
S-OpenSGX: A system-level platform for
exploring SGX enclave-based computing

Changho Choi a, Nohyun Kwak a, Jinsoo Jang a, Daehee Jang a,
Kuenwhee Oh a, Kyungsoo Kwag b, Brent Byunghoon Kang a,*
a Graduate School of Information Security, School of Computing, Korea Advanced Institute of Science and
Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
b Software R&D Center, Samsung Electronics, 56, Seongchon-gil, Seocho-gu, Seoul, Republic of Korea

A R T I C L E I N F O

Article history:

Received 30 August 2016

Received in revised form 12 May

2017

Accepted 14 June 2017

Available online 27 June 2017

A B S T R A C T

Intel recently introduced Software Guard Extensions (SGX) to enable applications to protect

their selected code and data from privileged platform software. As it draws wider atten-

tion from the security research community, an open-source emulator for SGX (OpenSGX)

has been developed to allow researchers to explore the SGX environment. To the best of

our knowledge, OpenSGX is currently the only publicly available SGX emulation platform;

however, its system-level support is largely limited owing to its user-mode emulation. In

particular, experiments that require system functionalities or device emulation cannot be

conducted with the current OpenSGX. To solve this problem, we propose System-OpenSGX

(S-OpenSGX), which leverages QEMU’s system emulation to provide researchers with full

system-level support for exploring SGX enclave-based programming. In this paper, we show

the design of S-OpenSGX, including system functionalities such as scheduling, multithread-

ing, page table handling, and SGX paging. Non-trivial issues derived from the difference

between user-mode and system emulation, and our approaches to addressing them are also

described. Lastly, we utilize S-OpenSGX to experiment with a new mitigation method against

the data leaking attack on enclave threads and an APIC (Advanced Programmable Inter-

rupt Controller) device modification to reduce SGX’s mode switch overhead.

© 2017 Elsevier Ltd. All rights reserved.

Keywords:

SGX

System emulation

Hardware modification

Thread isolation

Secure systems

Trusted Execution Environment

1. Introduction

Intel has recently released Software Guard Extensions (SGX)
to improve application security in desktop and cloud server
environments. With added instructions and memory protec-
tion logics in x86 processors, Intel SGX provides an isolated
region called an enclave where selected code and data are pro-
tected from manipulation by other software including privileged
software, firmware, and the BIOS (Intel SGX faq). As applications

in general depend on platform software such as an operating
system (OS) and hypervisor, applications cannot protect their
confidential data from being observed by platform software;
nor can they ensure the integrity of security-critical pieces of
code from potential tampering. With the introduction of Intel
SGX, application developers can now assure the secrecy and
the integrity of their code and data without depending on the
trustworthiness of platform software. Researchers have been
earnestly exploring various uses of SGX including Digital Rights
Management, corporate data protections, and privacy

* Corresponding author.
E-mail addresses: brentkang@kaist.ac.kr (B.B. Kang), zpzigi@kaist.ac.kr (C. Choi), nhkwak@kaist.ac.kr (N. Kwak), jisjang@kaist.ac.kr (J.

Jang), daehee87@kaist.ac.kr (D. Jang), okw1003@kaist.ac.kr (K. Oh), kyungsoo.kwag@samsung.com (K. Kwag).
http://dx.doi.org/10.1016/j.cose.2017.06.006
0167-4048/© 2017 Elsevier Ltd. All rights reserved.

c om pu t e r s & s e cu r i t y 7 0 (2 0 1 7) 2 9 0 – 3 0 6

Available online at www.sciencedirect.com

journal homepage: www.elsevier.com/ locate /cose

ScienceDirect

mailto:brentkang@kaist.ac.kr
mailto:zpzigi@kaist.ac.kr
mailto:nhkwak@kaist.ac.kr
mailto:jisjang@kaist.ac.kr
mailto:daehee87@kaist.ac.kr
mailto:okw1003@kaist.ac.kr
mailto:kyungsoo.kwag@samsung.com
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/COSE
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2017.06.006&domain=pdf

protections. It is very timely and important to provide re-
searchers with the full capability of exploring new forms of SGX
enclave-based programming and related system development.

While the recent releases of Windows SGX SDK (Intel
software guard extensions (Intel SGX) sdk) and Linux SGX soft-
ware (Intel SGX for Linux; Intel SGX Linux driver) allow
modification of all software stacks for SGX in an experiment,
none of them can provide an experimental modification of hard-
ware components for SGX. However, it would be crucial to freely
explore SGX’s hardware modifications, because SGX itself is
based on a hardware-based solution. Suppose that the current
SGX specification contains a certain limitation and that the so-
lution to the limitation may involve modification of the
hardware design of SGX. For example, Haven proposes an SGX
design modification so that dynamically inserting content in
an enclave and modifying page permission are allowed
(Baumann et al., 2014). Their proposed methods were tested
utilizing Intel’s in-house SGX emulator (Baumann et al., 2014)
to prove the feasibility of the new design explorations, which
are now reflected in the new SGX specification. Moreover, only
Intel, the manufacturer of SGX, can change the behavior of SGX
hardware. Researchers not associated with Intel, however,
should also be able to explore redesigning hardware compo-
nents in SGX so that they can fill possible security holes in SGX
such as thread isolation, secure input/output channels, and live
migration of enclaves.

Recently, OpenSGX (Jain et al., 2016) introduces a platform
for exploring new SGX designs. When access to Intel SGX was
restricted to only a limited group of researchers, OpenSGX
opened a door for exploring SGX research by providing the first
open-source SGX platform. OpenSGX’s platform includes not
only its reinterpreted software stack (e.g., the OS layer, librar-
ies, compile tools, etc.), but also an instruction-compatible SGX
emulator. With these software stacks and this emulator,
OpenSGX enables redesigning of both software and hard-
ware components of SGX and also developing enclave programs.

Unfortunately, OpenSGX contains several essential limita-
tions as a hardware-modifiable platform because the user-
mode emulation upon which OpenSGX relies can neither run
a separate OS (a guest OS) nor provide device emulation (Qemu
internals). OpenSGX instead handles OS emulations in user
space, bringing about non-trivial gaps between the emulator
and real machines. For example, the page table cannot be modi-
fied to link an enclave linear address to an EPC (Enclave Page
Cache) page’s physical address. Without this modification, more
than one enclave process cannot run concurrently and non-
contiguous EPC pages cannot constitute an enclave process.
The lack of device emulation support in the user-mode emu-
lation is another critical problem. This mode only emulates the
CPU. Thus, other virtual hardware devices can neither be in-
serted nor modified for various hardware experiments. For
example, the absence of timer device emulation leaves OpenSGX
unable to conduct experiments related to scheduling.

To overcome these non-trivial limitations of OpenSGX, we
propose System-OpenSGX (S-OpenSGX), the system version of
OpenSGX. S-OpenSGX consists of a System SGX emulator
(SystemSGX) and SGX components running on a guest OS (SGX-
Guest). With the aid of QEMU’s device emulation support in
system emulation, SystemSGX is equipped with numerous
virtual hardware devices that can be freely modified. SGX

Module, one of SGX-Guest’s components, is inserted into a guest
OS and provides SGX’s system functionalities. The added
functionalities include scheduling, multithreading, page table
handling and SGX paging, which are not supported in OpenSGX
owing to the absence of a guest OS and/or limitations of user-
mode emulation.

To support these system functionalities, we consider the fol-
lowing issues.

S1. Scheduling: Asynchronous Enclave Exit (AEX) should be
inserted into an interrupt delivery procedure to se-
curely save the context of the running enclave when a
timer interrupt is raised.

S2. Multithreading: Each entered thread should maintain
separate SGX data structures in EPC. Thread synchroni-
zation for the shared memory area is another issue to
be resolved.

S3. Page table handling: The linear addresses inside an
enclave should be linked to EPC pages’ physical ad-
dresses, which requires allocating and modifying page
table entries for the unused address region.

S4. SGX paging: Information about the evicted EPC page
should be maintained to recover it in loading. When
access to an evicted page is requested, the page should
be loaded seamlessly in a page fault handler.

Porting OpenSGX to system emulation mode is also not
straightforward. Unlike user-mode emulation, system emula-
tion treats a guest virtual address separately from a host virtual
address.This leads to a crash when dereferencing data members
in guest structures using the instruction translation routines
in the system emulation. Another challenge we address here
is the resolved address comparison, which requires access-
ing guest physical addresses in the translation routines, wherein
the access to a guest machine’s MMU is not available. Finally,
implementing SGX’s system components, which fit for a system
emulator, requires a considerable amount of engineering effort,
because the page table entries for enclave processes, the system
call table, and the page fault handler should be modified without
affecting the rest of the system.

To demonstrate the benefits of S-OpenSGX, we show how
effectively a platform modification can cope with a thread attack
(Chen et al. 2016; Hsu et al., 2016), which has not been ad-
dressed in the current SGX model. In the current SGX model,
memory protection is applied to the granularity of a process
instead of a thread. Thus, there exists no isolation between dif-
ferent threads belonging to the same enclave. Without a proper
thread isolation in place, one compromised thread can freely
access critical assets in another thread’s stack or Thread Local
Storage (TLS). By modifying SGX’s memory protection logic to
include an additional check of whether a given access is from
a valid thread, S-OpenSGX can protect other threads from un-
authorized data leaks caused by the compromised thread.

As another example, we also show how a hardware device
modification can help address an SGX performance problem.
In SGX, every enclave process repeatedly encounters AEXs to
handle timer interrupts. As AEXs flush TLB entries for consis-
tent translations (Intel software guard extensions programming
reference, 2014), they cause a significant overhead for resum-
ing the process. To address this performance issue, we suggest

291c om pu t e r s & s e cu r i t y 7 0 (2 0 1 7) 2 9 0 – 3 0 6

modifying an APIC (Advanced Programmable Interrupt Con-
troller) device so that it reduces the frequency of the timer
interrupts when the process is running in enclave mode. This
fine-grained frequency control has the advantage of reducing
SGX’s mode switch overhead while not severely violating the
reactivity of normal programs. We explored this approach by
building a prototype in S-OpenSGX.

Our contributions are summarized as follows:

1. S-OpenSGX provides the first open-source SGX “system”
emulation platform that enables modification of the hard-
ware components for SGX, including peripherals.

2. S-OpenSGX overcomes OpenSGX’s limitations by provid-
ing SGX’s system functionalities, including
• Support of scheduling and multithreading;
• Page table entry modification for handling non-contiguous

EPC pages;
• A customized page fault handler for SGX paging;
• A more accurate system call interface.

3. We demonstrate S-OpenSGX’s system experimentation ca-
pability by introducing SGX thread isolation with a platform
modification.

4. We tested an APIC device modification in which timer in-
terrupt frequency in enclave mode is controlled to reduce
SGX’s mode switch overhead.

