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In recent years, dynamic program analysis (DPA) has been widely used in various fields such as profil-
ing, finding bugs and security. However, existing solutions have their own weaknesses. Software solutions
provide flexibility in DPA but they suffer from tremendous performance overhead. In contrast, core-level
hardware engines rely on specialized integrated logics and attain extremely fast computation, but they have
a limited functional extensibility because the logics are tightly coupled with the host processor. To mend
this, a prior system level approach utilizes an existing channel to integrate their hardware without necessi-
tating the host architecture modification and introduced great potential in performance. Nevertheless, the
prior work did not address the detailed design and implementation of the engine, which is quite essential
to leverage the deployment on real systems. To address this, in this paper, we propose an implementation
of programmable DPA hardware engine, called program analysis unit (PAU). PAU is an application specific
instruction-set processor (ASIP) whose instruction-set is customized to reflect common features of various
DPA methods. With the specialized architecture and programmability of software, our PAU aims at fast
computation and sufficient flexibility. In our case studies on several DPA techniques, we show that our ASIP
approach can be successfully applicable to complex DPA schemes while providing hardware-backed power
in performance and software-based flexibility in analysis. Recent experiments on our FPGA prototype re-
vealed that the performance of PAU is 4.7-13.6 times faster than pure software DPA, and the power/area
consumption is also acceptably small compared to today’s mobile processors.
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1. INTRODUCTION
Dynamic program analysis (DPA) is to analyze software code as it executes on a proces-
sor. In recent years, it has been widely used in profiling system performance, finding
software bugs for reliability and runtime monitoring for system security. As an ex-
ample, Memcheck [Seward and Nethercote 2005] is a DPA tool implemented in the
Valgrind binary instrumentation framework [Nethercote and Seward 2007] and uses
dataflow tracking to observe the memory usage behaviors of the target applications
to detect unintended misuses of memory. Dynamic information flow tracking (DIFT)
is also a representative DPA technique which tracks and restricts the use of desig-
nated data by managing metadata called tag. In many studies, DIFT has been used
to effectively resolve their various problems such as runtime monitoring [Newsome
and Song 2005; Dalton et al. 2007] or malware analysis [Bayer et al. 2009]. Likewise,
DPA has been applied to enable many other types of techniques [Deng and Suh 2012]
such as memory protection [Witchel et al. 2002], array bound checking [Devietti et al.
2008], software debugging support [Nethercote and Seward 2007] and garbage collec-
tion [Joao et al. 2009]. Consequently, with the ever-increasing importance, the use of
DPA is being expanded to a wide range of security and reliability problems.

To achieve their goals of DPA, many researchers rely on dynamic binary instrumen-
tation (DBI) frameworks such as Valgrind [Nethercote and Seward 2007], Pin [Luk
et al. 2005], and DynamicRIO [Bruening 2004]. While dynamic analysis through soft-
ware DBI provides complete analysis environment with the extreme flexibility, the
amount of analysis at either test-time or runtime is bounded by the performance im-
pact that can be tolerated [Tiwari et al. 2009]. The performance overhead is especially
crucial in complex DPA techniques which require amount of computation as the target
program executes. For example, LIFT [Qin et al. 2006], a DIFT solution with DBI tool,
slows down the program execution by around 4 times at runtime even with aggressive
optimizations. Although several approaches have been proposed to utilize multiproces-
sors [Chen et al. 2008; Nagarajan et al. 2008; Nightingale et al. 2008] that are readily
available in modern multicore architectures where each core is a general-purpose pro-
cessor (GPP), they could also not achieve sufficient performance improvement mainly
because the original architectures were not optimized for DPA in the first place [Tiwari
et al. 2009].

To address the shortcoming of software-based analysis, several core-level hardware
supports for DPA have been proposed [Dalton et al. 2007; Venkataramani et al. 2008;
Suh et al. 2004; Deng et al. 2010; Chen et al. 2008; Deng and Suh 2012], where ex-
tra hardware logic customized for DPA operations is integrated into a processor core.
Even though they could bring the overhead down to a few percents, they require in-
vasive modifications to the core internal (e.g., registers and pipeline data paths). In
fact, microprocessor development may take several years and hundreds of engineers
from an initial design to production [Kannan et al. 2009]. Therefore, the substantial
costs of development to integrate the logic would hamper processor vendors to adopt
new hardware unless its generality and versatility are clearly proven. For this reason,
some proposed a flexible core-level accelerator integrated in a processor that can sup-
port a set of diverse DPA functions by reconfiguring the accelerator [Deng and Suh
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2012]. However, they still have a limited functional extensibility in that a new DPA
function cannot be supported by hardware unless it was considered in the initial hard-
ware design.

As an alternative direction to avoid invasive core-level modification, a system-level
DPA acceleration engine was proposed, which is integrated into a system by being
connected to the processor through existing channels such as peripheral interfaces.
In [Tiwari et al. 2009], they built a working prototype, called Hardgrind, where the
engine is implemented as an external device and connected to the host system via a
PCI bus. In the experiment, they demonstrated that even without internal changes to
an existing CPU, heavy-weight DPA tools [Seward and Nethercote 2005] benefit from
the acceleration strategy, and the speedup can be great, being up to 4.4 times faster
than pure software techniques stated above. These results reveal a potential advan-
tage of a system-level DPA engine that it may offer a more affordable solution to extend
the engine for new DPA functions than the core-level ones because the extension could
be made separately from the host system without necessitating the overall host ar-
chitecture modification. Such an advantage would be particularly beneficial to recent
mobile SoC platforms where the system-level integration provides a better extendibil-
ity by enabling the platform-based design which is a de facto standard methodology
to develop complex SoCs including commercial products like smartphone application
processors (APs). Because the platform-based design tends to foster systematic reuse
of already-implemented modules [Bailey et al. 2005], it is important to preserve the
other components intact when a functionality like DPA is additionally supported. In
the system-level approach, all special logics customized for DPA are fully integrated
into an independent module so that the other modules can be reused thereby lowering
development risks, costs and time to market. Although the existing system-level ap-
proach [Tiwari et al. 2009] has evinced not only a great potential in performance but
also the extendibility to support a variety of DPA methods, they have not described
the detailed architecture of their hardware engine or its implementation. Instead, by
assuming it as simple core logics for analysis methods [Tiwari et al. 2008; Zhou et al.
2007], they have just tried to quantify the potential of their approach. Therefore, in
order to leverage the deployment of the system-level engine in real machines, it is
mandatory to consider the realistic design issues as the engine being implemented for
the component in an existing SoC.

For this purpose, in this paper, we propose a DPA hardware engine, called the pro-
gram analysis unit (PAU), which has been fully implemented and integrated as a
system level component in an existing computing platform. The novelty of our en-
gine is that it is software programmable in order to attain not only the high perfor-
mance but also the great expandability of our DPA solutions. For this, we have im-
plemented PAU in the form of an application specific instruction-set processor (ASIP)
whose instruction-set is customized to reflect common features of various DPA meth-
ods. First, by enabling the user to decouple DPA operations from the host code and
accelerate them on PAU, we have substantially reduced the performance overhead of
DPA. Furthermore, in practice, PAU can execute any designated DPA as software codes
running on the processor, offering a great deal of flexibility and extensibility for a wide
range of DPA functions.

To examine the effectiveness of our approach, we chose three exemplary DPA tech-
niques for case studies: DIFT, Uninitialized Memory Checking (UMC) and Bound
Checking (BC). We implemented the DPA schemes with the software code for PAU and
enabled it to carry out the DPA computations off-loaded from the host CPU. Also, we
built an in-house instrument tool to insert data gathering code segments for the CPU
and generate actual analysis codes for PAU automatically. By mapping those codes to
both processors, we have parallelized DPA computations between the CPU and PAU
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thereby improving the analysis performance. In addition, our DPA engine was able to
adopt the optimization techniques suggested in the software-based approaches [Zhu
et al. 2009; Qin et al. 2006; Venkataramani et al. 2007; Clause et al. 2007] simply by
programming them on PAU. The case studies show that our approach can be applied
to various time-consuming DPA techniques by providing hardware-backed power in
performance as well as software-based flexibility in analysis.

In order to show our experimental results on a working prototype SoC, we imple-
mented our proposed design in RTL and the full system is prototyped on a Xilinx
Virtex-5 FPGA board. Recent experiments have demonstrated that our proposed de-
sign can enhance the performance for the three implementation examples substan-
tially as compared when the DPA schemes are conducted by pure software-based ap-
proaches. Furthermore, our PAU is far more energy/area efficient than general purpose
commodity cores.

In this paper, we make the following contributions:

— We proposed PAU, which is a system-level hardware DPA engine that does not
require the modification of the host core. We designed PAU as an ASIP to achieve
both the programmability and the acceleration of hardware.

— We implemented our PAU with Verilog HDL and integrated it into a SoC proto-
type to build a full-system. We, then, measured the overheads of PAU in terms of
performance, area and power by running mibench [Guthaus et al. 2001] bench-
mark to empirically show the efficacy of our approach.

— To show the programmability of PAU, we chose three well-known DPA techniques
(i.e., DIFT, UMC and BC) and implemented them on our PAU.

The paper is organized as follows. Section 2 explains the background of tag-based
DPA techniques and how a system-level hardware helps this DPA execution. Section
3 gives an architectural/functional overview of our ASIP, and Section 4 describes the
programmable processing core of the hardware engine. After our case studies are in-
troduced in Section 5, Section 6 will discuss how software optimizations for DIFT can
be adopted into our PAU with the help of its flexibility. Then, Section 7 reports the
experimental results and Section 8 relates our work with others. Finally, in Section 9,
we will conclude this paper.

2. BACKGROUNDS
To enable our PAU to cover the broad class of DPA, we should look into several widely-
used DPA techniques and figure out the characteristics that are commonly inherent
in those. For this reason, in this section, we will first introduce the generalized DPA
model which has been proposed in previous literature [Deng and Suh 2012; Chen et al.
2008], in order to understand the commonalities of DPA. Then, we will explain the
execution flow of DPA with a system-level hardware engine.

