the functionality to initiate any GPU kernel, because
OS and GPU drivers are suspended in SMM. To resolve this
problem, we leverage the ordinary GPU driver in normal pro-
tected mode. Before triggering the SMI handler, we first execute
the GPU program, which contains only the while-loop as a stub
GPU kernel. Then, a GPU code-injection mechanism safely
injects the authenticated GPU kernel code into the running stub
GPU kernel in SMM. Indeed, GPU memory allocation is deter-
ministic, insofar as the same program always allocates the code
to the same location.This makes it possible for the SMI handler
to append the additional code – e.g., the cryptographic opera-
tion – by accessing the GPU device memory with MMIO
operations.

In the remainder of this section, we detail the mecha-
nisms for executing the authenticated GPU kernel. First, we
describe the on-demand code-injection mechanism for the au-
thenticated GPU kernel. Then, we discuss how it can be
determined that the GPU device correctly executes the au-
thenticated GPU kernel, rather than a malicious GPU kernel.

7.1. Injecting the authenticated GPU kernel

To simplify the code injection, we create the authenticated GPU
code in advance rather than generating it dynamically. First,
a complete GPU program is implemented. This program in-
cludes both the CPU implementation for resource-management
tasks and the GPU kernel for cryptographic operations. Then,
we can extract from the GPU kernel binary all instructions
related to cryptographic operations. Consequently,we can obtain
the collection of code fragments that are later injected.When
extracting these code fragments, their exact locations within
the GPU instruction memory must be noted, such that we can
inject them into the correct location later. These locations are

discovered simply by running the GPU kernel, because their
locations are always same whenever the same GPU kernel is
executed.

Both the implementation of the GPU program and the ex-
traction of the code fragments should be performed in a safe
place, such as an external administration station. After the ex-
traction, we simply nullify the extracted portion of the original
binary, leaving only the stub GPU code in the GPU kernel. As
shown in Fig. 7, we distribute the GPU program containing the
nullified GPU kernel to the host, where the cryptographic op-
erations will be performed. This distribution does not require
a secure channel, because it does not distribute any security-
sensitive code.When the host calls the OBMI library function,
the GPU driver copies the GPU kernel, filled with nullified code,
into the device memory and initiates it. Even after nullifying
the part of the GPU binary, it can be launched using the CUDA
API.

Unlike the nullified GPU binary processed by the above op-
erations, the extracted fragments must be secured. As
mentioned above, the authenticated GPU kernel should pre-
serve its integrity for key-protected execution. In addition to
integrity, wemust also protect confidentiality in order to prevent
more sophisticated attack, such as those described in Section
8.3.Thus, we introduce a symmetric master key used to create
a secure channel between the SMI handler (i.e., SMRAM in the
figure) and the external station.The external station copies the
master key into the SMRAM during secure boot sequence. As
a result, the extracted fragments can be distributed through
the secure channel while preserving both integrity and
confidentiality.

When the external station deploys the code fragments into
SMRAM, the OBMI library can demand that the SMI handler
injects them into the GPU instruction memory. After the nul-
lified GPU kernel is successfully launched by CUDAAPI, the SMI
handler overwrites the instruction memory with the ex-
tracted code fragments – i.e., the authenticated GPU code. As
previously mentioned, we can pre-calculate the exact loca-
tion in advance, making it easy to fill the nullified GPU

Fig. 7 – Flow diagram for the on-demand injection mechanism for authenticated GPU code. The attacker can only see the
nullified GPU binary in the host or device memory.

41c om pu t e r s & s e cu r i t y 6 2 (2 0 1 6) 3 3 – 4 8

instructionmemory with the extracted code fragments in SMM.
The SMI handler injects that portion into the nullified GPU
binary using memory-copy operations through MMIO.

The remaining task is to upload the entire GPU kernel with
the injected portion into the GPU instruction cache. In order
to do so, we simply execute each instruction in the GPU kernel.
We can minimize the performance overhead by preventing du-
plicated executions of the same code. For example, we can
minimize duplicated function calls, or enforce loop codes to
execute only a single loop. Such optimizations of the code are
only adopted during the bootstrapping process. Finally, to pre-
serve the confidentiality of the authenticated GPU code, we
remove the code footprint on the device memory before exiting
SMM.

7.2. GPU program verification

Although we can securely inject the authenticated GPU kernel
in SMM, amalicious GPU kernel might nevertheless be launched
before the transition to SMM. In such a case, the malicious GPU
kernel could bypass the authenticated code injection, and read
the secret key as soon as the SMI handler uploads it. It could
then write the key into the CPU memory and retrieve it after
exiting from SMM. To prevent this from happening, we de-
signed a verification process for code integrity. In other words,
we only allow the SMI handler to upload the secret key into
the device memory when the SMI handler verifies that the GPU
has correctly executed the authenticated GPU kernel.These op-
erations are sequentially described in Fig. 5.

In order to verify the GPU kernel executed by the GPU device,
a simple validation number written by the authenticated GPU
code is used. The validation number is hardcoded at the be-
ginning of the authenticated GPU code, and it is written into
the device memory as soon as the authenticated GPU code ini-
tiates.The SMI handler reads the number, and checks its validity.
If the number is invalid, the SMI handler does not upload the
secret key and terminates the bootstrapping process; other-
wise the bootstrapping process continues normally. In either
case, the SMI handler removes any footprint of the validation
number within the device memory, along with the GPU
instructions.