2. Background

2.1. Intel SGX (Intel software guard extensions
programming reference, 2014)

2.1.1. Overview
Intel SGX is the x86 processors’ newly added instructions and
memory protection.The added instructions are categorized into
ENCLU instructions for user privileges and ENCLS instruc-
tions for system privileges. ENCLU(S) instructions have a set
of leaf functions. ENCLS instructions provide mechanisms for
creating an enclave and managing EPC, while ENCLU instruc-
tions are in charge of entrances/exits of enclaves and secure
key generation.

2.1.2. Terminology

• Enclave Page Cache (EPC): The processor uses the EPC, which
consists of chunks of 4 kB pages, to securely store the enclave
pages in the main memory. Privileged software manages EPC
pages using ENCLS instructions.

• Enclave Page Cache Map (EPCM): The EPCM contains the se-
curity metadata for each EPC page.The processor uses EPCM
to enforce access control on EPC pages using the follow-
ing information: read/write/execute permissions on the page
and the SECS identifier of the enclave that owns the page.

• SGX Enclave Control Structure (SECS): Each enclave has the
SECS, which contains enclave-specific information such as
BASEADDR, SIZE, and MRENCLAVE.

• Thread Control Structure (TCS): An enclave has the TCS for
each thread being executed in the enclave. It contains
metadata necessary for saving or restoring the thread state
during the exit from or the entry to the enclave.

• Page Information (PAGEINFO): PAGEINFO is a data struc-
ture commonly used as a parameter for SGX instructions.
Among PAGEINFO’s fields, SECS determines the destina-
tion EPC page’s SECS and SECINFO determines the page’s
properties.

• Asynchronous Enclave Exit (AEX): The AEX is the hard-
ware routine for exiting an enclave when exceptions or
interrupts occur. AEX securely saves the processor state
inside the enclave and replaces it with a fake state.

2.2. QEMU emulator

The Quick EMUlator (QEMU) is an open-source machine emu-
lator (Qemu Wikipedia; Qemu open source processor emulator).
In QEMU, the guest indicates the emulated machine while the
host refers to the machine on which QEMU runs. QEMU has
multiple operating modes. Among them, we focus on the fol-
lowing two modes.

2.2.1. User-mode emulation
User-mode emulation conducts only CPU emulation, which con-
stitutes system emulation (Qemu usermode, howto; Installing
and using qemu user-mode emulation). In this mode, QEMU
executes Linux programs that were compiled for a different
CPU, not including a guest OS (Qemu Wikipedia). User-mode
emulation does not simulate a memory management unit
(MMU), as the host OS handles guest memory mappings
(Installing and using qemu user-mode emulation).

2.2.2. System emulation
In this mode, QEMU emulates a full computer system, includ-
ing various hardware devices (Qemu Wikipedia). The emulated
hardware includes a timer device, interrupt controller, bus, etc.
(Qemu: User mode emulation and full system emulation, 2015).
This mode maintains a software MMU (Qemu internals). System
emulation is much slower than user-mode emulation because
the guest OS runs while hardware components are emulated.

2.3. Attack model

S-OpenSGX can be utilized to evaluate various security prob-
lems and their defense mechanisms. In this regard, we consider
two different attack models. SGX attack model is assumed as
our base attack model throughout this paper except when
thread isolation is covered.

2.3.1. SGX attack model
We share the same attack model that Intel SGX assumes. That
is, the attacker has full control over the system software such
as OS kernel. For instance, he can deploy a rootkit to steal
security-sensitive information inside an application. However,
Denial of Service and hardware attacks are out of scope.

2.3.2. Thread attack model
The attacker aims to obtain a valuable asset contained in a
target thread by exploiting a vulnerable thread belonging to
the same enclave. We assume that the attacker can request
his collaborator with the root privilege for invalidating or by-
passing OS-provided memory isolation.

292 c om pu t e r s & s e cu r i t y 7 0 (2 0 1 7) 2 9 0 – 3 0 6

3. System overview

S-OpenSGX consists of SystemSGX and SGX-Guest. SystemSGX
is a system SGX emulator and SGX-Guest includes SGX com-
ponents running on a guest machine such as SGX Module, SGX
Runtime, SGX compile tool, or in-enclave libraries (see Fig. 1).

SystemSGX is an extension of QEMU’s system emulator.
SystemSGX creates a guest machine where all the hardware
components such as CPU, memory, and peripherals are emu-
lated. In addition to QEMU’s system emulation functionalities,
SystemSGX is equipped with SGX functionalities such as in-
terpreting SGX instructions and enforcing memory protection.
On top of the guest machine, a guest OS separated from the
host OS is installed and executed.

SGX Module is a dynamically inserted kernel module in the
guest OS used to support SGX’s system functionalities: SGX
system call handling, SGX paging, etc. SGX Module dynami-
cally allocates an EPC region in the guest OS’s kernel region
when the module is inserted. Upon system call requests, SGX
Module creates or destroys enclave regions. The EPC manager,
as a part of SGX Module, records which EPC page is used and
directs EPC page eviction when the number of free EPC pages
is lacking.To run an SGX binary, SGX Module should be inserted.

SGX Runtime is an SGX-supporting system library running
in user mode. SGX Runtime includes an SGX loader, trampo-
line, and Asynchronous Exit Point (AEP). SGX Runtime receives
an SGX binary as its input to run the binary. SGX Runtime pre-

pares for the contents of the binary to be included in an enclave
with SGX loader and makes a system call for an enclave cre-
ation request. Once an enclave region is created by SGX Module,
SGX Runtime can enter into it with the EENTER leaf function.
The trampoline is the entry point where an enclave process tem-
porarily exits to request system services. AEP is the entry point
for asynchronous exit events such as interrupts and exceptions.

In S-OpenSGX, the SGX compile tool compiles security-
critical logic together with enclave libraries into an SGX binary.
SGX Runtime runs in user mode while both security-critical
logic and enclave libraries run in enclave mode. Because enclave
mode cannot directly invoke system services, enclave librar-
ies are modified to utilize SGX Runtime’s trampoline.

4. Design

In this section, we describe S-OpenSGX’s added system
functionalities compared to OpenSGX; these differentiate
S-OpenSGX from OpenSGX in terms of support for system-
level SGX emulation. We illustrate the design of S-OpenSGX
based on the following aspects: CPU, memory, and kernel entry
point management.

4.1. CPU management

CPU management is one of the core OS features. OSs manage
CPUs by distributing finite CPU resources to multiple tasks (pro-
cesses or threads) through scheduling. S-OpenSGX’s scheduling
and multithreading follow Intel SGX’s design objective, which
mandates that enclaves should not disrupt the ability of le-
gitimate system software to schedule (Intel SGX for dummies
(Intel SGX design objectives)). In addition to scheduling and mul-
tithreading, S-OpenSGX’s unique thread isolation is described
in this section.

4.1.1. Scheduling
Process scheduling, the activity of selecting a process to run
on a particular policy, allows multiple processes to share the
CPU using time multiplexing (Operating system – process
scheduling). Intel SGX is designed to provide scheduling for
enclave processes without modification of system software.This
is achieved by an Asynchronous Exit (AEX) mechanism. When-
ever a timer interrupt is generated in the execution of an
enclave process, the process saves its context and leaves enclave
mode with an AEX (Intel software guard extensions
programming reference, 2014).The program control then reaches
the timer interrupt handler located in the kernel by referring
to the Interrupt Descriptor Table (IDT). In the timer interrupt
handler, scheduler code is invoked and the OS chooses the next
process to run (Bovet and Cesati, 2005).

OpenSGX does not provide scheduling because the user-
mode emulator on which OpenSGX is based assumes that only
a single process is running on a machine and no timer device
is attached. The user-mode emulator can only handle
application-generated exceptions, not hardware-generated
exceptions/interrupts such as timer interrupts. To simulate the
situation where multiple enclave processes are running,
OpenSGX should execute multiple QEMU instances. In effect,Fig. 1 – S-OpenSGX overall architecture.

293c om pu t e r s & s e cu r i t y 7 0 (2 0 1 7) 2 9 0 – 3 0 6

this means running each enclave process on a different machine
as one enclave process cannot interact with other enclave pro-
cesses.To run multiple enclave processes on the same machine,
scheduling is an indispensable feature.

To provide S-OpenSGX with a scheduling feature, we utilize
the same AEX mechanism described by the Intel SGX specifi-
cation (Intel software guard extensions programming reference,
2014). QEMU’s system emulation is equipped by default with a
timer device.With each tick elapsed in the timer device, the device
generates an interrupt and sends the interrupt to the Local Ad-
vanced Programmable Interrupt Controller (LAPIC). The LAPIC
then conveys the assigned interrupt vector number (e.g., 239)
to the corresponding CPU core. Before program control jumps
to the locations to which IDT’s entry points, we execute the in-
sertedAEX routine upon receiving a hardware interrupt (if enclave
mode is on) so that an enclave process can save its context safely.
After AEX, the timer interrupt handler addressed by IDT is ex-
ecuted and the next process can be scheduled.

Because AEX replaces the program control register with an
Asynchronous Exit Point (AEP), which is defined by EENTER/
ERESUME, the AEP is pushed onto the stack as the address to
return to (McKeen et al., 2013). After IRET is executed at the
end of the timer handler, the AEP is popped from the stack,
and the program control is transferred to the AEP. The AEP
simply invokes ERESUME, and ERESUME restores the inter-
rupted enclave’s context (e.g., RIP, RAX, FS, etc.) saved in the
AEX. Thus, the enclave process can resume executing from the
interrupted point seamlessly in scheduling.

An enclave’s context is securely protected during schedul-
ing through AEX mechanism and EPC protection. AEX pushes
the context in the running thread’s private region called State
Save Area (SSA), and replaces it with a synthetic state (Intel
software guard extensions programming reference, 2014). This
synthetic state, while accessible, prevents an attacker from ob-
taining a meaningful information of the interrupted enclave.The
attacker also cannot pass an incorrect context to the resuming
enclave by replacing the saved context, because SSA is located
in the EPC,to which all the accesses from illegal entities are denied.

4.1.2. Multithreading
Multithreading enables multiple threads composing one process
to run concurrently while sharing the process’ resources such
as executable code and global variables (Thread (computing)
Wikipedia). Intel SGX is designed to support multithreading in
enclave programs by providing the TCS, which manages each
thread of an enclave process. The TCS contains the entry point
of a thread and starting/ending points of thread-specific EPC
pages such as the State Save Area (SSA) and Thread Local
Storage (TLS). Hardware utilizes the SSA for storing the context
of a thread in an AEX event, whereas software, a thread code,
utilizes TLS for storing private data. Intel specifies that mul-
tithreading in SGX can be enabled by allocating multiple TCSs
(McKeen et al., 2013).

OpenSGX does not support multithreading because user-
mode emulation causes crashes in emulating multithreading.1

However, S-OpenSGX emulates the multithreading of Intel SGX

by utilizing the multithreading supported by system emula-
tion. The system emulator’s multithreading support is
insufficient for emulating multithreading in SGX because each
thread in enclave mode should maintain a different context.
If more than one thread tries to have the same context by uti-
lizing the same TCS at an enclave entrance, the CPU raises an
exception for the latter threads as they are attempting to access
a TCS whose state is already occupied by the first thread.