2.1. Understanding Tag-based DPA Techniques
To understand the core features of various DPA techniques, it is noteworthy that pre-
vious studies [Deng and Suh 2012; Chen et al. 2006; Chen et al. 2008] have already
analyzed a number of the techniques whose characteristics [Devietti et al. 2008; New-
some and Song 2005; Venkataramani et al. 2007; Clause et al. 2007; Zhou et al. 2007]
are summarized in Table I. Note in the table that many techniques commonly main-
tain and check the meta-data information, called tag, to describe the status of the host
program [Deng and Suh 2012] despite the differences in their types or granularities.
For example, DIFT maintains a 1-bit tag to indicate whether a word/byte is from a po-
tentially malicious sources [Newsome and Song 2005]. On the other hand, a tag may
be associated with a location such as a memory address instead of a value to keep
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information on the properties of storage itself, as in memory bound checking [Devi-
etti et al. 2008]. Also, some of DPA schemes keep coarse-grained tags for composite
program objects such as records and arrays [Joao et al. 2009].

With the tags, DPA generally conducts mainly two types of tag operations to achieve
its purposes; tag updating and tag checking. Throughout program execution, DPA
maintains the tags by updating the tags at specific events. Some tags are occasion-
ally updated at certain events such as library calls while the others might be updated
at nearly every monitored instruction. Tag checking is to test if an invariant of the
program is violated. In DIFT, for instance, an alarm is triggered when any of the data
from untrusted sources involve in potentially illegal activities by checking the tag.
With these two types of tag operations, DPA can find bugs, profile system performance
or detect various attacks on monitored programs. In this paper, we have designed our
PAU based on the tag-based DPA model.

Table I. Tag types and operations of several DPA schemes

DPA Technique Tag Type Description Tag Operations

DIFT 1-bit tag to indicate taintness Prevents common malwares from leaking the critical information
by tracking and limiting uses of untrusted I/O inputs.

tag update
tag checking

Uninitialized 
Memory 
Checking

1-bit tag to present whether 
the memory location has been 
initialized

Checks whether a certain memory location is initialized 
before reading it.

tag update
tag checking

Bound Checking multi-bit tag to match 
the data and its location

Both tags for memory location and tags for pointers are set. 
On each memory access instruction, the tag of the pointer that 
is used to access memory is compared to the tag of the accessed
memory location.

tag update
tag checking

Reference
Counter

multi-bit tag to store referenc
e count for the data location

Performs reference counting to aid garbage collection mechanism. 
On an instruction that creates a new pointer, the tag is incremented. 
On an instruction that destroys an existing pointer, the tag is 
decremented.

tag update
tag checking

LockSET

1) multi-bit tag for the current 
set of locks held by the thread
2) multi-bit tag to maintain 
a candidate set of locks

Performs race detection among multithreaded applications.
tag update
tag checking

2.2. DPA Execution on a System-Level Hardware Engine
This subsection describes the DPA execution flow in the system-level hardware ap-
proach, where the system mainly consists of a host CPU and an off-core hardware
engine, as depicted in Figure 1. In the system, the host is regarded as a producer that
gathers the data required for analysis, called the execution traces, then sends them
to the analysis hardware engine. Conversely, the off-core engine is regarded as a con-
sumer that receives the traces and performs the actual analysis task. For example,
in case of Memcheck [Seward and Nethercote 2005], the host captures memory access
behaviors of the monitored program, such as accessed memory addresses and a set
of data written to the memory. Then, the captured information is transferred to the
analysis engine which performs the analysis task that tracks dataflow and detects un-
intended memory uses in the program by updating and checking the tags. As presented
in much literature [Deng and Suh 2012; Kannan et al. 2009; Deng et al. 2010; Chen
et al. 2008; Tiwari et al. 2009], these approaches with separate engines have shown to
be efficient because it relieves the burden of the host CPU by reducing the competition
for resources (i.e., cycles, registers and caches) between the original program and DPA.
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Instrumented 
Host Program Analysis Task
Trace Generation

Host CPU Hardware Engine
Execution Trace

System Bus

Fig. 1. Execution model of system level hardware engine

As explained, in this execution model, the execution traces should be created and
then transferred to the analysis hardware. In the core-level approaches [Kannan et al.
2009; Chen et al. 2006; Chen et al. 2008; Deng and Suh 2012], the traces are transpar-
ently gathered with a dedicated hardware that observes the instructions executed by
the monitored program and creates the corresponding execution trace. On the other
hand, in the system-level approach [Tiwari et al. 2009], the host program is aug-
mented with the code for trace generation so that a stream of traces is created by
the code on the host. Meanwhile, the analysis task on the hardware engine can be
implemented in the form of either hardware or software. In Hardgrind, the analysis
tasks of MemCheck [Seward and Nethercote 2005] and Helgrind [Savage et al. 1997]
are implemented with specialized hardware modules like Range Cache [Tiwari et al.
2008]. With the help of ASIC-style design, Hardgrind could achieve the speedups from
29% to 440% in the two DPA techniques.

3. SYSTEM-LEVEL PROGRAMMABLE DPA ENGINE FOR EXTENDIBILITY
In this section, we will give an architectural overview including our hardware engine
and discuss how DPA is performed on the proposed system. Also, we will discuss the
efficient communication strategy between the host and our engine.

3.1. Overall System Design with PAU
Based on the execution model of the system-level approach introduced in the previous
section, we designed our overall system which mainly consists of a host CPU and PAU
as depicted in Figure 2 where PAU is connected via a general system bus to the host
CPU along with other modules including special purpose processors.In this work, our
SoC employs an AMBA-compliant system bus [Limited 1999] which is a shared bus
architecture conforming to the AMBA protocol, a de-facto standard for master-slave
communication in modern SoC design. Hence, as long as our design obeys the AMBA
protocol, it can be used in every SoC based on AMBA protocol without any hardware
change.

The key components of PAU are the tag processing core (TPC) and the main con-
troller. TPC is a processor core of PAU which executes software codes. Its main task is
to perform tag operations along the program execution flow running on the host and
analyze the monitored program. We will postpone the discussion of this task to Section
4. The main controller manages all transactions related to the DPA computation. It
contains configuration registers whose values can be changed to specify various types
of transactions. Thus, the host can control the action of PAU directly by setting these
registers to certain values. To facilitate this control from the host, the configuration
registers are memory mapped.

The central role of PAU is the management of all the tags used for DPA. During
DPA computation, all the tags being accessed are located in either PAU or the main
memory. For every host processor register, TPC has a corresponding 32-bit tag, all of
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InterruptOS Kernel
Host CPU

Configuration Commands

Memory 
Controller

GPU DSP

System Bus Interconnect

Slave IF Master IF

Tag Processing Core
Tag Register File

Memory Access

Host
Program

Tag SpaceMain Memory

Main Ctrl.

Trace Buffer
Tag Cache

PAU Inst. 
Cache

PAU

Fig. 2. The overall system design with PAU

which together form a single register file in TPC, called the tag register file (TRF).
Since our host processor has 32 general registers, the TRF also consists of 32 entries.
Since many DPA schemes augment tags to the registers, it is efficient to employ the
TRF to support the tag-based DPA. Likewise, we allocate a space in the main memory,
called tag space [Venkataramani et al. 2008], to manage various types of tags in the
memory. This space is maintained by TPC throughout program execution to support
various types of tags which cannot be allocated in the TRF. Although such structure
of memory tags might be a good way to support diverse tag types using the existing
memory architecture, it should be too slow if tags are frequently accessed from the
tag space in the main memory. Therefore, to reduce the access latency, our PAU has
an internal SRAM, called tag cache [Kannan et al. 2009; Deng and Suh 2012], for
caching frequently referenced tags from the memory. In consequence, we would like
to emphasize that our design for tag management with TRF and tag cache intends to
empower PAU supporting fast tag lookups.

Since our system is implemented as a SoC, we have integrated our PAU to the multi-
processor SoC platform, strictly following a platform-based design methodology. There
are two design criteria that we have endeavored to satisfy when following the method-
ology for the development of our SoC hardware. First, we have tried to reuse as many
existing modules as possible. They include various commodity IP cores, DDR mem-
ory and shared interconnects through which every module in the system is attached.
Second, we have forced newly added hardware modules to comply with all the speci-
fications required by our target SoC platform. For instance, ARM regulates that any
IP module added to their platform obey the AMBA protocol. Therefore, in our imple-
mentation based on the AMBA platform, the interface to our PAU conforms completely
to the AMBA protocol so that it can be connected to the host processor via the AMBA
bus. In this sense, our solution differs from previous core-level approaches where their
acceleration modules are added and connected to processors via custom lines or inter-
connects [Suh et al. 2004; Dalton et al. 2007; Kannan et al. 2009; Nagarajan et al. 2008;
Chen et al. 2008]. Also, all special logics customized for DPA are fully integrated into
our PAU. This confirms our assertion that most hardware modules except the newly
added PAU have been reused for our SoC implementation.
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3.2. Execution Trace Communication
Now, we will discuss how the execution traces are transferred from the host to PAU
through the system bus. To buffer the difference between the times for handling the
assigned tasks on the two processors, we have implemented a dedicated queue, called
the trace buffer, in PAU. In fact, other solutions based on separate processing units
usually also need queues [Chen et al. 2008; Nagarajan et al. 2008; Kannan et al. 2009;
Deng and Suh 2012] for similar purposes. However, others are rather core-level ap-
proaches thus demanding a change to the structure of their host CPU core or internal
caches to some degree. On the contrary, by placing the buffer outside the host CPU and
connecting it via a system bus, we preserve the original processor core architecture in-
tact.

Figure 3 presents an example of the instrumented host code for a DPA method which
analyzes the accessed memory addresses. It also displays the overall flow of trace
transactions via the trace buffer between the host code and TPC in PAU. In the ex-
ample, note that two additional instructions, being marked with boldface, have been
inserted to the original code after instrumentation. They are added to generate two
execution traces for memory addresses used by load/store instructions (traces #1 and
#2). Suppose that the code is running on the host and reaches the code segment. Since
ld instruction (1) is executed, the corresponding memory address stored in register %i0
should be gathered for DPA. As can be seen in the example, register %g4 is memory-
mapped to the physical address of the trace buffer so that it provides a direct way to
store the trace in %i0 using st instruction (2). In a similar manner, a trace for memory
address used by instruction (6) is also pushed into the trace buffer with the instruction
(7). Finally, the stored traces are consumed by TPC for actual analysis task.

….
(1) ld [%i0], %g1
(2) st %i0, [%g4] // Trace #1 : Load address is pushed.
(3) add %g1, 3, %g1
(4) sll %g1, 2, %o1
(5) add %o1, %g1, %o1
(6) st %o1, [%l1]
(7) st %l1, [%g4] // Trace #2 : Store address is pushed.
…

TPC

Trace Buffer

NOTE : Register g4 is preset to the physical address of trace buffer.