A CPU process cannot acquire this validation number,
because no process other than the SMI handler can run in SMM.
Therefore, if the above verification step is successfully com-
pleted, and the entire authenticated GPU code is uploaded into
the instruction cache, only authenticated GPU code will be ex-
ecuted during accelerated cryptographic operations.

8. Evaluation

8.1. Implementation

In order to evaluate our mechanism, we developed a proto-
type running on a commodity CPU and GPU.We implemented
our bootstrappingmechanismwithin the SMI handler.To install
our SMI handler, we used coreboot (Coreboot), an open-source
BIOS. With coreboot, we can manipulate the BIOS of x86 ar-
chitectures andunlock the SMRAM region.As a testbed,we used
an AMD processor (1.6 GHz, dual-core) and Nvidia GTX 480.

To adopt our mechanism for common GPU cryptographic
operations, we developed a CUDA version of RSA andAES based
on recent GPU proposals (Harrison andWaldron, 2009; Manavski,
2007).We leveraged the Chinese RemainderTheorem (CRT) and
the Constant Length Nonzero Windows (CLNW) partitioning
algorithm (Koc, 1995) to reduce the number of exponentia-
tion operations with RSA decryption. In addition, we exploited
the Montgomery multiplication technique (Montgomery, 1985)
to improve the efficiency of these exponentiation operations.
Because these optimization techniques require additional struc-
ture, the total size of the key in our RSA-1024 decryption
implementation was 8192 bits (i.e., 1024 bytes). For AES, we
implemented CBCmode and assumed a 128-bit symmetric key.
For security, every round key of AES should be protected, such
that the total size of the secret key increases to 176 bytes.We
ensured that the GPU executed all RSA and AES operations,
and that the CPU merely copied data.

8.2. Performance evaluation

We measured the latency incurred by the proposed mecha-
nism, and the results are shown in Table 1.We measured the
execution time for each step of our bootstrapping mecha-
nism during the acceleration of RSA andAES.The results shown
are the average after 10 runs. The time for SMM transition in-
cludes both entering and exiting SMM. We measured this
latency by implementing an empty SMI handler that ex-
ecutes a resume instruction (RSM) directly. As the input data
for cryptographic operations, we generate 15 requests for small
workload and 3920 requests for large workload.

The results show that the additional latency required by our
bootstrapping mechanism is relatively small, compared to the
overall execution time needed for cryptographic operations.We
observed the most significant latency when the GPU cache was
filled. However, its latency is still significantly low, compared
to the latency from the cryptographic operations. This is due
to the optimization techniques we employed, as described in
Section 7.1. Even though the same code was executed for both
tasks, we efficiently minimize the latency for the security-
related step (i.e., filling the GPU cache) by avoiding the
duplicated execution of the code.

The copy tasks with the authenticated GPU kernel also in-
curred some latency for both RSA and AES. Specifically, RSA
needed 264.3 µs, which is considerably longer thanAES (44.4 µs).
This is due to the difference in code size, which was 22.24 KB
for RSA and 4.27 KB for AES.

Table 1 – Latency breakdown for bootstrapped
cryptographic operations.

Task Latency in µs

RSA AES

SMM transition 170.8 170.8
GPU code copy 264.3 44.4
GPU code validation 31.0 30.9
Secret key copy 28.8 18.9
Filling GPU cache 2,629.9 43.4
Deletion of sensitive information 35.7 17.8
Cryptographic operations – small workload 56,622.7 103.3
Cryptographic operations – large workload 119,780.6 15,391.7

42 c om pu t e r s & s e cu r i t y 6 2 (2 0 1 6) 3 3 – 4 8

When deleting sensitive information, the SMI handler over-
writes the secret key located in the device memory with a zero
array. All instructions relating to the GPU code validation
number are also overwritten, in order to preserve its confi-
dentiality. Owing to the relatively small size of these structures,
they incurred nominal latency.

The percentage of overall latency with our bootstrapping
mechanism is also minimal. For large workloads, the overall
latency of cryptographic operations increased by 2.9% and 2.7%,
for RSA and AES, respectively. This shows that our mecha-
nism is a low-cost solution for securing a GPU. Moreover, our
mechanism rarely affects the performance of the host process,
because SMM is used for only a short time,while assigningmost
computations to the GPU.

Figs 8 and 9 show how the throughput changes with our
bootstrapping mechanism.We tested various request sizes and
compared the throughput with a baseline, labeled “without
bootstrapping”. The baseline was established by simply accel-
erating cryptographic operations without any security measures
proposed. When calculating the total execution time, we ex-
cluded the overhead imposed by data copying in order to
measure the precise impact of our mechanism on crypto-
graphic operations. As shown in the figure, our mechanism
incurred negligible performance degradation for both RSA and
AES. For RSA, the largest degraded throughput showed 95% of
the baseline throughput. For large input data, up to 98% of the
baseline performance was obtained. As the amount of input
data increased, the overhead from bootstrapping dimin-
ished, because our bootstrappingmechanism incurs only a fixed
amount of latency, and this is independent of input data size.
The result of AES is similar to that of RSA, but resulted in a
much lower performance for small input data.This was mainly
due to the small computational latency of AES itself. AES re-
sulted in up to 24% throughput degradation for a small input
size.This implies that frequent requests for bootstrapping with
small input data might be ineffective, especially for crypto-
graphic operations requiring small computations.