To maintain a separate context for each thread, our SGX
Module allocates multiple TCSs as well as multiple thread-
specific EPC pages (SSA, TLS, and stacks) upon the system call
requests for creating an enclave. The SSA and TLS are natu-
rally connected to their corresponding TCS as the TCS keeps
their information in its field. However, the TCS has no field about
stacks, while a per-thread stack area is required. Thus, we
connect each stack area to a TLS that the corresponding thread
can utilize separately. For this purpose, SGX Module stores the
per-thread stack’s virtual address in the TLS after allocating
the TLS so that each thread can securely obtain its stack’s
address by referring to its TLS (e.g., movq fs:(0), rsp) (Costan
and Devadas, 2016). At the end of enclave creation, the module
stores a list of the TCSs’ virtual addresses in an enclave de-
scriptor, and the host process that requested creating the
enclave can later access it through another system call,
sys_stat_enclave() in OpenSGX (Jain et al., 2016). After cre-
ating an enclave, multiple threads forked from the host process
can concurrently enter into the enclave with their own TCS with
the aid of multithreading support in system emulation.

Multithreading brings about the consideration of thread syn-
chronization. S-OpenSGX, as with OpenSGX, maintains a
dedicated shared memory area called a stub for a strict form
of communication between an enclave code and its host code
(Jain et al., 2016). Because a stub is also shared between threads
in the same enclave and frequently accessed for I/O, access to
this resource should be properly controlled with thread syn-
chronization. For example, without thread synchronization, the
output of a multithreaded SGX program becomes unordered
and is omitted. To avoid this problem, S-OpenSGX supports a
simple lock mechanism and applies it to the uses of stubs. We
include the lock in stubs so that both the enclave code and the
host code can easily access it. The enclave code acquires the
lock before accessing a stub for sending data to its host code,
and later the trampoline (the entry of the host code) frees the
lock after accessing the stub to receive data from the enclave
code.

4.1.3. Thread isolation
Intel SGX provides memory protection in the granularity of an
enclave.This means that threads belonging to the same enclave
are trusted mutually. Under this assumption, compromising
one thread of an enclave can influence other threads of the
same enclave. For example, an attacker can control his/her com-
promised thread to access private information in another
thread. To prevent this, we propose a thread isolation method
in our SGX model by modifying data structures and memory
protection logic in Intel SGX. A thread isolation provides
memory protection in the granularity of a thread instead of
an enclave. Thus, compromising one thread in an enclave
cannot affect the other threads of the same enclave (see Fig. 2).

1 There are some locking issues in user-mode multithreading
where the translated cache flush is not protected against reentrancy
(Qemu internals).

294 c om pu t e r s & s e cu r i t y 7 0 (2 0 1 7) 2 9 0 – 3 0 6

We illustrate the original SGX access control and how a
simple modification to it can help defend against thread attacks.
When the CPU accesses a linear address, the MMU translates
the address into a physical address and checks the permis-
sion of the corresponding page table entry against the access.
After this traditional page table check, the SGX-enabled CPU
examines whether the access occurred in enclave mode. If so,
an access resolved to the EPC region goes through EPCM checks.
An EPCM entry is similar to a page table entry in that read,
write, and execute permissions can be set to determine the
access control of the corresponding EPC page. However, in con-
trast to a page table entry, an EPCM entry can only be configured
through ENCLS(U) instructions with a PAGEINFO data struc-
ture. This ensures that malicious system software cannot
modify the EPCM. In addition to permission checks, the EPCM
is used to check whether the access of the EPC is conducted
from the owner of the page, the enclave. This is achieved by
the combination of ENCLAVESECS fields in EPCM entries and
CR_ACTIVE_SECS register. ENCLAVESECS is the identifier of the
enclave to which the page belongs, and CR_ACTIVE_SECS in-
dicates the currently running enclave. If CR_ACTIVE_SECS does
not match the ENCLAVESECS in the EPCM entry of a target EPC
page, then access is denied. Thus, only the enclave that owns
the page can access its EPC page, preventing other enclaves
from accessing it.

We suggest inserting TCS fields into PAGEINFO structures
and ENCLAVETCS fields into EPCM entries. The TCS field in
PAGEINFO is used to fill the ENCLAVETCS in an EPCM entry that
determines which thread owns the target EPC page, and the
ENCLAVETCS in the EPCM entry aids in enforcing the thread
isolation. In Intel SGX, system software passes PAGEINFO as
a parameter of the ENCLS instructions (e.g., EADD or EAUG)
to determine the EPCM entry fields of the destination EPC page
as the values specified in PAGEINFO (Intel software guard
extensions programming reference, 2014). In our design, the
TCS in PAGEINFO should be filled with the effective address
of the TCS page of the target thread. The TCS in PAGEINFO can
be referenced in order to overwrite the ECNLAVETCS in the des-
tination EPC page’s EPCM entry upon successful execution of
an ENCLS instruction. The ENCLAVETCS in the EPCM entry in-

dicates that the target EPC page is owned by the thread that
the TCS page of the ENCLAVETCS controls. In the case where
an EPC page needs to be shared by multiple threads in the same
enclave (e.g., code or global data), the TCS in PAGEINFO can be
simply filled as null to indicate that the thread isolation should
not be applied to that page.

The other component necessary for enforcing the thread
isolation is the CPU’s context information about a thread. It
naturally exists in SGX-enabled CPUs in the form of CR_TCS_PH
registers. Similar to CR_ACTIVE_SECS, CR_TCS_PH contains the
physical address of the TCS that controls the currently running
thread and the value of the CR_TCS_PH is determined only upon
the entrance into enclave mode (e.g., EENTER and ERESUME).
By referring to this register, the CPU can determine in which
thread’s context it is running inside the enclave mode.We insert
into the MMU a simple logic for examining whether the value
of the CR_TCS_PH is the same as the value of the ENCLAVETCS
in the EPCM entry to check that a valid thread is accessing the
EPC page. If a thread accesses the EPC page that belongs to the
same enclave but not the same thread, the access will be
denied. Through this mechanism, a thread can be isolated.

Our approach does not trust in OS for enforcing the thread
isolation. This is desirable in SGX attack model where OS is
excluded out of Trusted Computing Base (TCB). In contrast,
previous thread isolations such as Shreds (Chen et al. 2016)
or Secure Memory View (SMV) (Hsu et al., 2016) all include OS
in their TCB. An attacker with the root privilege can bypass
their isolations by modifying isolation-related metadata that
OS maintains. In our case, metadata for enforcing the thread
isolation are all contained either in SGX’s protected memory
area or CPU registers that are only configured through SGX
instructions. Thus, a manipulation attempt can arise on the
isolation configuration. However, if an attacker fills the TCS
field in PAGEINFO with an incorrect value, it would either be
rejected (non-TCS value) or harm the availability of the appli-
cation (another thread’s TCS value). The attacker might also
intentionally make a thread-owned page as a shared page to
circumvent our thread isolation. This can be prevented by
reflecting the hash value of each thread-owned page’s TCS
contents on enclave identity (MRENCLAVE) in the enclave
building time (EADD). Then, an attacker-converted shared
page will generate a different enclave identity which can be
identified in SGX’s local/remote attestation procedures (Anati
et al., 2013).

The thread isolation should be harmonized with all SGX in-
structions. For example, thread isolation should not be detoured
in paging instructions (EWB, ELD(B)), where an incorrect TCS
value can be passed as the thread owner of the page to be
loaded. Because TCS’s physical address can change in paging,
we additionally introduce a thread id as another thread iden-
tifier to supplement TCS. Our thread id is assigned to TCS in
EADD when the inserted page’s page type is TCS and can only
be referenced in the paging instructions. Similar to an enclave
id (Costan and Devadas, 2016), we pass a thread id as one of
the inputs to authenticated encryption in SGX paging.This pre-
vents attackers from passing an incorrect TCS address during
EPC page loading, because the MAC extracted from an incor-
rect thread id of an incorrect TCS will be different from the
original MAC. We argue that our thread isolation does not have
the side effect of degrading the original security guarantee

Fig. 2 – S-OpenSGX with a thread isolation.

295c om pu t e r s & s e cu r i t y 7 0 (2 0 1 7) 2 9 0 – 3 0 6

provided by Intel SGX because the change is minimal and analo-
gous to the original enclave isolation.

4.2. Memory management

Memory management is another core OS feature. OSs have been
advanced over many generations to manage memory well, and
Intel SGX is designed not to disrupt this crucial role (Intel SGX
for dummies (intel SGX design objectives)). In this section, we
describe S-OpenSGX’s memory management in terms of the
EPC, the protected memory region utilized in SGX. We begin
the section by introducing S-OpenSGX’s EPC management.
Topics related to the page table and how to oversubscribe a
finite EPC resource are described next.

4.2.1. EPC management
The EPC is SGX’s special memory region. To manage the EPC,
S-OpenSGX conducts different actions according to the EPC’s
life cycle: creation, reservation, freeing, and destruction. We de-
scribe EPC management in a pair of these actions.

EPC Creation/Destruction: One major difference between
Intel SGX and OpenSGX is that the former initializes EPC pages
at booting time with the aid of the BIOS, whereas the latter
creates and initializes them at runtime. S-OpenSGX chooses
the second scheme for easy adoption and flexibility. OpenSGX
creates EPC pages in the user space; however, S-OpenSGX does
so in the kernel space (see Fig. 3). In this aspect, S-OpenSGX’s
EPC pages are closer to those of Intel SGX, where each page
is managed in kernel space, than those of OpenSGX. In addi-
tion, S-OpenSGX creates and removes EPC pages upon SGX
Module loading and unloading, respectively, while OpenSGX
does so upon system call requests. The reason for relocating
EPC creation/removal to module loading/unloading is natural:
EPC pages are needed for every enclave process, and the time
of demand for EPC pages corresponds to the time of module
loading. Disposing of them upon a system call request, in con-

trast, allows either one initial process or every enclave process
invoke that system call, neither of which is desirable.

EPC Reservation/Freeing: S-OpenSGX reserves EPC pages by
utilizing the same procedure in OpenSGX. Upon an enclave cre-
ation request, the EPC manager chooses free EPC pages and
marks them as reserved for an enclave process. SGX Module
obtains those reserved pages from the EPC manager and uses
them as destination EPC pages for a series of ENCLS instruc-
tions: ECREATE, EADD, EEXTEND, and EINIT. S-OpenSGX newly
supports enclave destruction similar to that provided by Intel
SGX SDK (Intel software guard extensions (Intel SGX) sdk). Upon
an enclave destruction request, SGX Module finds all EPC pages
related to the requested enclave id and gives those pages as
input to EREMOVE. After executing EREMOVE, the EPC manager
marks the pages as free.

EPC Protection: Upon EPC creation, additional memory pro-
tection is applied to the EPC area.Traditional memory protection
is configured by system software (e.g., access flag configura-
tion in page table), and this cannot be used for EPC protection,
where an attacker is assumed to have kernel privilege. EPC pro-
tection by default prohibits either system software or an
application from accessing the EPC area (Isca 2015 tutorial slides
for Intel SGX, 2015). Because this rule cannot be modified, the
EPC area is free from an attacker’s manipulation. While EPC
is accessible to an enclave, the enclave’s access to an EPC page
is examined to determine its approval by referring to the cor-
responding EPCM entry.