Fig. 3. Execution trace communication

3.3. Synchronization and Multi-threading Support
In general, the approaches with separate hardware engine for DPA including ours
should be able to handle the synchronization between the host CPU and the hardware
engine. In our approach, the trace buffer is used to minimize the overhead of synchro-
nizing the data transactions among these processing units by buffering the traces gen-
erated from the host, which helps the host continue its execution without being halted
for the synchronization with PAU. However, such a basic synchronization mechanism
based on the trace buffer may create a potential loophole in security for some DPA
techniques that are to detect malicious attacks. For instance in DIFT, even if the host
has just generated an important trace that is linked to a malicious activity, PAU may
not recognize the activity until the trace is extracted from the buffer for the analysis
in PAU. If the buffer is already filled with many preceding traces, the adversary may
succeed in the attack long before PAU reaches the trace. To eradicate this loophole,
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it would be necessarily required that the host CPU and PAU should be synchronized
at every instruction [Venkataramani et al. 2008]. However, as discussed in [Kannan
et al. 2009; Garfinkel et al. 2004; Rajagopalan et al. 2006], such fine-grained synchro-
nization may cause tremendous performance degradation in most cases. Thus in our
implementation, the two computing units are synchronized at a more coarser granular-
ity (i.e., at every system call), following the strategies of previous approaches [Kannan
et al. 2009]. The rationale for this decision is due to the fact that many compromised
applications usually exploit system calls. For example, when an attacker wants to leak
some sensitive data outside, the system call to open the network should be invoked. In
this case, the data leak can be prohibited by checking the tag of data before sending
the information through the network when DIFT keeps track of data flow during the
runtime. Thus, we also utilize the system calls as an optimal granularity for synchro-
nization in our architecture, to detect most malicious behaviors [Kannan et al. 2009],
and yet to substantially lower the performance overhead.

In our prototype implementation, every time a system call is invoked on the host,
the OS kernel informs PAU of the event by sending a configuration command to PAU,
and stops the execution of the monitored program. For synchronization on each system
call, the host sets the sync syscall register in the main controller. Once it is set, PAU
consumes all traces left in the trace buffer and then reports its status to the host
by sending an interrupt signal. Then, the host resumes its task after clearing the
sync syscall register.

Another important synchronization point we should consider is the context switch
between applications. On the host CPU, many applications with different contexts are
concurrently loaded. Thus, PAU should be notified of which process or thread is cur-
rently executed on the host CPU. In our work, these critical events are also announced
to PAU by the OS kernel. Every time the OS scheduler is activated and a context
switch occurs, the host notifies PAU this event by writing the current process ID and
the thread ID to the current PID and the current TID registers in the main controller,
respectively. By doing so, PAU can identify the current process and thread ID on the
host.

4. TAG PROCESSING CORE
In this section, we will explain the detailed design of TPU, the key component of our
PAU, which is a processor core that enables us to write the software code for the DPA
task in our approach. We will first describe the ISA of TPC whose mission is to support
a wide range of tag-based DPA techniques. Then, the microarchitecture of TPC will be
discussed.

4.1. TPC Instruction-Set Architecture
Basically, the TPC ISA is extended from a simple RISC ISA so that the general struc-
ture of software can be constructed with the ISA. Then, several types of instructions
are added to the ISA, which perform the specialized analysis operations that are com-
monly inherent in the tag-based DPAs listed earlier. We will explain the data types
handled by TPC and the types of instructions.

4.1.1. Data Types. In the TPC ISA, three types of data are supported to construct anal-
ysis task software; (1) tag, (2) general and (3) execution trace. Many DPA techniques
typically associate a tag (that is meta-data) with each piece of state in the monitored
program [Deng and Suh 2012]. Thus, it is very natural to support the tag data type
in our TPC design. Many details for the tag type were, in fact, discussed in Section 2.
With the TRF and tag space in memory, TPC carries out a variety of tag operations to
update and check the tags.
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The general data type is necessary to construct a program structure for supporting
tag operations. For example, to organize a loop structure that iterates the execution
of a code segment for processing tags in an analysis code, there needs a set of data to
control loop iterations such as loop indices and temporary variables. To express this
type of supportive operations (e.g., loop iteration control) in the DPA algorithms, we
provide the general data type for our TCU ISA. In the analysis code, the operands of
the general type are distinct from those of the other two types in a sense that they do
not contain any analysis specific information like tags or execution traces. Therefore,
they are stored in a separate register file, called the general register file (GRF). During
code execution, they must be loaded from memory to the GRF before being processed.

Lastly, the execution trace type is for the traces delivered from the host program. As
stated earlier, the execution traces which contain the runtime information of the host
are delivered to the analysis hardware engines such as our PAU. During the execution,
TPC in PAU consumes the traces in order to follow the program execution flow and
receive runtime traces which are not determined at instrumentation time. We assign
the traces a different data type in order to distinguish the operations on them in the
code from those on the other types of data (i.e., general and tag). For this reason, a
trace in the trace buffer in PAU is regarded as a data of the execution trace type,
which is accessed by a specific set of instructions. For example, in DIFT, the results of
branches and the memory addresses accessed by load/store instructions are delivered
to the trace buffer as the execution traces. In TPC, the traces are regarded as the
data of execution trace type and processed by the special instructions to recognize the
behaviors of the host. The further details will be given in the next subsection.

4.1.2. Instruction Types. To support the analysis tasks for DPA, we have designed four
types of instructions in our TPC ISA; (1) general, (2) tag ALU, (3) tag load/store and
(4) trace handling. The first set of instructions corresponds to those in a RISC-style
instruction set to organize general program structure. In fact, it is directly matched
to the general data type and gives our PAU the general programmability to construct
analysis task software. The general group includes general ALU operations, load/store,
data movement and branches, as shown in Table II. They usually make use of GRF as
the operands for computation and access memory space to load/store data. In addition
to them, there are several instructions newly added for data movement between GRF
and TRF. For example, mov.tg instruction moves the data in TRF to GRF. Then, the
tag value can be manipulated by general instructions for the purpose of analysis and
written back to TRF with mov.gt instruction. These move instructions widen the way
to deal with the tags so that the degree of programmability in TPC ISA can also be
improved.

Many DPA schemes need to operate on the tags associated with processor regis-
ters. Thus, for these types of operations, TPC ISA includes tag ALU instructions that
perform the operations among the register tags, as shown in Table II. These instruc-
tions are functionally similar to the ALU instructions for the ordinary data except that
their operands come from TRF. This type of instructions might be most frequently used
in analysis software because tag updating and checking are the kernel parts of most
DPAs.

On the other hand, in case of the tags located in tag space, they should be loaded to
the registers for computation. To access the tag space, two types of tag load/store in-
structions are supported in TPC ISA. As given in Table II, the GRF and TRF load/store
instructions take operands from GRF and TRF, respectively. In most cases, analysis
software performs TRF loads/stores to propagate tags between registers and memory
locations. However, as in reference counting, DPA should update their tags located in
the tag space without interacting with TRF. In these cases, a GRF load or store is
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Table II. Overview of TPC instruction-set

Instruction Type Sub-Type Instructions Example Action
ALU/Data Movement add,sub,mov, … add R2,R3,R1 R1 = R2 + R3

load load [R2],#4,R1 R1 = Mem[R2+4]
store store R2,[R1],#4 Mem[R1+4] = R2

Branch beq,bneq,jump, … beq #imm PC = PC+#imm
Data Movement to TRF mov.gt mov.gt R1,T1 T1 = R1
Data Movement to GRF mov.tg mov.tg T2, R2 R2 = T2
Register-Register add.t,sub.t,and.t,xor.t, … xor T2,T3,T1 T1 = T2 xor T3
Register-Immediate addi.t,subi.t,andi.t,xori.t, ... addi.t T1,#1,T1 T1 = T1 + 1

cmp.g cmp.g T1,R1 compare T1 with R1
cmp.t cmp.t T1,T2 compare T1 with T2

GRF Load/Store load.g, store.g load.g [R2],R1 Mem[TLB(R2)] = R1
TRF Load/Store load.t, store.t load.t [T2],T1 Mem[TLB(T2)] = T1

mov.bg mov.bg trace,R1 R1 = trace
mov.bt mov.bt trace,T1 T1 = trace

Trace Compound ALU add.tc, sub.tc, or.tc, … add.tc trace,T2, T1 T1 = T2 + trace
Trace Compound ALU/Load add.tcl, sub.tcl, or.tcl, .. or.tcl T2, [trace],T1 T1 = T2 | Mem[trace]
Trace Compound ALU/Store add.tcs, sub.tcs, or.tcs, … or.tcs T1,T2,[trace] Mem[trace] = T1 | T2

General
Load/Store

Tag ALU

Tag Load/Store

Trace Movement

Trace Handling

Tag Check

useful because it does not pollute the status of TRF which contains the meta-data for
processor registers. It is noteworthy that the tag load/store instructions are different
from the ordinary load/store ones in that they use the tag TLB. In order to efficiently
manage tags in memory, PAU employs the tag TLB proposed in Harmoni [Deng and
Suh 2012] that translates a data address to a tag address. By utilizing the specialized
logic, the tag load/store instructions can be performed with the low address translation
overhead.

Lastly, the execution traces from the host should be handled in PAU to follow the
program execution flow. For this purpose, the trace handling instructions are provided.
Recall that the traces are located in the trace buffer and accessed sequentially in order.
In the trace handling instructions, the buffer is regarded as a register. To move a trace
from the buffer to GRF/TRF, PAU supports two types of move instructions; mov.bg
and mov.bt. The move instructions can be used when the trace should be further ma-
nipulated or interpreted to extract the required information. Also, there are a set of
instructions, called the compound instructions, which take a trace as an operand. They
substantially reduce the number of instructions to be executed when a trace from the
buffer is used as an operand in tag updating. For example, in DIFT, memory addresses
of store instructions are transferred to PAU as execution traces. In this case, the trace
would be used as a destination operand in tag computations. If we would not have
the compound instructions, the computations should require five TPC instructions as
follows.

— instruction executed by the host : st [%g1], %g2
— execution trace : address value in register %g1
— tag propagation rule : Tag[Mem addr[%g1]] = Tag[%g1] | Tag[%g2]
— DIFT analysis code in PAU :

(1) mov.bg R7 : trace movement to GRF (address in %g1)
(2) mov.tg T1, R1 : tag movement from the TRF to GRF
(3) mov.tg T2, R2 : tag movement from the TRF to GRF
(4) or R3, R1, R2 : tag propagation to a temporary register
(5) store.g [R7], R3 : update memory tags

A compound instruction, or.tcs, can substitute for the set of instructions. When it is
executed, the address in the trace is used as a store address for tag space, and the tags
in the two registers (T1 and T2) are propagated to the memory tag, while it increases
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the analysis performance. Because many analysis schemes tend to directly associate
the traces to their tags during execution, the instruction set is a good way to support
them.