In Fig. 10, we show how the performance of our bootstrap-
ping mechanism changes when the total key size varies. We
compared the overall throughput usingmultiple symmetric keys
for AES decryption.We tested the same number of ciphertexts,
2160 messages, for each experiments.We changed the number
of symmetric keys utilized, from 1 to 270.The results show that

the overall performance of our mechanism decreased as the
number of keys increased. This is mainly because the over-
head imposed by copying and deleting the key increased with
the number of keys. Moreover, the results of the crypto-
graphic operations became increasingly incorrect when we used
more than 270 keys, due to the limited cache capacity. Thus,
careful consideration is needed when the multiple secret keys
are leveraged.

Finally, Fig. 11 compares the running time of the key-
generation process. Our key generation algorithm expanded
the random initial vector to generate four 128-bit keys. We

Fig. 8 – Performance comparison for RSA decryption with
different numbers of requests.

Fig. 9 – Performance comparison for AES decryption with
different numbers of requests.

Fig. 10 – Normalized performance for AES decryption with
multiple secret keys.

Fig. 11 – Performance comparison of different CPU modes
for key-generation process.

43c om pu t e r s & s e cu r i t y 6 2 (2 0 1 6) 3 3 – 4 8

implemented a key-expansion mechanism using a pseudo-
random function based on SHA256.We used the same algorithm
in protected mode and SMM.The results show that SMM does
not incur any more performance overhead than the pro-
tected mode. As a result, OBMI can implement a safe key-
generation mechanism in SMM, enabling the implementation
of a full protocol such as SSL, without any performance loss.

8.3. Security analysis

In this section, we discuss several possible attacks on a GPU
and how our mechanism protects sensitive information from
such attacks.

8.3.1. Modification of the GPU driver or library
When an OS kernel is compromised, attackers can modify the
GPU driver or CUDA API to inject malicious code. Moreover, at-
tackers might alter the OBMI library as it is exposed to the user
memory space. Although such a maliciously modified library
or driver code might be inadvertently executed, this would not
result in a security breach. This is because OBMI decouples
security-related tasks from the ordinary GPU abstraction layer.
We assign only security-unrelated tasks, such as GPU re-
source allocation, to the ordinary GPU driver or user-level library.
Security-related tasks are exclusively handled by the SMI
handler, and thus protected within SMRAM.

8.3.2. Malicious GPU kernel
Our bootstrapping mechanism leverages the user-level CUDA
driver to launch the nullified GPU kernel, as shown in Fig. 7.
Because the nullified GPU kernel is exposed in normal system
memory, attackers might replace the GPU kernel with a ma-
licious GPU kernel. In this case, the malicious GPU kernel can
obtain any information while it operates within the GPU device,
even in SMM. To prevent such malicious actions, we intro-
duced the verification mechanism discussed in Section 7.2.This
mechanism uploads the secret key into the GPU device memory
only when the GPU kernel has been successfully verified. More-
over, SMRAM cannot be accessed by the GPU kernel, and this
prevents a malicious GPU kernel from accessing the secret key.

It is possible for a malicious GPU kernel to attack the veri-
fication mechanism directly.That is, a GPU kernel might modify
the uploaded authenticated GPU kernel, or even the valida-
tion code itself. However, based on our experiments, the GPU
kernel cannot modify GPU instruction memory. To the best of
our knowledge, memory operations on the code region are im-
possible for device code.As a result, our authenticated GPU code
and verification mechanism are safe from a malicious GPU
kernel.

With the Fermi architecture (Wittenbrink et al., 2011), dif-
ferent kernels can be simultaneously launched in order to
maximize GPU resource utilization. In this case, a malicious
kernel might be executed concurrently with our authenti-
cated GPU code.To prevent this from happening, the GPU block
index is checked during the verification process. By checking
the total number of validated GPU blocks, we can determine
whether all SMs are allocated to authenticated GPU code.
Because each SM can only execute a single GPU block, and
because there is no way to halt individual GPU blocks, we can

guarantee that the entire GPU is dedicated to our authenti-
cated GPU kernel.

8.3.3. GPU code-injection attack
GPU instructions are located within the GPU device memory,
to which attackers with kernel privileges have access. With
MMIO operations, attackers can inject malicious GPU code that
contains commands for accessing the GPU constant cache and
writing the secret key to device memory. However, GPU code
injection does not affect the bootstrapped GPU execution,
because all instructions are uploaded into the GPU instruc-
tion cache. We restricted the size of the authenticated GPU
kernel to less than the GPU instruction cache, such that the
GPU device never references the instruction memory.

However, there might be a way to flush the GPU instruc-
tion cache in order to facilitate a GPU code-injection attack.
When attackers can flush the GPU instruction cache after in-
jecting the malicious code, the injected code will be executed.
Since the GPU device can be controlled by malicious MMIO
operations, we investigated MMIO documents from the reverse-
engineering community (Envytools; Nouveau) to find cache-
related MMIO operations.We have tested every MMIO operation
containing “flush” in its name, and none of them flushes the
instruction cache. To the best of our knowledge, the only way
to flush the GPU instruction cache is to restart a new GPU
kernel. In this case, any secret keys in the constant cache will
also be flushed.