4.2.2. Page table handling
In modern computing systems, memory is virtualized to give
the illusion that every process has its own memory.The memory
view of a process is called a process address space.The enclave
region is also a part of the process address space, and access-
ing the region is conducted through enclave linear addresses
(McKeen et al., 2013).

OpenSGX does not support page tables, as page tables require
system software with which user-mode emulation is not
equipped. Instead, OpenSGX lets an enclave process possess
a set of contiguous and fixed EPC pages and assumes that ac-
cessing the EPC pages’ virtual addresses is accordant with
accessing enclave linear addresses. This design is tolerable for
running only one enclave process; however, page tables are in-
dispensable for running multiple enclave processes concurrently.
This is because, when multiple enclave processes exist, the EPC
pages possessed by an enclave process can be dispersed with
dynamic EPC page allocation (Xing et al., 2016), and their lo-
cation can be moved on runtimes with SGX paging (Section
4.2.3). Treating EPC pages’ virtual addresses as enclave linear
addresses is then no longer valid. To handle these non-
contiguous and relocated EPC pages seamlessly, S-OpenSGX
makes use of page tables.

Fig. 3 illustrates the differences in memory layout between
OpenSGX and S-OpenSGX. In the case of OpenSGX, after the
SGX loader loads the target enclave contents (e.g., code/data)
to somewhere in the process address space, EADD copies the
contents to the predefined address of the EPC area (e.g.,
0×50000000). The address is assumed as an enclave linear
address as well as an EPC page’s virtual address. In the case
of S-OpenSGX, loading enclave contents to process address
space by the SGX loader is the same as in OpenSGX. However,

Fig. 3 – Memory layout differences between OpenSGX and
S-OpenSGX. “V.A.” indicates a virtual address while “P.A.”
indicates a physical address.

296 c om pu t e r s & s e cu r i t y 7 0 (2 0 1 7) 2 9 0 – 3 0 6

the enclave contents are copied to kernel address space before
being passed directly to EADD instructions. This is because
EADD receives the kernel’s virtual address as the location of
a source page. After EADD successfully copies the contents to
the EPC area, S-OpenSGX links an enclave linear address (here,
0×50000000) with the physical address of the destination EPC
page using a page table. As a result, when the corresponding
enclave process accesses the enclave linear address, it has the
effect of accessing the EPC page that the process perceives as
its contents.

4.2.3. SGX paging
Paging generally refers to a memory management scheme for
oversubscribing main memory by storing and retrieving data
from secondary storage (Paging Wikipedia). In Intel SGX, EPC
paging indicates eviction and loading of EPC pages for over-
subscribing a finite EPC (McKeen et al., 2013; Intel software guard
extensions programming reference, 2014). Specifically, the
evicted EPC page is stored in main memory after authenti-
cated encryption, which outputs a cryptographic MAC and an
encrypted page given the page to evict, a processor key, the
page’s inherent metadata, and a counter as input. The counter
used for encryption is stored in one of the slots in the Version
Array (VA) in the EPC. The evicted page can be reloaded back
to the EPC only if the newly calculated MAC – from the en-
crypted page, the processor key, the metadata, and the counter
– matches with the previous MAC (Intel software guard
extensions programming reference, 2014).

OpenSGX does not support EPC paging functionality even
though instructions related to EPC paging (EWB/ELD(B)) can be
emulated in OpenSGX. This is because the user-mode emula-
tor assumes that only one process is running on a given
machine; however, EPC paging is meaningful only when more
than two enclave processes are running. In such multiple-
enclave process environments, one enclave process can yield
its EPC pages to other enclave processes. Another reason
OpenSGX cannot support EPC paging is that EPC paging re-
quires handling page fault exceptions with a customized page
fault handler because accessing the page that was previously
evicted generates a page fault. However, the limitation in user-
mode emulation prevents OpenSGX from implementing a
customized page fault handler.

S-OpenSGX provides EPC paging by hooking an existing page
fault handler. EPC paging in S-OpenSGX works as follows. If a
new EPC page is requested for reservation (e.g., enclave cre-
ation and dynamic EPC allocation), the EPC manager checks
the number of free EPC pages available. If it is below a thresh-
old, MIN_EPC,2 the EPC manager launches EPC page eviction.
Upon a request for EPC page eviction, the EPC manager searches
for an empty Version Array (VA) slot. After obtaining a slot, it
finds the target EPC page to evict. To find a suitable EPC page,
we use the First In First Out (FIFO) mechanism. The mecha-
nism can be replaced with the Least Recently Used (LRU) or
more sophisticated algorithms to reduce the number of po-
tential page faults generated, enhancing overall performance
in running SGX applications concurrently. Finding the most suit-
able mechanism remains a topic for future research.

The EPC page found for eviction is passed as a parameter
to EBLOCK to mark the state of the page as blocked in the EPCM
entry.The blocked EPC page and VA slot address are then passed
as parameters to EWB with the PAGEINFO address. The output
of an executing EWB, such as an encrypted page and MAC, will
be stored in the buffers designated by the PAGEINFO struc-
ture. The addresses of these buffers and the page’s inherent
metadata, such as its enclave linear address and page protec-
tion flag, should be maintained as a data structure to reload
the evicted page into the EPC area and ensure that the re-
loaded page has the same page properties as the evicted page
(e.g., the same enclave linear address and protection flag).

For this purpose, we introduce new system data struc-
tures called Version Array Information (VAINFO) and a Version
Array Information Slot (VAINFOSLOT) (see Fig. 4). We design
each Version Array (VA) slot to have a corresponding
VAINFOSLOT, and VAINFOSLOT is used to store all the infor-
mation needed for reloading the evicted page into the EPC.
VAINFO is a linked-list data structure used to find the corre-
sponding VAINFOSLOT when a VA slot address is given. This
raises a question as to how this VA slot address can be ob-
tained in page loading. We find the page table entry of the
evicted EPC page as a suitable place. After executing EWB,
S-OpenSGX uses one VAINFOSLOT and modifies the page table
entry of the evicted EPC page so that the entry contains the
corresponding VA slot address.3 This page table entry modifi-
cation is also not present in the SGX specification, and we infer
that the Intel SGX driver (Intel SGX Linux driver) would take
a similar approach. Incidentally, the above EPC page eviction
procedure is repeated as many times as the specified number
NR_EVICT_PAGES to supply enough free EPC pages at once.

The evicted page loading takes opposite steps. When an
enclave process accesses an enclave linear address for the
evicted page, a page fault is raised because the page table entry
for the evicted page is modified to be non-present. The cus-
tomized page fault handler then checks whether the faulted
address obtained through the CR2 register is within the enclave
linear address region to ensure that the page loading proce-
dure is only performed for an enclave linear address. If so,
through page table walking, the handler obtains a page table
entry for the faulted address and retrieves a VA slot address
from the entry. The handler then uses the VA slot address to
find the appropriate VAINFOSLOT by referring to VAINFO, the
head of which is defined as a global variable. With this
VAINFOSLOT, the evicted page’s inherent metadata can be re-
covered when the page is reloaded.

The handler requests a free EPC page from the EPC manager
and executes ELD with the free EPC page, VA slot address, and
the PAGEINFO that contains all remaining information needed
to load the EPC page such as the evicted page, MAC, etc. Once
ELD is executed, the free EPC page is filled with the loaded page
only if the saved MACs are consistent with the newly calcu-
lated MACs based on the properties of the loaded page. As the
last step, the page table entry is modified to contain the enclave
linear address with the present bit set. Upon success of the
customized page fault handler routine, the original page fault

2 This is the defined minimum number of free EPC pages.

3 We used two extra bits to mark it as evicted and the existing
present bit as “non-present”.

297c om pu t e r s & s e cu r i t y 7 0 (2 0 1 7) 2 9 0 – 3 0 6

handler routine is skipped so that accessing the faulted address
accesses the loaded EPC page seamlessly. If the faulted address
is not within an enclave linear address region, the original page
fault handler routine handles the fault instead.

4.3. Kernel entry point management

Applications can enter into the OS kernel when they invoke
a system call for requesting a system service or events such
as interrupts or exceptions are encountered. In this section,
we describe how these kernel entry points are managed in
S-OpenSGX to support SGX’s system functionalities.

4.3.1. System call handler
SGX instructions require both privileges: system privileges and
user privileges.To execute the SGX instructions of system privi-
leges, called ENCLS, system software should be involved. When
a user process needs to request system software to perform
some task requiring system privileges, a system call is used
as the sole communication medium between a user process
and system software. An enclave creation request is one of the

representative system calls used in SGX. Because of the absence
of a guest OS, OpenSGX cannot insert new system call han-
dlers. Instead, OpenSGX regards invoking several user-level
functions as invoking system calls.

S-OpenSGX takes the approach of inserting new system call
handlers. Because OSs have system call tables of fixed size, the
end of system call entries is not the right place for insertion.
To insert SGX system call entries without kernel recompilation,
we find and overwrite empty entries in the middle of the system
call table to point to our inserted SGX handlers. Utilizing empty
entries prevents new system call insertions from influencing
other regular system calls. Because the system call table is write-
protected, our SGX Module temporarily turns off page table
protection to hook the table. After insertion, a user process can
directly invoke an SGX system call with the corresponding
system call number and parameters.

4.3.2. Interrupt/exception handler
When a process running in enclave mode encounters an
interrupt/exception event, the process exits from enclave
mode through AEX, and the IDT is referenced to find the

Fig. 4 – SGX paging in S-OpenSGX.

298 c om pu t e r s & s e cu r i t y 7 0 (2 0 1 7) 2 9 0 – 3 0 6

corresponding interrupt/exception handler. Each entry in the
IDT specifies the location of a stub, and the stub invokes its
handler after saving the previous context.

OpenSGX cannot modify interrupt/exception handlers
because the IDT, stubs, and handlers are all located in the kernel
region. Thus, when a certain event requires a customized
interrupt/exception handler, OpenSGX gives up handling the
event. Page fault exceptions generated in accessing an evicted
EPC page are representative examples requiring a custom-
ized handler in SGX. S-OpenSGX can insert a customized
handler by modifying interrupt/exception handlers in its guest
OS.

In order not to influence or interfere with other normal
interrupt/exception events, S-OpenSGX utilizes a hooking tech-
nique to preserve original interrupt/exception handlers. For this
purpose, S-OpenSGX maintains two handlers: one for enclave
events and the other for normal events. After page table pro-
tection is temporarily disabled for modifying the write-
protected IDT, a target entry in the IDT is modified to point to
our stub instead of the original stub. Our stub is the same as
the original stub except that our stub invokes a hooking mecha-
nism instead of the original handler. The hook determines
which handler to invoke depending on the kind of event:
enclave events are handled in our customized handler and
normal events are handled in the original handler.