4.2. TPC Microarchitecture
In this subsection, we will show the microarchitecture of TPC for the ISA design de-
scribed in the previous subsection. Figure 4 represents the internal block diagram of
TPC. In order for TPC to launch tag computation, two preliminary conditions must be
met. First, the analysis code associated with the instrumented host code has been cre-
ated and located in the main memory. Second, the host CPU has begun the host code
execution and deposited execution traces into the trace buffer, as demonstrated in Fig-
ure 3. As soon as a trace arrives, a notification signal is sent to TPC. Upon receiving
the signal, TPC reads trace entries one-by-one from the trace buffer.

Trace Buffer

Decode
Block

Tag TLB

I‐cache

Tag

ALU

TRF

Memory Tag
Writeback

Tag Processing Core

Main
Controller

T‐cache

GRF

MTF

Main Memory

AH
B 
Sl
av
e 
IF

Fig. 4. TPC microarchitecture

In order to function as a programmable processor, TPC has many general compo-
nents of RISC architecture with a three-stage pipeline: (1) fetch-decode, (2) execution,
and (3) write-back. At the first stage, TPC code is loaded from the memory and de-
coded by the decode block. Since main memory is normally implemented with external
DRAM devices, off-chip memory access latency can be a serious performance bottle-
neck. To alleviate this problem, we have implemented the instruction cache between
TPC and main memory.

At the next stage, TPC fetches operands from the two register files, and accesses the
tag space with the tag TLB and the tag cache. At the same time, TPC schedules the
memory tag fetcher (MTF) unit to fetch the tags in memory according to the memory
addresses in the trace buffer, in order to support the trace compound instructions. An
operand of the general type is also loaded from the main memory at this stage. In
our current prototype, there is no dedicated cache for the data of general type mainly
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because the operations on general data are relatively few as being compared to the
other types of operations. However, if a developer wants to cache a set of general data,
it is also possible to map them to the tag space so that they can be cached in the tag
cache. After all operands are ready, they are then forwarded to the tag ALU that takes
these tags as the operands to conduct tag computations or other general ones.

At the last stage, TPC updates the result back to either the register files or the
memory space, depending on the executed TPC instruction. Just in case the tag cache
is updated with new data, we have implemented a write-through cache scheme in order
to keep the consistency of data stored both in this tag cache and the tag space inside
main memory. Once TPC has completed the execution of all instructions fetched and
there is no trace from the host, it will be idle waiting for new traces filled into the
buffer by the host. If not, it reiterates the normal execution procedure as described so
far.

5. CASE STUDIES
The programmability of the TPC ISA offers developers a good capability of imple-
menting a variety of their DPA schemes with flexibility in software on our PAU. In
this section, as case studies, we will discuss how several well-known DPA techniques
can be realized on our prototype as software codes that are composed of the TPC in-
structions. As examples, we picked three techniques; DIFT [Newsome and Song 2005],
uninitialized memory checking (UMC) [Venkataramani et al. 2007] and bound check-
ing (BC) [Clause et al. 2007]. After briefly introducing the idea of each DPA scheme,
we will discuss our DPA implementation on PAU.

5.1. Case Study 1 : DIFT for Data Leak Prevention
5.1.1. Background of DIFT. To protect the confidential data inside computing devices,

an approach called data leak prevention (DLP) has been proposed. In the approach,
security policies defining critical information and the corresponding actions (that is,
deny/permit) on the specific output channels are forced to prevent any critical infor-
mation from flowing into the outside of devices. A common way to realize DLP has
been to use DIFT [Yin et al. 2007; Enck et al. 2010], one of the widely used DPA tech-
niques. This analysis scheme sets up rules to tag (or taint) internal data of interest and
keeps track of the taintness of their tags throughout the system [Kannan et al. 2009].
At run time, every data derived from the one with tainted tag has its tag tainted. An
alarm will be triggered as soon as any of the tainted data involves in potentially illegal
activities, such as pointing inside the code or being included in a data stream on the
output channels [Enck et al. 2010].

When DIFT is employed for DLP, the first step is to tag or taint as sensitive the input
data from sensitive sources like confidential files. Then, through code execution, the
data tags are then also propagated by tagging as sensitive the data derived from those
with tainted tags, following the tag propagation rule of DIFT. If the code makes an
unauthorized attempt to leak any of tainted data [Qin et al. 2006], a security exception
will be raised to announce the existence of data leak.

5.1.2. Tag Initialization and Check Procedures. As introduced, DIFT uses the tags to indi-
cate the taintness of the data. To support the tag-based analysis in this case study, we
assign a 1-bit tag for every host processor register and store it into our TRF in TPC.
Each 1-bit assigned to a register in TRF represents whether or not the corresponding
processor register currently holds sensitive data. Likewise, one bit is assigned for each
word in memory, and these bits are all arranged in the tag space, in a similar way to
that suggested in [Venkataramani et al. 2008].
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In general, we can divide the tasks of DIFT for DLP into the three stages: tag initial-
ization, propagation and check. In this study, the tag initialization and check stages
are executed by the OS kernel in the host processor. Depending on whether data orig-
inates from a sensitive source, the kernel initializes its tag by setting the bit on or off.
Just before data is transferred to an output channel, the kernel checks its tag to decide
if the data transfer is safe. We will discuss the tag propagation stage later in order to
first focus our discussion on these two stages which require a close interaction between
the kernel and PAU.

On a computing device, sensitive sources include GPS, files with confidential con-
tents and SIM cards with private information. In specific, in this study, we focus on
the confidential files on the system as our sensitive sources and the kernel maintain
the list of them. To monitor every access of an application to any file in the system, we
modified open system calls in our Linux prototype system. When one of applications
opens a file by invoking the system call, the kernel determines if the file is in the list.
If so, the file pointer will be tainted by setting its bit on. For this tag initialization,
the kernel function tag init is invoked. In our system on the host processor, the func-
tion is implemented as a device driver interacting with our PAU. Its task is reporting
to PAU the location (i.e., register number or memory address) of the data that must
be tainted. Depending on its type, the location is written to either source taint reg or
source taint addr, both of which can be configured via changing the values of memory-
mapped configuration registers in the main controller of PAU. Then PAU responds the
report from the kernel by tainting the tag for the location.

For the tag check stage, we also have embedded a new function tag checking into the
system calls involved in network packet generation. When data is about to be trans-
ferred outside as a network packet through an output channel, this kernel function
checks the data tag with the assistance of PAU. As the first step of this check, the
function writes the data location into either sink taint reg or sink taint address in the
configuration registers, similarly to the tag initialization stage. Then it sends to PAU
the inquiry of the current tag value at this location. Upon receiving the inquiry, PAU
retrieves the value from either TRF or tag cache, and interrupts the host to notify the
result back to the kernel. Now the kernel knows whether or not the data of interest is
from sensitive sources.

5.1.3. Tag Propagation. As explained in Section 2, in our approach, the time-consuming
part of DPA is delegated to PAU to relieve the burden of the host processor and it cor-
responds to the tag propagation computations in DIFT for DLP. To carry out the propa-
gation task on our PAU, TPC code includes propagations rules and operands extracted
from the original program run on the host processor. When our in-house instrument
tool generates the code, most required information like register operands can be stat-
ically extracted and embedded in the generated code. But some dynamic information
that can only be resolved during code execution is still missing in the generated code.
In our DIFT implementation, such information includes (1) an execution path of the
original program and (2) memory addresses of load/store instruction. Currently, this
missing information is supplemented and sent as execution traces at run time by the
host processor to PAU, hence helping PAU have the enough information to track tag
propagation at any circumstance.

Figure 5 shows a segment of the original program in (a), its associated pseudo prop-
agation code in (b) and the realized TPC code in (c). As can be seen from (b), a pseudo
instruction is comprised of a propagation rule and operands. They are to specify the se-
mantics of tag propagation by the matching instruction in (a). For instance, the third
DIFT instruction in (b), which is parallel to the sll instruction in (a), has ”%o1 and
%g1” as operands and “copy from the right tag to the left” as a rule. When the original
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instruction is executed, so does the pseudo instruction and thus if the tag of %g1 is
tainted, %o1’s tag will also be tainted because of the ‘copy’ tag propagation rule.

Original Code
ld [%i0], %g1
add %g1, 3, %g1
sll %g1, 2, %o1
add %o1, %g1, %o1
st %o1, [%l1]

Pseudo Propagation Code
tag[%g1] = tag[%i0] or tag[mem_addr[%i0]]
tag[%g1] = tag[%g1]
tag[%o1] = tag[%g1]
tag[%o1] = tag[%g1] or tag[%o1]
tag[mem_addr[%l1]] = tag[%o1] or tag[%l1]

(a) (b)

TPC Code
or.tcl T1,[trace],T24
(unnecessary)
mov.t T1,T9
or.t T9,T1,T9
or.tcs T9,T1,[trace]

(c)

Fig. 5. A TPC code example for DIFT computation

In the analysis task of PAU, the propagation rules are expressed by the TPC in-
structions as given in Figure 5 (c). For two load/store instructions in the host code,
the propagations are processed by the compound instructions since they make use of
the trace in the trace buffer to figure out the location of tags. As seen in this exam-
ple, our compound instruction can reduce the number of instructions required for the
trace handling. For the other ALU operations in the host, the tag ALU instructions are
used to propagate the tags between the tag registers. However, for the second instruc-
tion add, the corresponding TPC instruction is omitted because it does not change the
tag status of PAU. In our software implementation, we have made efforts to remove
these unnecessary propagation operations, being empowered by the programmability
of TPC. The TPC codes are generated by our in-house instrument tool and allocated to
TPC code memory region before the execution.

During the host program execution, PAU expects execution traces from the host
processor to compensate for the missing dynamic information that is indispensable for
correct operation. The load/store addresses can be easily gathered into a trace since
they are readily computable from the host program at run time. As for the execution
path, we may express it with a set of basic blocks and edges that connect them. Thus in
our implementation, we assign every basic block a unique identification (ID) number,
and during code execution, let the host processor deliver the ID of a block to PAU so as
to pinpoint the exact block that the host execution path currently comes to.