8.3.4. GPU instruction cache poisoning attack
Although there is no way to directly manipulate the GPU in-
struction cache, it might be possible to fill the cache with
malicious code, using the same process that we used to fill the
cache with authenticated code.When a malicious user fills the
GPU instruction cache before the bootstrapping process begins,
the authenticated GPU code might be compromised.

However, this sophisticated attack can be prevented by im-
proving our verification mechanism (see Section 7.2). One way
to do so is simply to hide the entire authenticated GPU code
by deleting it before exiting SMM. Because the authenticated
GPU code is uploaded in SMM, and because a malicious GPU
kernel cannot retrieve the GPU code, as explained above, at-
tackers cannot retrieve any part of the authenticated GPU code.
Using this property, we can extend our GPU verification process
to check for the results of the authenticated GPU code. As de-
scribed in Section 7, our bootstrapping mechanism executes
the entire authenticated GPU code and fills the cache with it.
If we modified the authenticated GPU code to use a random
validation number as input data, attackers could not mimic
the result of the authenticated GPU code. Consequently, we
could immediately detect malicious operations by checking the
result of the authenticated GPU code, if an attacker attempts
to modify any block of the cache. Because the cache block is
128 bytes in the GPU instruction cache, there is a negligible
chance of poisoning the cache without changing the result.
Moreover, no additional performance overhead would be in-
curred by this extended prevention mechanism, because the
SMI handler can concurrently execute this supplementary step
– i.e., deleting the entire authenticated GPU code – while the
GPU accelerates the cryptographic operations.

44 c om pu t e r s & s e cu r i t y 6 2 (2 0 1 6) 3 3 – 4 8

9. Discussion

9.1. Deployment process

To apply our proposal securely and successfully, several com-
ponents require a secure deployment process. First, the SMI
handler must be updated, and this requires either applying a
patch to the existing BIOS, or for manufacturers to imple-
ment our solution.

As shown in Fig. 7, a secure channel is needed in order to
deploy the authenticated GPU code. For this purpose, we utilize
the master key, which is located in both the SMI handler and
the external station. The master key is established during the
secure boot sequence. During the deployment of the GPU code,
the confidentiality should be preserved in order to prevent a GPU
cache poisoning attack of the kind described in Section 8.3.

The master key is also utilized for encrypting/decrypting
the authenticated GPU code. Because of this, we can store the
authenticated code within non-volatile storage in encrypted
form, and the SMI handler can decrypt its content whenever
the system reboots. As a result, the GPU code must be de-
ployed only once using a secure channel.

9.2. Unexpected cache behavior

When implementing OBMI, unexpected cache behavior should
be monitored, because OBMI leverages the GPU cache to store
the GPU code and secret keys. Because the cache is a shared
resource with a limited capacity, the secret key might be over-
written by other data accessing the cache.We avoid this problem
by stipulating that the secret key uses constant memory ex-
clusively. However, because the L2 and L3 constant memory
caches are shared with GPU instructions (Wong et al., 2010),
the large size of the GPU code can result in an unexpected cache
interference. In this case, either we should use fewer secret keys,
or we should reduce the size of GPU code. For example, we can
significantly reduce the code size by disabling an inline function.

This kind of code minimization is also needed when lever-
aging our solution for complex cryptographic operations. In the
case of RSA, a nave implementation results in a large GPU code
size (81.67 KB), which exceeds the capacity of the GPU instruc-
tion cache. Fortunately, the GPU code is reduced to 22.24 KB
after disabling the inline function.To prevent performance deg-
radation, we carefully selected a function to disable the inline
property.

Prefetching is unexpected cache behavior that should also
be considered. Because the GPU instruction cache supports an
instruction prefetching mechanism, our injection mecha-
nism can be affected in unexpected ways. Specifically, as the
stub GPU code awaits the injection of the authenticated GPU
code, a few bytes of nullified instructions can be prefetched
in advance in lieu of the authenticated GPU code. To prevent
this prefetching malfunction, we inserted a few dummy in-
structions ahead of the authenticated GPU code.

9.3. Unrevealed GPU hardware mechanism

Although we analyzed various attacks in the previous section,
other GPU attacks are possible based on unrevealed hard-

ware features in the GPU device. For example, a cache flush
attack can be leveraged with GPUMMIO, as discussed in Section
8.3, even though we confirmed that such attacks are cur-
rently non-existent. Similar attacks are nevertheless possible,
with unrevealed MMIO or GPU hardware mechanisms. To in-
vestigate the feasibility of such attacks, we encourage
researchers to actively analyze the internal GPU hardware and
control mechanisms.

9.4. Portability

Although our solution is based on the characteristics of GPU
hardware, we exclusively utilized general structures, such as
the instruction cache or constant cache. Dedicated constant
memory is utilized for all CUDA-enabled Nvidia GPUs, and a
dedicated instruction cache is also common. Moreover, our in-
jection mechanism is based on the fact that the GPU statically
utilizes the physical memory for running the same program.
We believe that this is generally true for all GPU architec-
tures, because all CUDA-enabled GPUs have a so-called non-
preemptiveness property that simplifies memory management.