5. Implementation

In this section, we describe the implementation details of
SystemSGX, SGX Module, and SGX Runtime. SystemSGX is built
based on the QEMU emulator (version 2.1.1) and SGX Module
is implemented as a loadable kernel module (LKM). SGX
Runtime supports additional user-level functionalities such as
multithreading and signals, which are not provided by OpenSGX.
Linux version 3.13.11-ckt29 and 3.13.0-91-generic are used as
guest and host OSs, respectively.

5.1. SystemSGX

SystemSGX, S-OpenSGX’s emulator, is implemented based on
QEMU. OpenSGX’s emulator utilizes QEMU’s user-mode emu-
lation while SystemSGX utilizes QEMU’s system emulation. In
the OpenSGX emulator, all SGX leaf functions are imple-
mented in helper routines, which are in charge of emulating
complex guest instructions or events. SystemSGX is de-
signed to make use of OpenSGX’s helper routines in emulating
SGX leaf functions. However, SystemSGX cannot directly utilize
the OpenSGX emulator’s implementation because different en-
vironments exist in system emulation and user-mode
emulation. We face the following challenges in porting exist-
ing parts, to which we present solutions.

5.1.1. Dereferencing problems
SystemSGX should be able to dereference guest structure data
members without crashing. SystemSGX’s helper routines utilize
host virtual addresses, but the pointer for guest structures (e.g.,
SECS, TCS, SECINFO, etc.) contain guest virtual addresses. This
does not cause any problems in user-mode emulation because

guest and host virtual addresses are identical there. However,
system emulation treats two addresses differently, and
dereferencing data members in the guest structure in helper
routines causes a problem. This is because the dereferenced
pointer has a guest virtual address while helper routines regard
it as a host virtual address.Thus, a guest virtual address is trans-
lated with the host’s MMU when dereferencing data members
in the guest structure in helper routines.

To dereference guest structure data members without en-
countering problems, we introduce shadow object handling.
Shadow object handling first copies the target guest struc-
ture to the host’s allocated memory. Next, every point where
dereferencing a data member in a guest structure occurs is re-
placed with dereferencing the same data member in a copied
host structure. In this case, dereferencing data members in the
copied structure does not cause any problems because the
copied structure contains a host virtual address and the host’s
MMU can translate it correctly. Note that address compari-
son routines are only valid for guest addresses and not for host
addresses. Thus, when address comparison is needed, the
address of the original guest structure is used.

5.1.2. Resolved address comparison
SystemSGX should be able to handle resolved address com-
parisons. There are several points where SGX leaf functions
should reference the EPC’s physical address. For example, to
check whether a given enclave linear address is resolved within
an EPC, the EPC’s physical address range should be com-
pared against the resolved address. However, system emulation
cannot access guest physical addresses because the guest OS’s
MMU translates guest virtual addresses into guest physical ad-
dresses and there is no routine for accessing a guest OS’s MMU
in system emulation. Thus, enclave linear addresses cannot be
translated into guest physical addresses in helper routines for
comparison.

SystemSGX addresses the challenge for the resolved address
comparison by utilizing QEMU’s soft MMU. QEMU’s soft MMU
is in charge of translating guest virtual addresses into host
virtual addresses. When an enclave linear address needs to be
resolved into a guest physical address for comparison,
SystemSGX instead resolves it into a host virtual address using
QEMU’s soft MMU. SystemSGX then compares it against the
EPC’s host virtual address range. To maintain the host virtual
address of an EPC page, an additional field called
epcHostAddress is inserted into EPCM entries and is as-
signed in QEMU initialization. We argue that comparing host
virtual addresses has the same effect as comparing guest physi-
cal addresses because a guest physical address is mapped one-
to-one to a host virtual address and the host virtual address
is beyond an attacker’s manipulation. This approach can avoid
the overhead of maintaining an additional MMU that can trans-
late a guest virtual address into a guest host address.

5.1.3. Emulating AEX
In QEMU, x86_cpu_do_interrupt() is in charge of handling
exceptions while do_interrupt_x86_hardirq() is in charge
of handling interrupts. Before both of the functions invoke
do_interrupt64() to emulate hardware handling of inter-
rupts and exceptions (Bovet and Cesati, 2005), we insert enclave-
mode checking and AEX calling. If interrupts or exceptions occur

299c om pu t e r s & s e cu r i t y 7 0 (2 0 1 7) 2 9 0 – 3 0 6

in enclave mode, SystemSGX invokes helper_sgx_ehandle(),
which emulates the AEX operation as described in the SGX
specification (Intel software guard extensions programming
reference, 2014).

5.2. SGX module

We implement S-OpenSGX’s SGX Module as a Linux Loadable
Kernel Module (LKM). The module is built based on OpenSGX’s
kernel components. As OpenSGX’s kernel components run in
user mode while those of S-OpenSGX run in privileged mode,
the discrepancy between user space and kernel space should
be resolved in porting.

5.2.1. Discrepancy adjustment
First, functions available in kernel space are different from those
in user space because kernel space cannot utilize the stan-
dard C library. We seamlessly replace the standard C library
functions with kernel-supported functions. For example, to al-
locate a dynamic memory region, malloc() and memalign()

are commonly used in OpenSGX. We replace them with either

kmem_cache_alloc() or kmalloc(). To allocate frequently al-
located objects efficiently, SGX Module uses a slab allocator’s
kmem_cache_alloc(). For allocating a large amount of memory
(e.g., creating an EPC space), SGX Module uses kmalloc. While
vmalloc can allocate more memory than kmalloc, we prefer
to use kmalloc because it allocates physically contiguous
memory blocks. In every memory access, S-OpenSGX’s memory
protection logic checks whether the accessed address is re-
solved into the EPC region. With a physically contiguous EPC
region, the logic simply compares the resolved address against
both ends of the EPC; in the other case, every EPC page’s physi-
cal address should be compared.

Second, kernel space includes different header files from
those in user space. We either replace them or remove the
header files unsupported in kernel space.

5.2.2. Page table linking
SGX Module links a range of enclave linear addresses with EPC
pages’ physical addresses in page table entries when EPC pages
are inserted into an enclave. As enclave linear addresses are
in the process address space’s unused region, they have no page
table entries (pud, pmd, and pte). Thus, SGX Module allocates
the entries before modification. After allocation, SGX Module
conducts page table walking by passing a linear address as an
input to find the page table entry of the linear address. For page
table walking, SGX Module utilizes a slightly modified version
of follow_pte() where present bit checking is removed
because newly allocated page table entries have no present bit
set. Using set_pte(), SGX Module modifies the page table entry
found to contain the target EPC page’s physical address and
the corresponding page protection flags. Because follow_pte()
obtains a lock, SGX Module releases it after modification.

5.2.3. Enclave linear address usage
There are several points where an SGX data structure stores
an enclave linear address as its field. For example, SECS’s
BASEADDR field contains the enclave’s base linear address and
PAGEINFO’s LINADDR field contains the enclave linear address

for a target EPC page. OpenSGX does not distinguish enclave
linear addresses from EPC pages’ virtual addresses. Because
this practice is against Intel SGX’s specification, we correct all
these points to store enclave linear addresses instead of EPC
pages’ virtual addresses.

5.2.4. Error code returns
System call handlers return an error code so that user pro-
cesses can grasp the reason(s) for a failure. SGX Module’s added
system call handlers return different error codes in different
failure cases to facilitate debugging of SGX Module’s code. For
example, if an EPC page cannot be reserved owing to the lack
of available EPC pages, our system call handler returns an
ENOMEM error code. By assigning this code to a global vari-
able errno, the user process can perceive why the requested
system call fails: in this case, “Out of Memory.”

5.3. SGX runtime

We implement S-OpenSGX’s SGX Runtime based on OpenSGX’s
user components. Because the user-mode emulation and the
system emulation both provide a similar environment for the
user context, the code is mostly similar except for the follow-
ing parts.

5.3.1. Multithreading
To support multithreading in an enclave process, SGX Runtime
utilizes POSIX threads, known as pthreads (Posix threads
programming). After preparing for thread-specific EPC pages
in the kernel, SGX Runtime receives an array of TCS ad-
dresses. When multiple threads are created with pthread, SGX
Runtime passes this array of TCS addresses to the created
threads as an argument. Each thread finds its assigned TCS
address in the array by indexing with its thread id and ex-
ecutes EENTER with its TCS address. Finally, the main thread
waits for all other created threads to terminate.

5.3.2. System call invocation
Unlike OpenSGX, which regards function calls as system calls,
S-OpenSGX directly invokes system calls with syscall instruc-
tions inserted with an extended asm. SGX Runtime passes
syscall’s first three parameters (RDI, RSI, and RDX registers)
using input operands in the extended asm. However, because
of the restriction in the extended asm, R10, R8, and R9 regis-
ters cannot be used directly in input operands while they are
required as the next parameters in syscall. SGX Runtime instead
receives input in other registers (e.g., RAX, RBX, and RCX) and
copies the value of these registers to the target registers using
movq instructions. After preparing for syscall parameters, SGX
Runtime overwrites RAX as a target system call handler’s
number. Using this technique, SGX Runtime is able to invoke
syscall instructions with up to six parameters.

5.3.3. Signal handling
We insert signal handlers in SGX Runtime to handle excep-
tion events properly in enclave mode. A signal is a positive
integer that the OS sends to a process to report exceptional
behavior or an asynchronous event. When an exception event
occurs in a process running in enclave mode, the AEX hardware

300 c om pu t e r s & s e cu r i t y 7 0 (2 0 1 7) 2 9 0 – 3 0 6

routine saves an Asynchronous Exit Point (AEP) into the RIP
register. The value of the RIP register is pushed onto the kernel
stack, and the OS kernel handles the exception in the corre-
sponding handler. When an IRET instruction is executed at the
end of the handler, program control is transferred to the pushed
RIP by popping it from the stack. If the signal handler for the
event is not registered in the process, the kernel chooses not
to execute IRET and instead kills the process.Thus, an AEP that
reenters an enclave with ERESUME is not reached.

6. Evaluation

In this section, we evaluate S-OpenSGX with the following
experiements: SGX paging, thread isolation, timer interrupt fre-
quency control, and attack model test. The experiments
demonstrate S-OpenSGX’s system functionalities and hard-
ware modification capability. A brief summary comparing
S-OpenSGX with OpenSGX and Intel SGX also follows.

6.1. SGX paging

We conducted a paging experiment that demonstrates
S-OpenSGX’s two system functionalities: SGX paging and page
table handling. For this experiment, the number of EPC pages
was set as 256 while MIN_EPC and NR_EVICT_PAGES were set
as 128 and 16, respectively. To observe SGX paging function-
ality’s effect, we evaluated the number of enclave processes
that can run concurrently with and without paging function-
ality as the enclave size increases. We counted the number of
enclave programs successfully executed until “Out of Memory”
was displayed, which indicated that the requested EPC slots
for a new execution were not available.