As seen in Figure 1, the original program installed on the host has to be instru-
mented to enable communication with PAU for orchestrating analysis operations in
our solution. Figure 6 presents an example of the instrumented host code generated
from the original one in Figure 5. It also displays the overall flow of trace transactions
for DIFT via the trace buffer between the host code and TPC. In the example, note
that four additional instructions, being marked with boldface, have been inserted to
the original code after instrumentation. They are added to generate three traces, one
for the current basic block information (trace #0), and two for memory addresses used
by load/store instructions in the same block (traces #1 and #2). Suppose that the code
is running on the host and the execution path comes to this block LL5. Then, mov
instruction (1) is first executed to initialize register %g3 with the basic block ID. As
can be seen in the example, register %g4 is memory-mapped to the physical address
of the trace buffer, thereby providing a direct way to store the trace in %g3 using st
instruction (2). In a similar manner, traces for memory addresses in the basic block are
also pushed into the trace buffer with the instructions (4) and (9). The stored traces
are consumed by TPC for tag propagation.

In order to conduct the analysis task for DIFT with the basic block ID, we decom-
posed the TPC code into multiple regions, each containing a single basic block of TPC
instructions, as Figure 7 depicts. Each region includes a header for its basic block.
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.LL5:
(1) mov 0x5, %g3 // Basic Block ID : 5
(2) st %g3, [%g4] // Trace #0 : Basic Block ID 
(3) ld [%i0], %g1
(4) st %i0, [%g4] // Trace #1 : Load address is pushed.
(5) add %g1, 3, %g1
(6) sll %g1, 2, %o1
(7) add %o1, %g1, %o1
(8) st %o1, [%l1]
(9) st %l1, [%g4] // Trace #2 : Store address is pushed.

TPC

Trace Buffer

NOTE : Register g4 is preset to the physical address of trace buffer.

Fig. 6. Execution trace communication for DIFT

The basic block header holds the useful information for PAU (e.g., the number of TPC
instructions and the number of load/store). At the beginning of the TPC code region,
there is a lookup table, called the basic block jump table, which is used to access every
basic block in the TPC code. During execution, when TPC receives a trace indicating
a basic block ID, it accesses the basic block jump table. Then, it jumps to the address
and finds the TPC instructions within this basic block. After finishing the block, TPC
will find another trace in the buffer and continues the analysis if the buffer has one.

...

Basic Block n JUMP ADDR.

Basic Block n+1 JUMP ADDR.

...

Basic Block n Header

TPC Instruction 0

TPC Instruction 1

...

TPC Instructions for Basic Block n Region

TPC Code Layout

@Basic Block n JUMP ADDR
The number of TPC instructions,
Architecture-dependent information
...

Tag propagation rule and operands
ex) tag[r0] ← tag[r1] | tag[r2], ...

Basic Block Jump Table

Fig. 7. TPC code layout

5.2. Case Study 2 : Uninitialized Memory Checking
5.2.1. Background. As the second implementation example of our case study, we chose

UMC which was firstly proposed in [Venkataramani et al. 2007]. The objective of this
DPA technique is to detect a read access to the memory region where initialization is
not performed yet. Since the read event to an uninitialized location causes a memory
error which is often exploited by attackers as a security hole, it is vital to detect and
remove such cases in program execution for security purposes [Venkataramani et al.
2007].

In Figure 8, we depict the state transition diagram of the UMC scheme to explain
the principle of the DPA. As explained in Table I, UMC augments an 1-bit tag for
every word in memory to indicate whether the corresponding location is initialized or
not. When the system is reset, every memory location is assumed to be uninitialized.
If a value is stored to a certain memory location, the state of the location is transited
from Uninitialized to Initialized as shown in Figure 8. Once a memory location enters
the Initialized state, both load and store operations from/to the location are permitted
. However, any load access to a location with Uninitialized will be called an error. Now
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let us explain how this memory checking model can be mapped to the tag-based DPA
using PAU.

Uninitialized Initialized

Load or Store
Read from

Uninitialized Memory

Load

Store

Fig. 8. State transition diagram for UMC

5.2.2. UMC Implementation. To carry out UMC on PAU, we assign a 1-bit tag for every
word in the application memory region and store the set of tags into the tag space in
the main memory. As explained above, the tasks of UMC are mainly divided into two
parts; tag initialization and check. In our UMC implementation, both the operations
are composed of TPC instructions with the execution traces delivered from the host as
input. For every memory write on the host, the write address is transferred to TPC
from the host. Then, the tag corresponding to the address is set to ‘1’ in order to in-
dicate that the location is initialized. This is the tag initialization process. Likewise,
when the host reads a memory location, the address is also delivered to TPC. At this
moment, TPC checks the value of the corresponding tag and if it is not ‘1’ (i.e., Unini-
tialized), an exception is raised to inform the host of an unallowable memory access.

Figure 9 illustrates a segment of the original example program in (a), its associated
pseudo UMC code in (b) and the implemented TPC code in (c). When the original code
is executed on the host, TPC code also runs in parallel to check whether the memory
access rule enforced by UMC is violated or not.

For each load instruction in the host code, the tag check is performed by three TPC
instructions. At first, a compound instruction, “mov.tcl” is used to read a trace in the
trace buffer which contains the accessed address and load the memory tag correspond-
ing to it. Then, a comparison between the memory tag and the register R1 is performed
by the “cmp.g” instruction. To mark the Initialized state, the register R1 is set to ‘1’.
Thus, if the comparison between the tag and R1 produces the “not equal (ne)” con-
dition, it implies that the load instruction attempts to read an uninitialized memory
location. For these cases, according to the rule of UMC, TPC jumps to an exception rou-
tine to trigger an alarm by sending an interrupt to the host. In this example, the label
for the routine is named as “trigger alarm”. On the other hand, for each store instruc-
tion in the host code, the tag initialization is performed by the mov.tcs instruction. In
our example, the register T2 is also preset to ‘1’ to indicate the Initialized state. By
writing the value (i.e., 1) to the memory tag of the delivered address, TPC carries out
the tag initialization process.

5.3. Case Study 3 : Bound Checking
5.3.1. Background. As the last implementation example, we chose BC, which is a DPA

technique proposed in [Clause et al. 2007]. The objective of this scheme is to check
whether or not each memory operation with a pointer accesses the location within the

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 4, Article 39, Pub. date: March 2015.



39:18 I.Heo et al.

Original Code
mov #0x74, %i0
ld [%i0], %g1
mov #0xffff, %o1
st %o1, [%i0]

Pseudo Tag Initialization and Check Code
(unnecessary)
if (tag[mem_addr[%i0]]!=1) trigger_alarm
(unnecessary) 
tag[mem_addr[%i0] = 1

(a) (b)

TPC Code
mov.tcl [trace],T1
cmp.g T1,R1
bne trigger_alarm
mov.tcs T2,[trace]

(c)

NOTE : Register R1 in (c) contains the value ‘1’.
NOTE : Register T2 in (c) contains the value ‘1’.

Fig. 9. A TPC code example for UMC computation

legitimate range allocated by the program for the pointer. If it ever makes an out-of-
bound access, BC reports the access as a memory error since it can be exploited as a
security vulnerability.

The tasks of BC can be divided into three stages; tag initialization, propagation
and check. To perform the procedure, BC augments the tags for both pointers and
corresponding memory locations [Deng and Suh 2012]. Whenever a memory region is
allocated at runtime, BC initializes the tags for both the memory locations and the
pointer to the starting address. In a high-level language like C/C++, special functions
are provided for memory allocation, such as malloc. They usually take the size of the
requested memory as input and return the starting address of the allocated region.
Every time the functions perform their task, BC identifies the range of the allocated
memory in the form of “[p, p+size)”, where p is the starting address returned and size
is the size of the allocated region [Clause et al. 2007]. Then, BC assigns the same tag
value to both the tags of the allocated memory locations and the tag of the register
which contains the returned pointer.

During the execution, the pointer tag is propagated to the other storage location
in accordance with the propagation rule of BC [Clause et al. 2007]. On each memory
instruction such as load or store, the register tag for the pointer is compared with the
tag of the accessed memory region. Obviously, the two tags must be identical for in-
bound accesses but different for out-of-bound accesses [Clause et al. 2007]. Therefore,
only when the tags are identical, the memory access will be granted. Otherwise, BC
reports the memory error.

5.3.2. BC Implementation. To implement BC in this study, we assign 4-bit tags for mem-
ory locations and pointers as in [Deng and Suh 2012]. In Figure 10, we depict the host
code in assembly level in (a), the pseudo tag initialization/check code in (b), and the
pseudo tag propagation code in (c). In (a), a memory-allocation function, malloc, is
invoked at line 6. The parameter of the function is the size of the requested memory
and set at line 5 (in register %o0). After the malloc allocates the memory region, the
starting address for the region is written to the register %o0 according to the calling
convention. At this time, the host transfers two traces to the TPC; the size of the region
and the value of the pointer. Then, TPC performs the tag initialization which assigns
the same tag values to the tags for the allocated memory region and the tag for the
corresponding register %o0 as shown in (b).

After that, during execution, the pointer tag is propagated to other registers or mem-
ory locations as shown in (c). The tag propagation rule of BC is almost the same to that
of DIFT. Then, when the host attempts to access the allocated memory at line 17, with
the delivered trace which contains the accessed address, TPC checks whether or not
the tag of the pointer (the tag for %g1) is matched to the tag of the accessed memory
location. If the both tags do not match, an exception is raised and the interrupt to the
host is triggered.
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Original Assembly Code

main:
1. save   %sp, -112, %sp
2. mov 10, %g1
3. st %g1, [%fp-8]
4. ld [%fp-8], %g1
5.     mov %g1, %o0 ; %o0: requested

; memory size 
6. call    malloc, 0
7. nop
8. mov %o0, %g1 ; %o0: returned pointer
9. st %g1, [%fp-4]
10. st %g0, [%fp-12]
11. b      .LL2
12. nop
.LL3
13. ld [%fp-12], %g1
14. ld [%fp-4], %g2
15. add   %g2, %g1, %g1
16. ld [%fp-12], %g2
17. stb %g2, [%g1]
18. ld [%fp-12], %g1
19. add   %g1, 1, %g1
20. st %g1, [%fp-12]
.LL2 
21. ld [%fp-12], %g1
22. ld [%fp-8], %g1
23. cmp %g2, %g1
24. bl .LL3
25. nop
26. ld [%fp-4], %o0
27. call    free, 0

(a)

Tag Propagation

main: 

tag[%g1] = tag[%o0]
tag[mem[%fp-4]] = tag[%g1]
tag[mem[%fp-12]] = tag[%g0]

.LL3
tag[%g1] = tag[mem[%fp-12]]
tag[%g2] = tag[mem[%fp-4]]
tag[%g1] = tag[%g2]+tag[%g1]
tag[%g2] = tag[mem[%fp-12]]

tag[%g1] = tag[mem[%fp-12]]
tag[%g1] = tag[%g1]
tag[mem[%fp-12]] = tag[%g1]

.LL2
tag[%g1] = tag[mem[%fp-12]]
tag[%g1] = tag[mem[%fp-8]]

(b)

Tag Initialization and Checking

main: 

// before calling malloc
n = %o0 ; n = 10 (memory size)

// after calling malloc
tag[%o0] = tag_1;
foreach i (0..n-1) {

tag[mem[%o0+i]] = t1;
}

.LL3

If (tag[%g1]!=tag[mem[%g1])
Exception!!