10. Conclusion

In this paper, we presented the design and implementation of
OBMI, a framework for bootstrapping secure cryptographic op-
erations on commodity GPUs. By utilizing SMM as an isolated
execution environment, we developed an on-demand mecha-
nism that securely establishes authenticated GPU binaries and
secret keys in GPU caches. Our mechanism enables the secure
acceleration of various cryptographic operations using com-
modity hardware features. OBMI is transparent to any system
software, whether an OS, hypervisor, or GPU device driver.More-
over, the security offered by OBMI does not depend on the
integrity of such system software. Our evaluations showed that
OBMI incurred only a negligible performance overhead for both
RSA and AES.We also demonstrated that even privileged ma-
licious software could not retrieve sensitive information from
OBMI’s bootstrapped GPU computations.

In future work, we plan to extend our OBMI framework to
provide more sophisticated tasks, such as HTTP transac-
tions. To do so, we will explore balanced CPU/GPU utilization
for intensive server workloads, while preserving security even
in a compromised OS kernel. It is also possible to apply our
mechanism to different system architectures – for example,
to mobile devices, most of whose platforms are based on ARM,
where the x86-based SMM is unavailable.

Acknowledgement

This work was supported by the ICT R&D program of MSIP/
IITP (R0126-16-1005, Development of High Reliable
Communications and Security SW for Various Unmanned Ve-
hicles) and Institute for Information & Communications
Technology Promotion (IITP) grant funded by the Korea gov-
ernment (MSIP) (No. R0190-15-2010, Development on the SW/

45c om pu t e r s & s e cu r i t y 6 2 (2 0 1 6) 3 3 – 4 8

HW modules of Processor Monitor for System Intrusion
Detection).

R E F E R E N C E S

Abe Y, Sasaki H, Peres M, Inoue K, Murakami K, Kato S. Power
and performance analysis of gpu-accelerated systems. In:
Proceedings of the 2012 USENIX conference on power-aware
computing and systems, HotPower’12. Berkeley, CA, USA:
USENIX Association; 2012. p. 10. <http://dl.acm.org/
citation.cfm?id=2387869.2387879>.

Advanced Micro Devices. Amd64 virtualization: secure virtual
machine architecture reference manual. May 2005.

Advanced Micro Devices. Amd64 architecture programmer’s
manual: volume 2: system programming. 2013. <http://
developer.amd.com/wordpress/media/2012/10/
24593_APM_v21.pdf>.

ARM. ARM security technology – building a secure system using
trustzone technology. ARM technical white paper. 2009.
<http://infocenter.arm.com/help/topic/com.arm.doc.prd29-
genc-009492c/PRD29-GENC-
009492C_trustzone_security_whitepaper.pdf>.

Azab AM, Ning P, Wang Z, Jiang X, Zhang X, Skalsky NC.
Hypersentry: enabling stealthy in-context measurement of
hypervisor integrity. In: Proceedings of the 17th ACM
conference on computer and communications security, CCS
‘10. NewYork, NY, USA: ACM; 2010. p. 38–49. doi:10.1145/
1866307.1866313. <http://doi.acm.org/10.1145/
1866307.1866313>.

Blass E-O, Robertson W. Tresor-hunt: attacking CPU-bound
encryption. In: Proceedings of the 28th annual computer
security applications conference, ACSAC ‘12. NewYork, NY,
USA: ACM; 2012. p. 71–8. doi:10.1145/2420950.2420961. <http://
doi.acm.org/10.1145/2420950.2420961>.

Cheng J, Grossman M, McKercher T. Professional CUDA C
programming. JohnWiley & Sons; 2014.

Coreboot. Coreboot project home page, <http://
www.coreboot.org>; [accessed 07.07.16].

CVE Details. Xen: Vulnerability Statistics. CVE Details, <https://
www.cvedetails.com/vendor/6276/XEN.html>; [accessed
07.07.16].

Envytools. Envytools project home page, <https://github.com/
envytools/envytools>; [accessed 07.07.16].

Falcon Security. NVIDIA Falcon Security, <ftp://download.nvidia
.com/open-gpu-doc/Falcon-Security/1/Falcon-Security.html>;
[accessed 07.07.16].

Fujii Y, Azumi T, Nishio N, Kato S, Edahiro M. Data transfer
matters for GPU computing. In: 19th IEEE international
conference on parallel and distributed systems, ICPADS 2013,
Seoul, Korea, December 15–18, 2013. IEEE Computer Society;
2013. p. 275–82. doi:10.1109/ICPADS.2013.47. <http://dx.doi.org/
10.1109/ICPADS.2013.47>.

Garmany B, Muller T. Prime: private rsa infrastructure for
memory-less encryption. In: Proceedings of the 29th annual
computer security applications conference, ACSAC ‘13. New
York, NY, USA: ACM; 2013. p. 149–58. doi:10.1145/
2523649.2523656. <http://doi.acm.org/10.1145/
2523649.2523656>.

Guan L. Protecting private keys against memory disclosure
attacks using hardware transactional memory. In: IEEE
symposium on security and privacy (SP). San Jose, CA: IEEE;
2015. p. 3–19. <http://ieeexplore.ieee.org/xpl/
articleDetails.jsp?arnumber=7163015>.

Guan L, Lin J, Luo B, Jing J. Copker: computing with private keys
without RAM. In: 21st annual network and distributed system
security symposium, NDSS 2014, San Diego, California, USA,

February 23–26, 2014. The Internet Society; 2014. <http://
www.internetsociety.org/doc/copker-computing-private-keys-
without-ram>.

Halderman JA, Schoen SD, Heninger N, Clarkson W, Paul W,
Calandrino JA, et al. Lest we remember: cold-boot attacks on
encryption keys. Commun ACM 2009;52(5):91–8. doi:10.1145/
1506409.1506429. <http://doi.acm.org/10.1145/
1506409.1506429>.