Fig. 5 shows that the number of concurrently running en-
claves increases with paging.The increase rate grows as enclave
size decreases, because the number of SGX leaf functions ex-
ecuted for paging (EWB and ELD) increases as enclave size
decreases and further paging is conducted before the enclave
processes fill out the EPC area. We also observe that SGX ex-
ecutes more enclave processes with more paging overhead.

6.2. Thread isolation

We implemented a thread isolation example to verify our pro-
posed defense mechanism in Section 4.1.3 and to demonstrate
S-OpenSGX’s CPU and MMU modification capability together
with multithreading.The example SGX program consists of two
threads: the main thread and input thread. The input thread
receives and passes an input message to the main thread while
the main thread decrypts the passed input message with its
secret key. To simplify the example, we assume that an at-
tacker knows the main thread’s secret key address and that
the input thread has a buffer overflow vulnerability with Data
Execution Prevention (DEP) disabled.

From the perspective of an attacker, we crafted and passed
an attack payload to the input thread, which exploited the vul-
nerability to steal the main thread’s secret key. When CPU and
MMU were not changed, the designed payload successfully stole
the secret key. After our thread isolation was applied, the attack

failed because the input thread’s CR_TCS_PH was different from
the accessed stack page’s ENCLAVETCS, which was owned by
the main thread.

6.3. Timer interrupt frequency control

To demonstrate S-OpenSGX’s device modification capability,
we modified an APIC device so that it could retrieve the current
value of a CR_ENCLAVE_MODE register from the CPU and control
the frequency of timer interrupts when enclave mode was on.
This modification can enhance the overall performance of
enclave-mode programs because the TLB flush caused by the
timer interrupt and the AEX constitutes the main overhead in
SGX (Baumann et al., 2014). Note that SGX programs should
exit enclave mode and reenter it with the TLB flushed during
every timer interrupt event, whereas normal programs can be
resumed with the reserved TLB entries for the programs. This
additional overhead justifies fewer timer interrupts in enclave
mode.

For this experiment, we created a simple SGX program and
measured the total number of timer interrupts delivered in
enclave mode, which was the same as the number of AEXs.
To control the frequency, we imposed a certain length of delay
on the arrival time of the next timer interrupt in the APIC device
if the interrupt was delivered while the program was running
in enclave mode. The results are shown in Table 1. It is clear
that the frequency of timer interrupts (AEXs) is decreased by
nearly half as the timer delay is doubled. Note that our ap-
proach provides a fine-grained frequency control specific for

Fig. 5 – Paging effect and overhead.

301c om pu t e r s & s e cu r i t y 7 0 (2 0 1 7) 2 9 0 – 3 0 6

the enclave whereas the methods of naively controlling the
overall frequency can severely compromise the reactivity of
normal programs.

6.4. Attack model test

To show how S-OpenSGX helps evaluate security problems and
enables system-level security experiments, we conducted an
attack model test with our synthetic rootkit. The rootkit was
implemented as a LKM and designed to leak the secret key of
a target program. We tested the rootkit in two scenarios: one
with a normal program and the other with an enclave program.
For simplicity, target programs print out the location of their
secret keys.

The rootkit first disables Supervisor Mode Access Protec-
tion (SMAP) to access the application memory with higher
privilege. It then finds out by name the process descriptor of
the target program in the process descriptor list and tempo-
rarily replaces the page table base address (CR3) with the one
contained in the found process descriptor. With this replace-
ment, the rootkit can walk the target program’s page table to
access the secret key.

As a result, the rootkit successfully leaked the secret key
of the normal program. However, the rootkit was not able to
leak the secret key of the enclave program due to the exis-
tence of EPC protection.

6.5. Comparison

We compared OpenSGX, S-OpenSGX, and Intel SGX and sum-
marized it in Table 2. In CPU functionality support, OpenSGX,
S-OpenSGX, and Intel SGX all support SGX specification revi-
sion 1 (Intel software guard extensions programming reference,
2013). Although the SGX specification, revision 2 (Intel software
guard extensions programming reference, 2014), is publicly avail-

able, the hardware that supports this revision has not been
released yet. As emulators, OpenSGX and S-OpenSGX support
revision 2 as well.

Lack of system functionalities is one of the fundamental
drawbacks in OpenSGX. S-OpenSGX and Intel SGX support all
basic system functionalities such as scheduling, multiprocess-
ing, multithreading, page table handling and SGX paging. As
thread isolation is our proposed scheme, only S-OpenSGX can
currently support it.

In terms of experiments, S-OpenSGX and Intel SGX can freely
modify system software, but OpenSGX is restricted because it
runs in user space. The existence of kernel space makes
S-OpenSGX and Intel SGX favorable for attack model testings
such as rootkit experiments. As emulators, OpenSGX and
S-OpenSGX have a similar advantage over Intel SGX of being
able to modify the CPU and MMU. In addition, S-OpenSGX can
insert or modify virtual devices for better utilization of SGX.
Because of the limitations of system emulations, S-OpenSGX
provides the lowest performance compared to OpenSGX and
Intel SGX.

7. Limitation and future work

7.1. SMP support

Symmetric multiprocessing (SMP) is the processing of pro-
grams by multiple processors sharing main memory and a
single OS (Smp (symmetric multiprocessing), 2007). S-OpenSGX
assumes that the guest machine has a single core CPU. In
system emulation, the SMP can be supported with up to 255
CPUs (Qemu emulator user documentation). We expect that
problems similar to thread synchronization would arise from
introducing SMP. It remains our future work to extend
S-OpenSGX to support SMP.

7.2. KVM support

In QEMU’s KVM hosting mode, KVM handles the execution of
the guest while QEMU emulates devices rather than the CPU
(Qemu Wikipedia). KVM-hosting mode is much faster than

Table 1 – Timer interrupt frequency in enclave mode
with different timer delays.

Timer delay Default 10M 20M 40M 80M 160M
of timer interrupts 37 18 10 6 5 2

Table 2 – Comparison of OpenSGX, S-OpenSGX, and Intel SGX.

Category Functionality OpenSGX S-OpenSGX Intel SGX

CPU SGX SPEC v1 support o o o
CPU SGX SPEC v2 support o o x
System Scheduling x o o
System Multiprocessing x o o
System Multithreading x o o
System Page table handling x o o
System SGX paging x o o
System Thread isolation x o x
Experiment System S/W modification Restricted Flexible Flexible
Experiment Attack model test Restricted Flexible Flexible
Experiment H/W modification

(CPU+MMU)
Flexible Flexible Restricted

Experiment H/W modification
(peripherals)

Restricted Flexible Restricted

Experiment Performance Medium Slow Fast

302 c om pu t e r s & s e cu r i t y 7 0 (2 0 1 7) 2 9 0 – 3 0 6

system emulation mode because it uses hardware virtualization,
where instructions are executed directly by hardware. (Note
that dynamic translation is accompanied by emulation.) We
design S-OpenSGX to make use of SGX-enabled CPU emula-
tion code in OpenSGX; thus, we opt out of KVM, which is not
involved with CPU emulation. However, to enhance the overall
performance of S-OpenSGX, we are planning to equip
S-OpenSGX with KVM as our future work.

7.3. Compatibility issues

S-OpenSGX is built based on OpenSGX; thus, it follows
OpenSGX’s programming model. Note that Intel’s Linux SGX
software stack, including SDK and its driver, were not pub-
licly available until the last stage in writing this paper. There
are several gaps between S-OpenSGX and Intel’s SGX soft-
ware stack (e.g., APIs and system calls). To allow S-OpenSGX
to become more widely adopted, it is one of our primary goals
to reduce these gaps and to make S-OpenSGX compatible with
Intel’s SGX software stack.We believe that not only can we learn
some lessons from the software stack’s design and code, but
that Intel can also learn from those of S-OpenSGX.

Compatibility with real hardware is another issue we must
resolve. While S-OpenSGX’s emulated machine is closer to a
real machine than OpenSGX’s, some differences still exist. For
example, a real machine sets up an EPC region at boot time
in the BIOS while S-OpenSGX does this at runtime in module
insertion.

7.4. Unimplemented functionalities

In Intel SGX, the Memory Encryption Engine (MEE) protects the
EPC against hardware attacks. With the aid of MEE, the con-
tents of the EPC can be stored in encrypted form. S-OpenSGX
does not have MEE because a memory controller, to which MEE
should be attached, is not emulated in QEMU. By inserting ad-
ditional helper functions in read/write instructions, we expect
that MEE’s functionalities can be emulated.

In evicting an EPC page, S-OpenSGX can handle a page of
regular type but not a page of other types. This is sufficient
for reserving free EPC pages because pages of regular type
occupy most of the region in an EPC. However, we plan to
support pages of other types to cover corner cases.

8. Discussion

8.1. Malicious thread

In this paper, a malicious thread indicates a thread that is com-
promised by an attacker at runtime via software vulnerabilities
such as logic bugs and memory corruption. We note that soft-
ware vulnerabilities are likely to be exploited when there is any
form of interaction between an attacker and the software.

In general, threads are multiple execution flow units inside
a single process which share the same virtual address space.
However, sharing the virtual address space does not neces-
sarily mean each threads share the security permission levels
as well. In fact, threads can have their own software/hardware

permission levels. For example, two threads in a same process
can have different effective-user-ids in Linux system. More-
over, recent studies such as Shreds (Chen et al. 2016) and SMV
(Hsu et al., 2016) proposed system architectures that can sepa-
rate threads in terms of memory access control. Considering
the recent state-of-the-art thread security model, it is impor-
tant to isolate per-thread components (e.g., TLS, stack, and so
forth) from other threads.

Consider a scenario that [thread A] is a piece of code that
interacts with possibly a malicious attacker, and [thread B] is a
component that does not interact with outside world. In such
a case, an attacker cannot attack [thread B] directly since there
is no interaction. However, compromising [thread A] also leads
to the compromise of [thread B] as well, since threads share the
virtual memory address space.For example,compromised [thread
A] can not only access private information in [thread B] but also
hijack [thread B]’s program control by modifying a return address
in [thread B]’s stack. In order to prevent such security breaches,
we implemented an experimental thread-isolation feature in the
SGX emulation environment, which prevents unnecessary inter-
thread memory accesses in an enclave.

8.2. Deployment issues

To support thread isolation in Intel SGX, the existing SGX in-
structions should be slightly modified. Because our modification
on SGX instructions only requires changes in the microcode in
which SGX instructions are implemented (Costan and Devadas,
2016), they do not require expensive changes in the CPU’s cir-
cuitry. Note that modern Intel processors provide a microcode
update facility (Costan and Devadas, 2016), and thus our propo-
sition can be provided as a microcode update.Adding a new field
in every EPCM entry can be easily done, because EPCM is just a
data structure contained in a trusted memory (Costan and
Devadas, 2016). Lastly, enforcing thread isolation can be imple-
mented in the Page Miss Handler (PMH), where Intel SGX’s
memory access checks are performed (Costan and Devadas, 2016).