.LL2

// after calling free
foreach i (0..n-1) {

tag[mem[%o0+i]] = 0;
}

(c)

Fig. 10. A pseudo code example for BC

Finally, when the host executes the deallocation-function free at line 27, the tags as-
sociated with the deallocated memory area are cleared. As discussed in [Clause et al.
2007], the pointers that were tainted for the deallocated region might not be cleared.
This is because, with the uncleared tag, BC can detect the memory accesses to the
deallocated region by checking if the both tags have the same value. For our BC im-
plementation, we do not describe the detailed TPC instructions that correspond to the
pseudo code in Figure 10 because the most parts of the implementation are the same
to our other DPA examples. For the tag initialization and the tag check procedures,
our BC implementation is almost the same to the UMC implementation. On the other
hand, for the tag propagation process, the most TPC codes used for DIFT were re-used
for BC.

6. IMPLEMENTING OPTIMIZATIONS FOR DIFT WITH TPC
In our case studies, we have clarified how different DPA techniques can be realized
on PAU simply by programming the algorithms. In this section, we will present an-
other practical example where the programmability of TPC can be well exploited. Dis-
cussing the DIFT implementation in Section 5, we explained the basic instruction-
level tag propagation for DIFT. However, since the instruction-level tracking incurs
too much overhead, several previous studies on DIFT have centered their efforts on
the overhead reduction by adaptively choosing coarser granularities (i.e., basic blocks
or functions) [Zhu et al. 2009; Qin et al. 2006]. In this section, we will show that these
optimizations can be adopted into our DIFT implementation with the programmabil-
ity of TPC. By doing so, once an application is chosen to be monitored, DIFT algorithm
running on TPC can find optimal code granularities of tracking operations for each
different part of the application. In the followings, we will discuss how code analysis
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information is applied to help our DIFT implementation to adaptively choose optimal
granularities for tag propagation within individual basic blocks or functions such that
data leaks can be prevented while computation overheads are minimized. We will also
describe how our PAU supports multi-level tag propagation efficiently in hardware.

In an attempt to choose optimal granularities for tag propagation within an appli-
cation, we first divide application code into functions of three categories as follows,
referring to the prior researches on DIFT [Qin et al. 2006; Zhu et al. 2009]:

1. Their output tags are independent of input tags.
2. Their tag propagation behaviors are known a priori and so summarized in a

well-defined form.
3. None of the above.

For categories 1 and 2, tag propagation can be optimized by either skipping the com-
putation completely or doing efficient function-level computation with only a few TPC
instructions and execution traces, thus relieving the computation loads from PAU. For
the last category, exhaustive finer-grained computations are inevitable since intensive
monitoring is mandatory due to the nature of these functions. Fortunately in our DIFT
implementation, we can still hinge the optimization of these heavy computations on
our PAU which helps us not only to accelerate instruction-level computation but also
to enjoy faster block-level computation for some parts of the functions in this cate-
gory. In the followings, we will discuss our optimization strategies according to these
categories.

6.1. Function Level Tag Propagation Optimization
Given a function of category 1 or 2, the whole tag propagation can be virtually turned
off even though a small number of TPC instructions along with traces still need to be
executed to fulfill complete tag propagation for those in category 2. Since huge perfor-
mance gain can be obtained via function-level tag propagation, we try to maximize it
by classifying as many functions as possible into categories 1 and 2 during our offline
binary translation. This classification can be done by adopting traditional static anal-
ysis [Zhu et al. 2009; Saxena et al. 2008]. Another way to achieve it might be collecting
a list of highly utilized functions encountered in applications such as library functions
whose semantics are also well known and defined. For this purpose, we profiled a set of
real programs in order to choose such functions that consume most time in them. When
a function is found to be of category 1 or 2, we construct a function summary which
is composed of the function name, TPC instructions and the code for execution traces
that will be added to the original binary for the function. These summaries are created
into the function summary table (FST). During binary translation with the original
application, every function name in the code is brought to see if any function summary
in FST has the name. If so, our instrument tool uses the information in the summary
to produce the optimized TPC code as well as the host code that is instrumented to
generate execution traces.

We present a code example in Figure 11 to explain in more detail how our adaptive
multi-level DIFT is applied. Figure 11 (a) shows the original application code, where
the invocation to the malloc function at line (3) takes the size as an input and returns a
pointer to the allocated memory space as the output. A simple analysis on this function
may easily reveal that the output tags cannot be derived from the input one because
the resulting pointer and memory locations are not data dependent on the input size.
As a consequence, the function should belong to category 1 by definition, and so its
name has to be found in FST. As shown in the example, we see that our instrument
tool produces neither code for traces nor for DIFT to save our computing resources,
according to our optimization policy.
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Fig. 11. An example for adaptive multi-level tracking

We assume that the function foo at line (7) is of category 2. Then, we can apply
function-level DIFT to the function, as we explained. Therefore, small numbers of ex-
ecution traces and TPC instructions are enough for complete tag propagation within
foo. The figure shows that our instrument tool generates only two traces and four TPC
instructions referring to FST. Figure 11 (b) and (c) respectively depict execution traces
and TPC instructions generated after the multi-level tracking optimizations. Now no-
tice that, in (b) for foo, the function ID is assigned in the first entry of the trace buffer.
Similarly to basic block IDs in Section 5, a function ID is used to point PAU at the
position where its TPC code starts to execute.

The shaded regions in Figure 11 represent the function-level tag propagation for
the functions of categories 1 and 2. This clearly assures our argument that function-
level optimizations improve the performance of both the host processor and PAU by
drastically reducing or eliminating the computation loads due to execution traces and
TPC instructions.

6.2. Block Level Tag Propagation Optimization
Although function-level tag propagation has a great affirmative impact on perfor-
mance, all functions cannot take such benefits. Not surprisingly in real applications,
a majority of functions fall into category 3. In principle, these functions necessitate
instruction-level propagation, which will slow down the processing speed. To miti-
gate the overhead and further improve the DIFT performance, we exercise a coarser-
grained tag propagation on some basic blocks dynamically during code execution. The
optimization technique on block level was proposed in LIFT [Qin et al. 2006]. The basic
idea is that the whole tag propagation in a basic block can be safely precluded if all the
live-in/out rags of registers and memory locations into/from the block are untainted
(i.e., the tag bits are all set off) at the boundary of the basic block. In LIFT, the decision
is made just before the host CPU enters the entry of each block at run time.

In our work, we also implement and apply the same optimization scheme on our
DIFT. The main difference between ours and LIFT is that the decision for every basic
block is performed by PAU in our work. Consequently, this makes the host CPU to be
liberated from the decision task, which otherwise slow down the host performance due
to the computation overhead required for the task (e.g., instructions for managing and
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checking the relevant tags, context switches for preserving the host program’s states).
That is, whether or not a basic block satisfies the above conditions, the host proceeds
with its normal execution of the instrumented binary for this block, as described in
Section 5. At the same time, TPC would extract from the trace buffer the execution
traces that were issued from the host at the beginning of the current block. Recall that
whenever TPC enters a new basic block, it reads the block ID from the first trace to
execute the TPC instructions in the block. At this moment, it will examine all live data
tags crossing the block boundary. If none is tainted, TPC just skips the execution of
this block and be ready to extract new execution traces for the next block as directed
by the host.

To enable this block-level optimization, we need to collect a summary about live
tags around each block. For this, we have augmented our instrument tool to support
live range analysis that identifies the live register tags coming into/out of every basic
block, and puts them into the live list attached to each block. Assuming that nr is
the total number of registers, the live list is a bitmask of the size nr bits. If a bit is
set to 1, this represents that the corresponding register tag is alive at the entry of
the basic block. By simply reading this list, TPC can determine the liveness of all
register tags with ease. Contrary to the case of register tags, we do not apply static
analysis to identify the live tags of memory locations obviously because exact memory
addresses referenced in the code cannot be statically known in most cases. Therefore
in our system, TPC collaborates with the host to dynamically figure out the liveness of
memory tags at run time. To attain this objective, it accepts from the host all memory
references in a basic block through the trace buffer.

Figure 12 displays a small decision logic that is vital to TPC’s taint check of each
live register or memory tag, which in turn collectively leads to the final decision on
the applicability of block-level optimization to the current block. This logic determines
whether live register tags are tainted or not by performing bitwise AND operation
between the live list from the TPC code and the contents of TRF which is also an nr-bit
bitstream of tags of registers. If the result of this operation is zero, all the live register
tags are untainted. Live memory tags should also be considered by accessing the tag
cache with the addresses stored in the trace buffer. As shown in Figure 11, the number
of memory addresses to be handled in the block is delivered as the execution trace
(basic block ID and the number of memory addresses are encoded to a word). Thus,
TPC can know how many memory tags should be considered for the decision. Since the
tag cache has a single read port, it may take multiple cycles to load all memory tags
depending on the number of memory addresses in the trace buffer. Finally, if all the live
tags are declared untainted, TPC bypasses time-consuming instruction-by-instruction
tag propagation inside the block, just waiting for the next direction from the host.

In Figure 11, we can see an example of block-level tag propagation within the func-
tion bar. Let us assume that bar is of category 3. Then, this function would not be
found in FST as defined earlier. Instead, the instrument tool generates the TPC code
in which the live list for each basic block in bar is attached to its entry. The tool also
produces an instrumented code that will run on the host. Suppose that the host is
about to execute the basic block BB3 at line (11). At that time, TPC is ordered to ex-
ecute the TPC code at the same line. As the first step, TPC has to extract the live list
from the code, which is a bitmask 11010010 in this example. Then, it will compare it
with the contents of TRF shown in Figure 11 (d). Simultaneously, the memory tag at
address 0x20000000 is also retrieved from the tag cache shown in Figure 11 (e). We
can successfully verify that all the tags are untainted in this example. This means that
the entire tag propagation in the basic block can be safely omitted. Figure 11 exhibits
that all TPC instructions for the block BB3 are crossed out to indicate that the entire
code execution on TPC is bypassed. This example shows that our block-level optimiza-
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tion can enhance the DIFT performance with the cooperation of software analysis and
hardware support.