Harrison O, Waldron J. Efficient acceleration of asymmetric
cryptography on graphics hardware. In: Proceedings of
progress in cryptology – AFRICACRYPT 2009: second
international conference on cryptology in Africa, Gammarth,
Tunisia, June 21–25, 2009. Berlin, Heidelberg: Springer Berlin
Heidelberg; 2009. p. 350–67. doi:10.1007/978-3-642-02384-2_22.
<http://dx.doi.org/10.1007/978-3-642-02384-2_22>.

Heartbleed. The heartbleed bug, <http://heartbleed.com/>;
[accessed 07.07.16].

Hofmann OS, Kim S, Dunn AM, Lee MZ, Witchel E. InkTag: secure
applications on an untrusted operating system. SIGPLAN Not.
2013;48(4):265–78. doi:10.1145/2499368.2451146. <http://
doi.acm.org/10.1145/2499368.2451146>.

Intel Corporation. Intel trusted execution technology. 2013.
<http://www.intel.com/content/dam/www/public/us/en/
documents/white-papers/trusted-execution-technology-
security-paper.pdf>.

Intel Corporation. Software guard extensions programming
reference. October 2014. <https://software.intel.com/sites/
default/files/managed/48/88/329298-002.pdf>.

Intel Corporation. Intel 64 and ia-32 architectures software
developer’s manual vol. 3a:system programming guide. 2016.
<http://www.intel.com/content/www/us/en/architecture-and-
technology/64-ia-32-architectures-software-developer-vol-3a-
part-1-manual.html>.

Jang K, Han S, Han S, Moon S, Park K. SSLShader: cheap SSL
acceleration with commodity processors. In: Proceedings of
the 8th USENIX conference on networked systems design and
implementation, NSDI’11. Berkeley, CA, USA: USENIX
Association; 2011. p. 1–14. <http://dl.acm.org/
citation.cfm?id=1972457.1972459>.

Koc CK. Analysis of sliding window techniques for
exponentiation. Comput Math Appl 1995;30:17–24.

Larabel M. Benchmarking Nouveau and NVIDIA’s proprietary
GeForce driver on Linux. 2014. <http://www.phoronix.com/
scan.php?page=article&item=nvidia_nouveau_linux316&
num=1> [last accessed 17.02.16].

Lee MS, Lee Y, Cheon JH, Paek Y. Accelerating bootstrapping in
FHEW using GPUs. In: ASAP. IEEE; 2015. p. 128–35. <http://
dblp.uni-trier.de/db/conf/asap/asap2015.html#LeeLCP15>.

Lee S, Kim Y, Kim J, Kim J. Stealing webpages rendered on your
browser by exploiting GPU vulnerabilities. In: 2014 IEEE
symposium on security and privacy, SP 2014, Berkeley, CA,
USA, May 18–21, 2014. IEEE Computer Society; 2014.
p. 19–33. doi:10.1109/SP.2014.9. <http://dx.doi.org/10.1109/
SP.2014.9>.

Liu M, Li T, Jia N, Currid A, Troy V. Understanding the
virtualization “tax” of scale-out pass-through GPUs in GaaS
clouds: an empirical study. In: HPCA. IEEE; 2015. p. 259–70.
<http://dblp.uni-trier.de/db/conf/hpca/hpca2015
.html#LiuLJCT15>.

Manavski SA. CUDA compatible GPU as an efficient hardware
accelerator for AES cryptography. In: IEEE international
conference on signal processing and communications. ICSPC
2007. Dubai: IEEE; 2007. p. 65–8. <http://ieeexplore.ieee.org/
xpls/icp.jsp?arnumber=4728256>.

Maurice C, Neumann C, Heen O, Francillon A. Confidentiality
issues on a GPU in a virtualized environment. In: FC 2014,
18th international conference on financial cryptography and
data security, 3–7 March 2014. Barbados: 2014. doi:10.1007/

46 c om pu t e r s & s e cu r i t y 6 2 (2 0 1 6) 3 3 – 4 8

978-3-662-45472-5_9. <http://www.eurecom.fr/publication/
4205>.

McCune JM, Parno BJ, Perrig A, Reiter MK, Isozaki H. Flicker: an
execution infrastructure for TCB minimization. In:
Proceedings of the 3rd ACM SIGOPS/EuroSys European
conference on computer systems 2008, Eurosys ‘08. NewYork,
NY, USA: ACM; 2008. p. 315–28. doi:10.1145/1352592.1352625.
<http://doi.acm.org/10.1145/1352592.1352625>.

McCune JM, Li Y, Qu N, Zhou Z, Datta A, Gligor V, et al. Trustvisor:
efficient TCB reduction and attestation. In: Proceedings of the
2010 IEEE symposium on security and privacy, SP
‘10.Washington, DC, USA: IEEE Computer Society; 2010. p.
143–58. doi:10.1109/SP.2010.17. <http://dx.doi.org/10.1109/
SP.2010.17>.

Micikevicius P. Local memory and register spilling. 2011. <http://
on-demand.gputechconf.com/gtc-express/2011/
presentations/register_spilling.pdf> [last accessed 17.02.16].

Miele A. Buffer overflow vulnerabilities in CUDA: a preliminary
analysis. CoRR abs/1506.08546. 2015. <http://arxiv.org/abs/
1506.08546>.