To support timer interrupt frequency control, Local
APIC should be able to retrieve the current value of
CR_ENCLAVE_MODE register. This may require inserting an ad-
ditional line between the Local APIC and CPU. Another timer
register for maintaining a delay value is also necessary. In an
APIC timer, the timer is started by programming its initial-
count register (Intel 64 and ia-32 architectures software
developers’ manual, 2016).When the timer senses enclave mode
with the inserted line, the delay value could be added to this
initial-count value so that the added value instead of the initial-
count value be copied into the current-count register. After the
current-count value reaches zero as the count-down begins,
a timer interrupt would also be generated.

9. Related work

9.1. SGX research

Intel has published a series of white papers explaining each com-
ponent of Intel SGX. SGX’s instructions (McKeen et al., 2013),
sealing and attestation (Anati et al., 2013), the memory encryp-

303c om pu t e r s & s e cu r i t y 7 0 (2 0 1 7) 2 9 0 – 3 0 6

tion engine (Gueron, 2013), epid provisioning (Johnson et al. 2013),
dynamic memory allocation (Xing et al., 2016), and dynamic
memory management (McKeen et al. 2016) are covered in these
publications. Costan and Devadas (2016) assembled publicly avail-
able resources regarding Intel SGX and analyzed Intel SGX’s
security properties in depth from a third-party perspective.

Meanwhile, several works have aimed to enhance the secu-
rity of SGX. Haven (Baumann et al., 2014) enables unmodified
applications to run under SGX with sandbox protection by in-
serting Drawbridge (Porter et al., 2011) together with the
application in an enclave and supporting it with new SGX in-
structions. Moat (Sinha et al., 2015) provides a tool for formally
verifying the confidentiality of an enclave program.The tool called
“/confidential” (Sinha et al., 2016) is a successor of Moat and can
scale to large programs. Controlled-channel attacks (Xu et al.,
2015) reveal that the confidentiality of SGX can be detoured by
a side channel based on the page faults that can be controlled
by an attacker. Shinde et al. (2016) proposed a mitigation of the
controlled-channel attacks by masking page fault patterns.

The expectations of Intel SGX have made it widely applied
in various areas. Intel has demonstrated applications of Intel
SGX to protecting one-time passwords (OTP), Enterprise Rights
Management, and video conferencing (Hoekstra et al., 2013).VC3
has applied SGX to MapReduce jobs in Hadoop for providing SGX’s
protection for data analytics in the cloud (Schuster et al., 2015).
The Town Crier has used SGX’s remote attestation in authen-
ticated data feeds for smart contracts (Zhang et al., 2016). Kim
et al. (2015) explored adapting diverse network applications to
realize the benefits of SGX. Shih et al. (2016) protected the states
of Network FunctionVirtualization (NFV) applications with SGX.

9.2. Emulator

QEMU is commonly used in research communities and prod-
ucts. For example, Google’s Android emulator is based on QEMU
(Running android l developer preview on 64-bit arm qemu, 2014).
Groups of teams from Samsung and Linaro have worked to
emulate ARM’s TrustZone in QEMU (Winter et al., 2012; Arm
trustzone in qemu, 2014). QEMU’s device emulation is also
widely used in virtualization such as KVM and Xen hypervisor.

Several SGX emulators have been proposed and realized.
Haven (Baumann et al., 2014) and VC3 (Schuster et al., 2015)
have utilized the Intel-provided SGX emulator in their devel-
opments and tests. While Intel’s emulator is hidden,VC3’s own
emulator works by hooking an exception handler so that SGX
instructions can be emulated while the host OS handles invalid
opcode exceptions. OpenSGX (Jain et al., 2016) uses QEMU’s
dynamic translation to emulate SGX instructions. In addition
to the emulator, OpenSGX provides an SGX platform includ-
ing a software stack for three different modes (user, privileged,
and enclave) and versatile tools for compiling, debugging, and
performance profiling. While not an emulator, Open-TEE pro-
vides a virtual TEE for developing and debugging a trusted
application that conforms to the GlobalPlatform (GP) specifi-
cation (McGillion et al., 2015). Open-TEE maps SGX instructions
and events to TEE core APIs so that SGX programs also follow
GP standard interfaces (Nyman et al., 2015). However, these pre-
vious emulators and virtual platforms are limited to providing
instruction emulation or API emulation because a guest OS does
not run and devices cannot be emulated.

10. Conclusion

We introduced S-OpenSGX, an open source system SGX emu-
lator, for researching and developing a new SGX design. In
contrast to the previous emulator, S-OpenSGX provides indis-
pensable system functionalities such as scheduling,
multithreading, and paging, which the previous emulator could
not provide because of the limitations of user-mode emula-
tion. With QEMU’s system emulation, S-OpenSGX opens a door
for modifying not only the CPU and MMU but also peripher-
als. To show the efficacy of S-OpenSGX, we modified MMU and
SGX data structures to implement thread isolation in en-
claves. The suggested isolation successfully prevented a
compromised thread from leaking sensitive data that be-
longed to another thread, while not violating nor diminishing
SGX’s basic security guarantees. In S-OpenSGX, we also modi-
fied an APIC device so that the APIC can control the frequency
of timer interrupts according to the on/off of enclave mode to
reduce SGX’s mode switch overhead, which is regarded as the
main performance degradation factor in SGX. We hope
S-OpenSGX becomes a useful platform for exploring new
designs and defense methods based on SGX.

Availability

We have released S-OpenSGX’s source code into the public re-
pository. SystemSGX is currently available at https://github.com/
CySecLab-KAIST/systemsgx while SGX-Guest is available at
https://github.com/CySecLab-KAIST/sgx-guest.

Acknowledgment

The authors would like to thank Taesoo Kim at Georgia Tech
and Zhiqiang Lin at UT Dallas for their insightful comments
and suggestions. This research is in part based on the work
supported by the Software R&D Center, Samsung Electronics.
This research was supported by Basic Science Research Program
through the National Research Foundation of Korea (NRF)
funded by the Ministry of Science, ICT & Future Planning
(NRF-2017R1A2B3006360).

R E F E R E N C E S

Anati I, Gueron S, Johnson S, Scarlata V. Innovative technology
for CPU based attestation and sealing. In: Proceedings of the
2nd international workshop on hardware and architectural
support for security and privacy; 2013. p. 10.

Arm trustzone in qemu; 2014. Available from: http://
www.linaro.org/blog/core-dump/arm-trustzone-qemu/.

Baumann A, Peinado M, Hunt G. Shielding applications from an
untrusted cloud with haven. In: USENIX symposium on
operating systems design and implementation (OSDI); 2014. p.
267–83.

Bovet DP, Cesati M. Understanding the Linux kernel. O’Reilly
Media, Inc.; 2005.

304 c om pu t e r s & s e cu r i t y 7 0 (2 0 1 7) 2 9 0 – 3 0 6

https://github.com/CySecLab-KAIST/systemsgx
https://github.com/CySecLab-KAIST/systemsgx
https://github.com/CySecLab-KAIST/sgx-guest
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0010
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0010
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0010
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0010
http://www.linaro.org/blog/core-dump/arm-trustzone-qemu/
http://www.linaro.org/blog/core-dump/arm-trustzone-qemu/
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0015
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0015
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0015
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0015
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0020
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0020

Chen Y, Reymondjohnson S, Sun Z, Lu L. Shreds: fine-grained
execution units with private memory. In: Proceedings of the
37th IEEE symposium on security and privacy. 2016.

Costan V, Devadas S. Intel SGX explained, Tech. rep., Cryptology
ePrint Archive, Report 2016/086; 2016. Available from: https://
eprint.iacr.org/2016/086.

Gueron S. A memory encryption engine suitable for general
purpose processors. 2013.

Hoekstra M, Lal R, Pappachan P, Phegade V, Del Cuvillo J. Using
innovative instructions to create trustworthy software
solutions. In: Proceedings of the 2nd international workshop
on hardware and architectural support for security and
privacy. ACM; 2013. p. 11.

Hsu TC-H, Hoffman K, Eugster P, Payer M. Enforcing least
privilege memory views for multithreaded applications. In:
Proceedings of the 2016 ACM SIGSAC conference on computer
and communications security. ACM; 2016. p. 393–405.

Installing and using qemu user-mode emulation. Available from:
https://www.ibm.com/support/knowledgecenter/linuxonibm/
liaal/liaalqemuemulate.htm.

Intel 64 and ia-32 architectures software developers’ manual;
2016. Available from: https://software.intel.com/sites/default/
files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf.

Intel SGX faq. Available from: https://software.intel.com/en-us/
sgx-sdk/faq.

Intel SGX for dummies (Intel SGX design objectives). Available
from: https://software.intel.com/en-us/blogs/2013/09/26/
protecting-application-secrets-with-intel-sgx.

Intel SGX for Linux. Available from: https://github.com/01org/
linux-sgx.

Intel SGX Linux driver. Available from: https://github.com/01org/
linux-sgx-driver.

Intel software guard extensions (Intel SGX) sdk. Available from:
https://software.intel.com/en-us/sgx-sdk.

Intel software guard extensions programming reference; 2013.
https://software.intel.com/sites/default/files/329298-001.pdf.

Intel software guard extensions programming reference; 2014.
Available from: https://software.intel.com/sites/default/files/
managed/48/88/329298-002.pdf.

Isca 2015 tutorial slides for Intel SGX; 2015. Available from:
https://software.intel.com/sites/default/files/332680-002.pdf.

Jain P, Desai S, Kim S, Shih M-W, Lee J, Choi C, et al. OpenSGX: an
open platform for SGX research. In: Proceedings of the
network and distributed system security symposium. San
Diego (CA). 2016.

Johnson S, Scarlata V, Rozas C, Brickell E, McKeen F. Intel
software guard extensions: Epid provisioning and attestation
services. 2013.

Kim S, Shin Y, Ha J, Kim T, Han D. A first step towards leveraging
commodity trusted execution environments for network
applications. In: Proceedings of the 14th ACM workshop on
hot topics in networks (HotNets). Philadelphia (PA): 2015.

McGillion B, Dettenborn T, Nyman T, Asokan N. Open-tee-an
open virtual trusted execution environment. arXiv preprint
arXiv:1506.07367. 2015.

McKeen F, Alexandrovich I, Anati I, Caspi D, Johnson S,
Leslie-Hurd R, et al., Intel software guard extensions (Intel
SGX) support for dynamic memory management inside an
enclave. 2016.

McKeen F, Alexandrovich I, Berenzon A, Rozas CV, Shafi H,
Shanbhogue V, et al. Innovative instructions and software
model for isolated execution. In: Proceedings of the 2nd
international workshop on hardware and architectural
support for security and privacy. ACM; 2013. p. 1.

Nyman T, McGillion B, Asokan N. On making emerging trusted
execution environments accessible to developers. In: Trust
and trustworthy computing. Springer; 2015. p. 58–67.

Operating system – process scheduling. Available from: http://
www.tutorialspoint.com/operating_system/os_process
_scheduling.htm.

Paging Wikipedia. Available from: https://en.wikipedia.org/wiki/
Paging#cite_note-1.