BB Header
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Fig. 12. The decision logic for block-level optimization

7. EXPERIMENT
7.1. Prototype System
To evaluate our approach, we have developed a full-system FPGA prototype, where
the host processor is the SPARC V8 processor, a 32-bit synthesizable core [Manual
2004] which uses a single-issue, in-order, 7-stage pipeline. It has separate 16K-byte
2-way set associative instruction and data caches. The trace buffer has been imple-
mented to accommodate at most 64 execution traces (i.e., 64x32bit) passed from the
host. The architecture of our PAU follows the description in Section 3 and 4. It has
the tag cache which is a 512-byte, 2-way set-associative cache with 8-byte cache lines,
and the instruction cache which is a 4K-byte, 2-way set-associative cache with 32-byte
cache lines. The bus compliant with AMBA2 AHB protocol [Limited 1999] is used to
interconnect the all modules in our prototype system. Linux 2.6.21.1 is used as our OS
kernel and a small portion of it has been modified to provide supports for our hardware
engine as described before. Based on the parameters for the prototype as described
above, we synthesized our DPA engine and verified it on a FPGA prototyping board
with a Xilinx XC5VLX330 FPGA and 64MB external SDRAM.

7.2. Synthesis Results
When our hardware engine is employed in the systems that have severe resource con-
straints such as mobile devices, the area and power budgets of PAU are also strictly
limited. Thus, in the systems, the area/power efficiency of the hardware engine is the
foremost priority. In order to assess the area efficiency of our PAU, we quantified the re-
sources necessary for PAU including the tag cache, instruction cache and trace buffer,
in terms of gate counts using Synopsys Design Compiler [Guide 2009] with a com-
mercial 45 nm process library. In Table III, the number of gates required for each
component of PAU is described and compared to those of the baseline system including
the host processor. The total area overhead for PAU is about 14.47%, as compared to
the baseline system. Considering that our host processor is a very small SPARC RISC
processor, we assure that the area overhead for PAU is not critical to be deployed in
the commercial platforms.
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As shown in the table, PAU can be divided into four parts; the components for tag
computation which might correspond to the DPA engines in the hardware only ap-
proach [Deng and Suh 2012], the components added for the programmability, the trace
buffer and the remaining parts such as AHB interface and interrupt generator. To sup-
port a wide range of DPA schemes with the programmability, PAU requires additional
resources as described in the table (especially for the I-Cache). Although the amount
of resources seems to be substantial, the total area overhead of PAU is not so huge as
stated above.

To estimate the power consumption of PAU, we simulated our framework on Mod-
elsim [Graphics 2007] and run the power estimation tools in Synopsys Design Com-
piler [Guide 2009] using the simulation result as an input vector. As a result of ex-
periment using a commercial 45 nm process library, the power consumption of PAU is
estimated to be 224.2 mW at 1 GHz operating clock frequency. Since it is acceptably
small when compared to the power consumption of SPARC host processor (940 mW
at 1 GHz), our PAU can be deployed in the commercial SoC platforms which have the
limited power budget.

Table III. Synthesis result

Category Component Gate Counts
SPARC V8 Core (Host Processor) 1761079.777
Bus components (AHB Buses + AHB/APB bridges) 2137.61
Memory Controller 3812.52
Peripherals (TIMER, UART, and etc.) 3304.15
Total Baseline System 1770334.057
Tag Register File (TRF) 957.4992
Decoder 2305.6902
Tag Cache 13253.2245
Tag ALU 4932.274
Tag TLB 10266.833
Total Resources for Tag Compuation 31715.5209
General Register File (GRF) 950.1425
Main Controller 1339.0524
Memory Tag Fetcher (MTF) 13253.2245
I-Cache 203811.3338
Total Resources for Programmability 219353.7532
Trace Buffer (16 x 32-bit) 3425.1589
ETC (including AHB Slave Interface) 1683.0324
Total Resources for PAU 256177.4654
% PAU over Baseline System 14.47%

Baseline
System

PAU

7.3. Performance Evaluation
We have measured the performance improvement of our hardware engine over
the previous approaches by choosing applications from the mibench benchmark
suite [Guthaus et al. 2001] and comparing in performance with the four configura-
tions. In this experiment, the configuration NC stands for native code which executes
the original codes on the host CPU with DPA disabled. This is used as baseline, and
all the other configurations are set with DPA enabled. For SWD, not only the code of
original program but also the code for DPA are executed on the host core. Thus, when-
ever the DPA procedure is needed at a certain point of the program, the host invokes
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the function which performs the tag computations. For MPD, to improve the perfor-
mance, the tag computations for DPA are offloaded to another general purpose core
which is dedicated for the analysis, called analysis core. However, the handling codes
for sending the execution traces still needs to be invoked on the host since we assume
that the multiprocessor approach in our experiment does not have the dedicated hard-
ware queue such as the trace buffer. The register file of the analysis core acts as the
shadow register file to store the tags of the host registers, as proposed in [Nagarajan
et al. 2008]. For this reason, the analysis core should preserve and restore the states of
the registers when the DPA needs to use the registers for other general computations,
such as trace handling. Lastly, for the configuration PAUD, the tag computations are
offloaded onto our PAU. With the help of the dual register file architecture (that is,
GRF and TRF), PAU can remove the overhead of the context switches which is paid in
MPD, because it uses the registers of the GRF for general computations. Also, the host
can reduce the overhead for transferring execution traces since the trace buffer can
be accessed by simply storing the traces to the predefined memory address, instead of
executing the codes for trace communication.

In Figure 13, we depict the performance comparison among the four configurations.
We have measured the average of host execution time for eight applications in mibench
(i.e., dijkstra, bitcnt, rijndael, sha, blowfish, strsearch, patricia and qsort) and they
are normalized to that of NC. SWD runs on average 7.3-24.1 times slower than NC
because the additionally instrumented codes for DPA are performed by the host. In
MPD, an additional general purpose core is dedicated to perform DPA computations
but the slowdown of the multiprocessor approach reaches up to 4.9-5.9 times of NC due
to the inefficient structure of general cores. To the contrary, PAUD substantially cuts
the overhead down to 52.0-82.8% of NC for the three DPAs through the acceleration
with PAU. It is 4.7-13.6 times faster than SWD. Even from MPD, PAUD enhances the
analysis performance up to 2.7-3.8 times. The results clearly shows that our approach
can be effective in leveraging DPA performance.

NC SWD MPD PAUD NC SWD MPD PAUD NC SWD MPD PAUD
DIFT UMC BC

Host Instrument 0.00 22.48 3.97 0.73 0.00 6.29 4.90 0.52 0.00 23.12 3.96 0.83
Original Program 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Fig. 13. Comparison of execution time (normalized to native)
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So far we have assumed that PAU and the host processor operates at the same clock
speed, but this assumption might not apply to recent systems in which the host oper-
ates far faster than other modules [Samsung Electronics co. 2012; ARM co. 2012]. In
this environment, our host would swiftly produce execution traces at a rate more than
PAU could consume. This may cause the host to stall frequently, thereby slowing down
the overall program execution. To remedy this problem, PAU should either operate at a
higher frequency or have a bigger trace buffer that may accumulate more traces. How-
ever, these remedies might be unacceptable since they raise hardware costs. Therefore,
our PAU should be able to tolerate the performance gap between the two processing
cores.

To certify that our PAU can circumvent this very problem, we conducted an experi-
ment with the configuration PAUD, under the condition that the host processor runs
2 to 8 times faster than PAU as done in [Kannan et al. 2009]. Figure 14 depicts the
execution times of PAUD normalized to NC when the performance gap is increased. As
shown in the figure, the execution time of PAUD is affected by the three component;
the execution time of original program, the overhead incurred by the instrumenta-
tion on the host code and the synchronization overhead due to the performance gap
between the host and PAU. For the three DPA techniques, when PAU and the host op-
erate at the same frequency (see 1X in Figure 14), the performance of PAUD is affected
only by the host instrument. That is, PAU can keep up with the processing speed of
the host at this condition. However, as the performance gap increases, the synchroniza-
tion overhead is also increased since the relative computation power of PAU decreases.
Nevertheless, the amounts of increased overhead are less than 30% for the three DPAs
even when the performance gap reaches up to eight times. The results imply that our
PAU is applicable to a broad range of platforms even when the performance ratio be-
tween the host processor and PAU becomes increased, with the help of the specialized
architecture of PAU.
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Fig. 14. Execution time of PAUD when PAU is paired with higher frequency host processor(normalized to
native)
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In Section 6, as a practical example where the programmability of TPC can be uti-
lized, we introduced the multi-level tracking optimizations for DIFT. In Figure 15, the
performance improvement achieved by the optimizations is shown, for the eight appli-
cations of mibench. The configuration PAUD multi is the optimized DIFT implementa-
tion explained in Section 6. For the fair comparison, we also apply the optimizations to
other approaches. In the two configurations, SWD multi and MPD multi, the same op-
timizations are added to SWD and MPD respectively. The performance improvement
of the block-level optimization is affected by the taintness of the input [Qin et al. 2006].
To maximize the performance improvement, we assume that the input files accessed
by the applications are not the confidential ones so that the tag for the input is not set.
Thus, virtually all basic blocks are skipped by the block-level optimization although
the computations for the decision are still required.
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Fig. 15. Comparison of execution time for DIFT implementations (normalized to native)

As depicted in Figure 15, the adoption of the optimizations improves the perfor-
mance in all the approaches compared in our experiment. SWD multi is about 4 times
faster than SWD, and MPD multi improves the performance of MPD by 31.9%. In our
approach with PAU, the performance of PAUD is also enhanced by 18.8% with the opti-
mizations and it consequently reduces the DIFT overhead to only 45.7% in comparison
with NC. In Figure 16 shows the execution time of PAUD multi for various perfor-
mance gap ratio between the host and PAU. As shown in the figure, the optimizations
applied to our DIFT implementation can reduce the DIFT overhead substantially. Even
when the performance ratio is 8x, the increased execution time is about 33.1%. The re-
sults show that the programmability of PAU can help our DIFT implementation to
improve the performance by taking the advantage of software’s flexibility and to be
more tolerable to the performance ratio.