Montgomery PL. Modular multiplication without trial division.
Math Comput 1985;44(170):519–21.

Müller T, Dewald A, Freiling FC. Aesse: a cold-boot resistant
implementation of aes. In: Proceedings of the third European
workshop on system security, EUROSEC ‘10. NewYork, NY,
USA: ACM; 2010. p. 42–7. doi:10.1145/1752046.1752053. <http://
doi.acm.org/10.1145/1752046.1752053>.

Müller T, Freiling FC, Dewald A. Tresor runs encryption securely
outside ram. In: Proceedings of the 20th USENIX conference
on security, SEC’11. Berkeley, CA, USA: USENIX Association;
2011. p. 17. <http://dl.acm.org/
citation.cfm?id=2028067.2028084>.

Nouveau. Nouveau project home page, <http://
nouveau.freedesktop.org>; [accessed 07.07.16].

Nvidia Corporation. CUDA C programming guide v7.5. Online.
September 2015. <http://docs.nvidia.com/cuda/pdf/
CUDA_C_Programming_Guide.pdf> [last accessed
17.02.16].

Pietro RD, Lombardi F, Villani A. CUDA leaks: a detailed hack for
CUDA and a (partial) fix. ACMTrans Embed Comput Syst
2016;15(1):15:1–25. doi:10.1145/2801153. <http://doi.acm.org/
10.1145/2801153>.

Sani AA, Zhong L, Wallach DS. Glider: a GPU library driver for
improved system security. 2014. CoRR abs/1411.3777. <http://
arxiv.org/abs/1411.3777>.

Simmons P. Security through amnesia: a software-based solution
to the cold boot attack on disk encryption. In: Proceedings of
the 27th annual computer security applications conference,
ACSAC ‘11. NewYork, NY, USA: ACM; 2011. p. 73–82.
doi:10.1145/2076732.2076743. <http://doi.acm.org/10.1145/
2076732.2076743>.

Suzuki Y, Kato S, Yamada H, Kono K. GPUvm: why not
virtualizing GPUs at the hypervisor? In: Gibson G, Zeldovich
N, editors. 2014 USENIX annual technical conference, USENIX
ATC ‘14, Philadelphia, PA, USA, June 19–20, 2014. USENIX
Association; 2014. p. 109–20. <https://www.usenix.org/
conference/atc14/technical-sessions/presentation/suzuki>.

Tian K, Dong Y, Cowperthwaite D. A full gpu virtualization
solution with mediated pass-through. In: Proceedings of the
2014 USENIX conference on USENIX annual technical
conference, USENIX ATC’14. Berkeley, CA, USA: USENIX
Association; 2014. p. 121–32. <http://dl.acm.org/
citation.cfm?id=2643634.2643647>.

Vasiliadis G, Athanasopoulos E, Polychronakis M, Ioannidis S.
Pixelvault: using GPUs for securing cryptographic operations.
In: Ahn G, Yung M, Li N, editors. Proceedings of the 2014 ACM
SIGSAC conference on computer and communications
security, Scottsdale, AZ, USA, November 3–7, 2014. ACM; 2014.

p. 1131–42. doi:10.1145/2660267.2660316. <http://doi.acm.org/
10.1145/2660267.2660316>.

Wang W, Chen Z, Huang X. Accelerating leveled fully
homomorphic encryption using GPU. In: IEEE international
symposium on circuits and systems, ISCAS 2014, Melbourne,
Victoria, Australia, June 1–5, 2014. IEEE; 2014. p. 2800–3.
doi:10.1109/ISCAS.2014.6865755. <http://dx.doi.org/10.1109/
ISCAS.2014.6865755>.

Wittenbrink CM, Kilgariff E, Prabhu A. Fermi gf100 gpu
architecture. IEEE Micro 2011;31(2):50–9. <http://dblp.uni-
trier.de/db/journals/micro/micro31.html#WittenbrinkKP11>.

Wong H, Papadopoulou M, Sadooghi-Alvandi M, Moshovos A.
Demystifying GPU microarchitecture through
microbenchmarking. In: IEEE international symposium
on performance analysis of systems and software, ISPASS
2010, 28–30 March 2010. White Plains, NY, USA: IEEE
Computer Society; 2010. p. 235–46. doi:10.1109/
ISPASS.2010.5452013. <http://dx.doi.org/10.1109/
ISPASS.2010.5452013>.

Yu M, Gligor VD, Zhou Z. Trusted display on untrusted
commodity platforms. In: Proceedings of the 22nd ACM
SIGSAC conference on computer and communications
security, CCS ‘15. NewYork, NY, USA: ACM; 2015. p. 989–1003.
doi:10.1145/2810103.2813719. <http://doi.acm.org/10.1145/
2810103.2813719>.

Zaddach J, Kurmus A, Balzarotti D, Blass E-O, Francillon A,
Goodspeed T, et al. Implementation and implications of a
stealth hard-drive backdoor. In: Proceedings of the 29th
annual computer security applications conference, ACSAC ‘13.
NewYork, NY, USA: ACM; 2013. p. 279–88. doi:10.1145/
2523649.2523661. <http://doi.acm.org/10.1145/
2523649.2523661>.