Porter DE, Boyd-Wickizer S, Howell J, Olinsky R, Hunt GC.
Rethinking the library OS from the top down. In: ACM
SIGPLAN notices, vol. 46. ACM; 2011. p. 291–304.

Posix threads programming. Available from: https://
computing.llnl.gov/tutorials/pthreads/.

Qemu emulator user documentation; Available from: http://
wiki.qemu.org/download/qemu-doc.html.

Qemu internals. Available from: https://qemu.weilnetz.de/qemu
-tech.html.

Qemu open source processor emulator. Available from: http://
wiki.qemu.org/Main_Page.

Qemu usermode, howto. Available from: http://nairobi
-embedded.org/qemu_usermode.html.

Qemu: user mode emulation and full system emulation; 2015.
Available from: http://www.cnblogs.com/pengdonglin137/p/
5020143.html.

Qemu Wikipedia. Available from: https://en.wikipedia.org/wiki/
QEMU#cite_note-3.

Running android l developer preview on 64-bit arm qemu; 2014.
Available from: http://www.linaro.org/blog/core-dump/
running-64bit-android-l-qemu/.

Schuster F, Costa M, Fournet C, Gkantsidis C, Peinado M, Mainar-
Ruiz G, et al. Vc3: Trustworthy data analytics in the cloud
using SGX. In: Proceedings of the 36th IEEE symposium on
Security and Privacy, S&P. 2015.

Shih M-W, Kumar M, Kim T, Gavrilovska A. S-NFV:
Securing NFV states by using SGX. In: Proceedings
of the 2016 ACM international workshop on Security in
Software Defined Networks & Network Function
Virtualization, SDN-NFV security ’16. New York (NY):
ACM; 2016. p. 45–8.

Shinde S, Chua ZL, Narayanan V, Saxena P. Preventing page
faults from telling your secrets. In: Proceedings of the 11th
ACM on Asia conference on computer and communications
security. ACM; 2016. p. 317–28.

Sinha R, Rajamani S, Seshia S, Vaswani K. Moat: verifying
confidentiality of enclave programs. In: Proceedings of the
22nd ACM SIGSAC conference on computer and
communications security. ACM; 2015. p. 1169–84.

Sinha R, Costa M, Lal A, Lopes NP, Rajamani S, Seshia SA,
et al. A design and verification methodology for secure
isolated regions. In: Proceedings of the 37th ACM SIGPLAN
conference on programming language design and
implementation. ACM; 2016. p. 665–81.

Smp (symmetric multiprocessing); 2007. Available from: http://
searchdatacenter.techtarget.com/definition/SMP.

Thread (computing) Wikipedia. Available from: https://
en.wikipedia.org/wiki/Thread_(computing)#Multithreading.

Winter J, Wiegele P, Pirker M, Tögl R. A flexible software
development and emulation framework for arm trustzone. In:
Trusted Systems. Springer; 2012. p. 1–15.

Xing BC, Shanahan M, Leslie-Hurd R. Intel software guard
extensions (Intel sgx) software support for dynamic memory
allocation inside an enclave. 2016.

Xu Y, Cui W, Peinado M. Controlled-channel attacks:
Deterministic side channels for untrusted operating systems.
In: 2015 IEEE symposium on security and privacy, SP 2015, San
Jose, CA, USA, May 17–21; 2015.

Zhang F, Cecchetti E, Croman K, Juels A, Shi E. Town crier: an
authenticated data feed for smart contracts, Cryptology
ePrint Archive, Report 2016/168; 2016. Available from: http://
eprint.iacr.org/2016/168.

305c om pu t e r s & s e cu r i t y 7 0 (2 0 1 7) 2 9 0 – 3 0 6

http://refhub.elsevier.com/S0167-4048(17)30125-6/sr9000
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr9000
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr9000
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0025
https://eprint.iacr.org/2016/086
https://eprint.iacr.org/2016/086
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr9005
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr9005
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0030
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0030
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0030
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0030
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0030
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0035
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0035
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0035
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0035
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0125
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaal/liaalqemuemulate.htm
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaal/liaalqemuemulate.htm
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0215
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/en-us/sgx-sdk/faq
https://software.intel.com/en-us/sgx-sdk/faq
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0160
https://software.intel.com/en-us/blogs/2013/09/26/protecting-application-secrets-with-intel-sgx
https://software.intel.com/en-us/blogs/2013/09/26/protecting-application-secrets-with-intel-sgx
https://github.com/01org/linux-sgx
https://github.com/01org/linux-sgx
https://github.com/01org/linux-sgx-driver
https://github.com/01org/linux-sgx-driver
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0140
https://software.intel.com/en-us/sgx-sdk
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0185
https://software.intel.com/sites/default/files/329298-001.pdf
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0190
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0210
https://software.intel.com/sites/default/files/332680-002.pdf
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0040
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0040
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0040
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0040
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr9010
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr9010
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr9010
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0045
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0045
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0045
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0045
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr9020
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr9020
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr9020
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr9015
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr9015
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr9015
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr9015
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0050
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0050
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0050
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0050
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0050
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0055
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0055
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0055
http://www.tutorialspoint.com/operating_system/os_process_scheduling.htm
http://www.tutorialspoint.com/operating_system/os_process_scheduling.htm
http://www.tutorialspoint.com/operating_system/os_process_scheduling.htm
https://en.wikipedia.org/wiki/Paging#cite_note-1
https://en.wikipedia.org/wiki/Paging#cite_note-1
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0060
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0060
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0060
https://computing.llnl.gov/tutorials/pthreads/
https://computing.llnl.gov/tutorials/pthreads/
http://wiki.qemu.org/download/qemu-doc.html
http://wiki.qemu.org/download/qemu-doc.html
https://qemu.weilnetz.de/qemu-tech.html
https://qemu.weilnetz.de/qemu-tech.html
http://wiki.qemu.org/Main_Page
http://wiki.qemu.org/Main_Page
http://nairobi-embedded.org/qemu_usermode.html
http://nairobi-embedded.org/qemu_usermode.html
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0205
http://www.cnblogs.com/pengdonglin137/p/5020143.html
http://www.cnblogs.com/pengdonglin137/p/5020143.html
https://en.wikipedia.org/wiki/QEMU#cite_note-3
https://en.wikipedia.org/wiki/QEMU#cite_note-3
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0195
http://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
http://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0065
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0065
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0065
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0065
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0070
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0070
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0070
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0070
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0070
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0070
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0075
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0075
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0075
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0075
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0080
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0080
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0080
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0080
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0085
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0085
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0085
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0085
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0085
http://searchdatacenter.techtarget.com/definition/SMP
http://searchdatacenter.techtarget.com/definition/SMP
https://en.wikipedia.org/wiki/Thread_(computing)#Multithreading
https://en.wikipedia.org/wiki/Thread_(computing)#Multithreading
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0090
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0090
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0090
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr9025
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr9025
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr9025
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0095
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0095
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0095
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0095
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0100
http://refhub.elsevier.com/S0167-4048(17)30125-6/sr0100
http://eprint.iacr.org/2016/168
http://eprint.iacr.org/2016/168

Changho Choi received his B.S. degree in Computer Science and
Electrical Engineering from Handong Global University in 2012. He
also received his M.S. in the Graduate School of Information
Security at Korea Advanced Institute of Science and Technology
(KAIST) in 2014. He is currently working toward his Ph.D. degree
at the Division of Computer Science, KAIST. His research interest
includes system security, and trusted execution environments es-
pecially in Intel SGX.

Nohyun Kwak received his B.S. degree in Computer Science and
Engineering from Pohang University of Science and Technology
(POSTECH), South Korea, in 2002. He also received his M.S. degree
in Computer Science from Korea Advanced Institute of Science and
Technology (KAIST) in 2005. He is currently working toward his Ph.D.
degree at the Division of Computer Science, KAIST. His research
interest includes system security, especially in Intel SGX.

Jinsoo Jang received his B.S. degree in Information and Computer
Engineering from Ajou University, Korea, in 2007. He also re-
ceived his M.S. degree in Information Security from Korea Advanced
of Science and Technology (KAIST) in 2014. He is currently working
toward his Ph.D. degree at the Division of Computer Science, KAIST.
His research interest includes system security, especially in the
trusted execution environment (TEE).

Daehee Jang received his B.S. degree in Computer Engineering from
Hanyang University, South Korea, in 2012. He also received his M.S.
degree in Information Security from Korea Advanced Institute of

Science and Technology (KAIST) in 2014. He is currently working
toward his Ph.D. degree at the Division of Computer Science, KAIST.
His research interest includes software vulnerability, operating
system, Intel SGX.

Kuenwhee Oh received his B.E. degree in the Division of Com-
puter Science from Korea Advanced Institute of Science and
Technology (KAIST) in 2014. He is currently working toward his M.S.
degree at the Division of Computer Science, KAIST. His research
interest includes system security and application of Intel SGX.

Kyungsoo Kwag received his B.S degree in Computer Science from
Sogang University, Seoul, Korea, in 2004. Currently, he works for
Samsung Electronics as Senior Engineer. His research interests are
security issues such as trusted execution environment and mali-
cious application detection.

Brent Byunghoon Kang is currently an associate professor at the
Graduate School of Information Security at Korea Advanced Insti-
tute of Science and Technology (KAIST). Before KAIST, he has been
with George Mason University as an associate professor. Dr. Kang
received his Ph.D. in Computer Science from the University of Cali-
fornia at Berkeley, and M.S. from the University of Maryland at
College Park, and B.S. from Seoul National University. He has been
working on systems security area including botnet defense, OS
kernel integrity monitors, trusted execution environment, and
hardware-assisted security. He is currently a member of the IEEE,
the USENIX and the ACM.

306 c om pu t e r s & s e cu r i t y 7 0 (2 0 1 7) 2 9 0 – 3 0 6

	 S-OpenSGX: A system-level platform for exploring SGX enclave-based computing
	 Introduction
	 Background
	 Intel SGX (Intel software guard extensions programming reference, 2014)
	 Overview
	 Terminology

	 QEMU emulator
	 User-mode emulation
	 System emulation

	 Attack model
	 SGX attack model
	 Thread attack model

	 System overview
	 Design
	 CPU management
	 Scheduling
	 Multithreading
	 Thread isolation

	 Memory management
	 EPC management
	 Page table handling
	 SGX paging

	 Kernel entry point management
	 System call handler
	 Interrupt/exception handler

	 Implementation
	 SystemSGX
	 Dereferencing problems
	 Resolved address comparison
	 Emulating AEX

	 SGX module
	 Discrepancy adjustment
	 Page table linking
	 Enclave linear address usage
	 Error code returns

	 SGX runtime
	 Multithreading
	 System call invocation
	 Signal handling

	 Evaluation
	 SGX paging
	 Thread isolation
	 Timer interrupt frequency control
	 Attack model test
	 Comparison

	 Limitation and future work
	 SMP support
	 KVM support
	 Compatibility issues
	 Unimplemented functionalities

	 Discussion
	 Malicious thread
	 Deployment issues

	 Related work
	 SGX research
	 Emulator

	 Conclusion
	 Availability
	 Acknowledgment
	 References