8. RELATED WORKS
Most software DPA approaches [Devietti et al. 2008; Savage et al. 1997; Seward and
Nethercote 2005; Newsome and Song 2005; Cheng et al. 2006; Yin et al. 2007; Qin
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Fig. 16. Performance overhead of PAUD multi when PAU is paired with higher frequency host proces-
sor(normalized to native)

et al. 2006; Zhu et al. 2009] have relied on binary-code instrumentation to augment
the codes for DPA to carry out their analysis schemes. However, even in simple anal-
ysis such as array bound checking, it requires substantial analysis computations [Ti-
wari et al. 2009]. For example, Memcheck [Seward and Nethercote 2005] uses dataflow
tracking to detect a wide range of memory errors in programs as they run. Under the
analysis, the monitored program typically run 20-30 times slower than normal. Al-
though it is paid at test-time, the performance overhead sometimes limits the amount
of analysis due to restricted time for the software development, thereby making it dif-
ficult to remove all errors in the program. In case of DIFT, the performance overhead of
software-based solutions [Newsome and Song 2005; Cheng et al. 2006; Yin et al. 2007]
reaches up to 37 times the original code execution [Newsome and Song 2005]. Sev-
eral efforts were made to curtail the overhead with optimization techniques [Qin et al.
2006; Zhu et al. 2009], but it yet remains one or two orders of magnitude higher than
the execution time of the original program. Considering that DIFT is usually used for
runtime monitoring, the analysis performance is not acceptable level to be deployed in
real applications.

In order to improve the analysis performance, there are several software-based ap-
proaches to utilize multiprocessors [Chen et al. 2008; Nagarajan et al. 2008; Nightin-
gale et al. 2008] that are readily available in modern multicore architecture, such as
Intel i7, where each core is a GPP. The key idea here is to devote GPP cores to run
helper threads whose missions are actual analysis for the host program running con-
currently on another GPP core. For example, Speck [Nightingale et al. 2008] offers up
to 7.5X speedup with 8 cores for light-weight analyses like scanning the address space
for sensitive data. However, although they can lessen the performance overhead with
existing architectures, the achieved performance is not sufficient for more powerful
analyses, mainly because the original GPP architecture is not optimized for program
analysis in the first place [Deng and Suh 2012]. For instance, in [Chen et al. 2006;
Chen et al. 2008; Nagarajan et al. 2008], the program execution times get 3-7 times
slower when the analyses being enabled so that it is too slow to be used for runtime
monitoring. Moreover, even in test-time analyses, there is also a demand for more com-
plex analysis tools that incur overheads from 100 to 300 X [Tiwari et al. 2009; Seward
2014; Vogt et al. 2007; Mysore et al. 2008].

To mitigate the performance overhead, in several multiprocessor approaches [Chen
et al. 2008; Nagarajan et al. 2008], they modified the host CPU’s internal architec-
ture and integrated the specialized hardware modules like our trace buffer. By doing
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so, they were able to reduce the overhead to acceptable levels, which is around 50%
or less [Nagarajan et al. 2008] in DIFT problem. Nevertheless, such modifications in
these approaches also impose the same problem of the core-level approach that man-
dates the alteration of existing commodity processors.

To address the shortcoming of software-based analysis, several core-level hardware
engines have been proposed [Dalton et al. 2007; Venkataramani et al. 2008; Deng et al.
2010; Chen et al. 2008; Deng and Suh 2012; Witchel et al. 2002; Devietti et al. 2008;
Clause et al. 2007; Joao et al. 2009; Zhou et al. 2004; Meixner et al. 2007]. In those ap-
proaches, extra hardware logics customized for analysis operations are integrated into
a processor. A number of DPA schemes are supported in the core-level engine [Deng
and Suh 2012] such as fine-grained memory protection [Witchel et al. 2002], array
bound checking [Devietti et al. 2008], software debugging support [Zhou et al. 2004],
managed language support like garbage collection [Joao et al. 2009]. The main advan-
tage of the core-level approaches is that they do not need to instrument the host code
since they can extract the necessary information from the processor’s pipeline trans-
parently. Thus, they could bring the overhead down to under 5%. However, they have
a disadvantage in that invasive modifications to the processor internal (e.g., registers
and pipeline data paths) are required. In fact, modern microprocessor development
may take several years and hundreds of engineers from an initial design to produc-
tion [Deng and Suh 2012; Kannan et al. 2009]. Therefore, the substantial costs of de-
velopment to integrate the customized logic would hamper processor vendors to adopt
them, unless the necessity is clearly established.

Several previous works [Deng et al. 2010; Deng and Suh 2012; Dhawan et al. 2015]
have been proposed to leverage the flexibility to support various DPA schemes, gener-
alizing from the core-level engines. FlexCore [Deng et al. 2010] is a hybrid architec-
ture that combines a general core with a decoupled on-chip FPGA fabric. Although the
FPGA logic can be reconfigured to conduct a set of DPA schemes in hardware, the low
throughput of FPGA can cause high performance overheads [Deng and Suh 2012]. To
mend this problem, in Harmoni [Deng and Suh 2012], they proposed a high perfor-
mance and reconfigurable co-processor for a wide range of DPAs. With the considera-
tions on the tag-based DPA model, Harmoni has the specialized pipeline architecture
which can achieve very high performance, while it also has sufficient flexibility thanks
to the configurable tables in the engine. Nevertheless, as discussed in Section 1, it still
has the extendibility issues when a new analysis method is suggested.

In recent years, for DPA techniques or malware detection, the system-level hardware
engines like our PAU have been proposed, which do not require any modification on
the host core [Petroni Jr et al. 2004; Tiwari et al. 2009; Moon et al. 2012; Lee et al.
2013]. Among them, Hardgrind [Tiwari et al. 2009] is the previous work closest to ours
where the computation of an instrumented program is paralleled between the host and
the accelerator. However, since they only quantified the potential of this approach by
considering how the execution traces are delivered to the engine, the detailed structure
of the accelerator was not sufficiently addressed. On the contrary, in this paper, we
designed the detailed architecture of our PAU that supports various DPA schemes
as well as enhances the analysis performance, in order to leverage the system-level
approach.

Another difference between Hardgrind and ours is the method for the trace commu-
nication. In Hardgrind [Tiwari et al. 2009], they allocate a buffer space in the host
memory and store the traces into the region. Once the buffer is full, DMA transfer is
triggered so that the traces are delivered to the analysis engine in a bulk. As com-
pared to our approach with the trace buffer, when this transfer method is used, the
buffer access latency can be reduced because the buffer that can be cached by the host
CPU’s cache is much faster than the trace buffer located in the off-core module. On the
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contrary, the DMA-based transfer mode increases the number of the added instruc-
tions to manage the buffer in the memory. That is, there exists a trade-off between
the two overhead sources; the number of instructions and the access latency to the
buffer. In our work, we chose to use the trace buffer because the access latency of the
trace buffer located on the system bus is relatively short and it is more efficient than
the DMA-based transfer mode in our prototype. However, in desktop platforms where
PAU is implemented as a PCI card, the DMA transfer mode might be more efficient
way to communicate, as presented in Hardgrind [Tiwari et al. 2009].

As one of complementary works for our PAU, it is noteworthy that Log-Based Archi-
tectures (LBA) [Chen et al. 2006; Chen et al. 2008] proposed a decoupling execution
strategy in the context of the multiprocessor approaches while it also have core-level
logics to compress, deliver and decompress the traces of host programs. By employing
the LBA architecture, the host can deliver the traces to our engine without instrument-
ing the host code thereby improving the analysis performance. Although this architec-
ture is not yet available in the commodity market, we hope that it will be implemented
and sold as a commercial product in the near future.

In several hardware engines [Shankar and Lysecky 2009; Kannan et al. 2009; Majzik
1996], they have proposed to utilize special channels for acquiring runtime informa-
tion, without the modification on the host CPU’s internal pipeline. Although they had
to slightly modify the hardware design of host CPU to provide such channels in their
works, it is noteworthy that this problem can be resolved by incorporating the trace
interfaces available in recent commodity cores. For example, the recent ARM proces-
sors, such as Cortex-A9 or A15, include the CoreSight architecture [ARM co. 2013]
to support efficient and convenient tracing. It can provide the analysis engines with
various runtime information such as branch results, context switches and exceptions,
without incurring performance overhead for trace communication. If the interface can
be combined with the hardware engines, they can achieve high performance in DPA
computations while the system-level integration is still viable. In this context, it is
noteworthy that in Extrax [Lee et al. 2015] proposed by J.Lee et. al, the core debug in-
terface available in many CPU architectures is employed for efficient kernel integrity
monitoring. Since the interface can provide many informative signals to retrieve the
context of runtime execution without performance loss, Extrax can detect any mali-
cious attempt to compromise the kernel with negligible overhead. Although they only
focused on the kernel integrity, we believe that the use of the core debug interface can
be exploited in DPA. Motivated from this, we also have a plan to incorporate the in-
terfaces to PAU in our future work, in order to achieve both the programmability and
performance improvement.

9. CONCLUSION
This paper presented a system-level hardware engine, called PAU, which is an
application-specific programmable processor to support a wide range of DPA tech-
niques with the enhanced analysis performance. PAU can speed up the analysis perfor-
mance with the help of specialized architecture based on the tag-based model, which
otherwise would be substantially slow as in computations on GPP cores. In addition,
with its programmability, it can support a wide range of DPA techniques and en-
able flexible computations for evolutionary analysis strategies. In our case studies, we
demonstrated the effectiveness of our approach by realizing several DPA techniques
on our PAU and successfully adopting the software-assisted optimizations for DIFT.
Moreover, following the system-level approach in Hardgrind, our PAU has been de-
signed as a system-level component without any modifications in the host processor
internal and it is integrated with an existing platform. Therefore, our approach can be
easily implanted to a commercial mobile platforms or desktop ones.
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Our experiments on FPGA prototype revealed that our solution can reduce the DPA
performance overhead substantially compared to the previous solutions. While mul-
tiprocessor approaches slow down the execution of a program by more than a factor
of 4, our PAU incurs overwhelmingly low overhead, that is only 45.7% for a group
of mibench applications in our DIFT implementation. Even when our PAU is several
times slower than the host processor, the DIFT overhead increases only slightly about
33.1% for the same applications. The experiments also revealed that the power con-
sumption and area overhead of PAU are acceptably small compared to today’s mobile
processors. All in all, we hope that our proposed ASIP approach would become an at-
tractive DPA solution to production-quality commodity platforms.
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