Zhang F, Leach K, Sun K, Stavrou A. SPECTRE: a dependable
introspection framework via system management mode. In:
2013 43rd annual IEEE/IFIP international conference on
dependable systems and networks (DSN), Budapest, Hungary,
June 24–27, 2013. IEEE; 2013. p. 1–12. doi:10.1109/
DSN.2013.6575343. <http://doi.ieeecomputersociety.org/
10.1109/DSN.2013.6575343>.

Zhang F, Wang H, Leach K, Stavrou A. A framework to secure
peripherals at runtime. In: Kutylowski M, Vaidya J, editors.
Computer security – ESORICS 2014 – 19th European
symposium on research in computer security,Wroclaw,
Poland, September 7–11, 2014. Proceedings, part I, vol. 8712.
Lecture Notes in Computer Science. Springer; 2014. p. 219–38.
doi:10.1007/978-3-319-11203-9_13. <http://dx.doi.org/10.1007/
978-3-319-11203-9_13>.

Zhang F, Wang J, Sun K, Stavrou A. Hypercheck: a hardware-
assisted integrity monitor. IEEE Trans Dependable Secure
Comput 2014;11(4):332–44. doi:10.1109/TDSC.2013.53. <http://
doi.ieeecomputersociety.org/10.1109/TDSC.2013.53>.

Zhang F, Leach K, Stavrou A, Wang H, Sun K. Using hardware
features for increased debugging transparency. In: 2015 IEEE
symposium on security and privacy, SP 2015, San Jose, CA,
USA, May 17–21, 2015. IEEE Computer Society; 2015.
p. 55–69. doi:10.1109/SP.2015.11. <http://dx.doi.org/10.1109/
SP.2015.11>.

Zheng F, Pan W, Lin J, Jing J, Zhao Y. Exploiting the floating-point
computing power of gpus for RSA. In: Chow SSM, Camenisch
J, Hui LCK, Yiu S, editors. Proceedings of information security
– 17th international conference, ISC 2014, Hong Kong, China,
October 12–14, 2014, vol. 8783. Lecture Notes in Computer
Science. Springer; 2014. p. 198–215. doi:10.1007/978-3-319-
13257-0_12. <http://dx.doi.org/10.1007/978-3-319-13257-0_12>.

Yonggon Kim is a Ph.D. candidate in Computer Science at
Korea Advanced Institute of Science and Technology (KAIST).
He received his B.S. degree in Computer Science from KAIST in

47c om pu t e r s & s e cu r i t y 6 2 (2 0 1 6) 3 3 – 4 8

2008. He also received his M.S. degree of Computer Science
from KAIST in 2011. His research interests include graphics
hardware and computer security, especially in hardware-assisted
security.

Ohmin Kwon received the B.S degree in Division of Computer and
Communication Engineering from Korea University, South Korea,
in 2012. He also received the M.S. degree in Computer Science from
KoreaAdvanced Institute of Science andTechnology (KAIST) in 2014.
He is currently working toward the Ph.D. degree at the Division of
Computer Science, KAIST. His research interests include com-
puter security and applied cryptography.

Jinsoo Jang received the B.E. degree in Information and Computer
Engineering from Ajou University, South Korea, in 2007. He also re-
ceived the M.S. degree in Information Security from Korea Advanced
of Science andTechnology (KAIST) in 2014. He is currently working
toward the Ph.D. degree at the Division of Computer Science, KAIST.
His research interest includes system security, especially in the
trusted execution environments (TEE).

Seongwook Jin is a Ph.D. candidate in Computer Science at
Korea Advanced Institute of Science and Technology (KAIST).
His research interests are in computer architecture, security
and virtualization. He received the B.S. degree in Computer
Science and Engineering from Kumoh National University in
2008 and the M.S. degree in Computer Science from KAIST in
2010.

Hyeongboo Baek is a Ph.D. student at the Department of Com-
puter Science at KoreaAdvanced Institute of Science andTechnology
(KAIST), South Korea. He received B.S. degree in Computer Science
and Engineering from Konkuk University, South Korea, in 2010 and
M.S. degree in Computer Science from KAIST, South Korea, in 2012.
His research interests include real-time embedded systems, cyber-
physical systems and security.

Brent ByunghoonKang is currently an associate professor at theGSIS
(Graduate School of Information Security) at KAIST (KoreaAdvanced
Institute of Science andTechnology). Before KAIST,he has beenwith
George Mason University as an associate professor in theVolgenau
School of Engineering.Dr.Kang receivedhis Ph.D. inComputer Science
from the University of California at Berkeley, andM.S. from the Uni-
versity of Maryland at College Park, and B.S. from Seoul National
University.He has beenworking on systems security area including
OSkernel integritymonitor, trustedexecutionenvironment,hardware-
assisted security, botnet malware defense, and DNS analytics.

Hyunsoo Yoon received the B.E. degree in electronics engineering
from Seoul National University, South Korea, in 1979, the M.S. degree
in computer science from Korea Advanced Institute of Science and
Technology (KAIST) in 1981, and the Ph.D. degree in computer and
information science from the Ohio State University, Columbus, Ohio,
in 1988. From 1988 to 1989, he was a member of technical staff at
AT&T Bell Labs. Since 1989 he has been a faculty member of Divi-
sion of Computer Science at KAIST. His main research interest
includeswireless sensor networks, 4G networks, and network security.

48 c om pu t e r s & s e cu r i t y 6 2 (2 0 1 6) 3 3 – 4 8

