
A Novel Covert Channel Attack Using Memory Encryption Engine Cache

Youngkwang Han and John Kim
KAIST, Daejeon, Korea

{sft_glory,jjk12}@kaist.ac.kr

Abstract
Microarchitectural covert channel attack is a threat when multiple
tenants share hardware resources such as last-level cache. In this
work, we propose a novel covert channel attack that exploits new
microarchitecture that have been introduced to support memory
encryption – in particular, the memory encryption engine (MEE)
cache. The MEE cache is a shared resource but only utilized when
accessing the integrity tree data and provides opportunity for a
stealthy covert channel attack. However, there are challenges since
MEE cache organization is not publicly known and the access be-
havior differs from a conventional cache. We demonstrate how the
MEE cache can be exploited to establish a covert channel commu-
nication.

1 INTRODUCTION
As multiple tenants share hardware resources in the cloud, pro-
viding secure system environment has become a critical concern.
In particular, shared hardware resources present opportunity for
different type of attacks, including side-channel attacks and covert-
channel attacks. Prior works have shown that cross-core microar-
chitectural attacks exploiting shared hardware can leak informa-
tion to other tenants, including cache-based cross-core attacks
[4, 7, 9, 17]. In particular, last-level cache attacks have been shown
to be practical with low error rate. On the other hand, diverse
hardware and software based defense mechanisms for the cache
attack [1, 8, 15, 16] have also been proposed. Other microarchi-
tectural attacks which utilize different shared hardware, such as
DRAM row buffer, memory order buffer, and memory bus, have
also been proposed [11, 13, 14]. All these microarchitectural attacks
are susceptible to noise since the microarchitectural components
are commonly used across all users. However, in this work, we pro-
pose a new type of covert channel that exploits dedicated hardware
microarchitecture designed to support memory encryption.

To provide secure environment for user-level application, hard-
ware support has been recently introduced. For example, Intel SGX
(Software Guard eXtensions) allows user-level code to be allocated
on a private region in memory, referred to as enclaves, that are pro-
tected from malicious privileged software. In this work, we exploit
memory encryption hardware provided to support Intel SGX – in
particular, the Memory Encryption Engine (MEE) cache to propose
a new type of cross-core, microarchitectural covert channel attack.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DAC ’19, June 2–6, 2019, Las Vegas, NV, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6725-7/19/06. . . $15.00
https://doi.org/10.1145/3316781.3317750

MEE cache is similar to other hardware cache (e.g., last-level cache)
as it is a shared resource across multiple cores and caches recently
accessed data. MEE cache access characteristics are very different
from other hardware cache and present new challenges to establish
a covert channel. However, the differences also prevents previously
proposed cache-based covert channel defenses from being directly
applicable to our proposed MEE covert channel attack.

In this work, we discuss the challenges in implementing covert
channel over the MEE cache. Since the hardware organization of
the MEE cache is not publicly known, we first reverse engineer the
MEE cache size and set-associativity. We then exploit the timing dif-
ference that exists between accessing the main memory from MEE
cache hit to implement the covert channel attack. We demonstrate
how previously proposed Prime+Probe [7] method can not be ap-
plied to MEE cache covert channel and describe how we implement
covert channel attack over the MEE Cache. We evaluate our covert
channel attack on native system and show that our covert channel
attack achieves 35KBps bit rate with 1.7% error rate without any
error handling. While other covert channel attacks [7, 9, 11] have
demonstrated higher bit rate, this work is one of the first to exploit
the MEE cache for covert channel attack.

2 BACKGROUND AND RELATEDWORK
2.1 Microarchitectural covert channel
Covert channel is an unauthorized communication channel that
bypasses computer security policy. It can transfer information by
regulating some conditions of a medium, e.g., network, microarchi-
tecture hardware, etc. Covert channel has two parties, trojan and
spy. Trojan is implanted on victim’s environment and leaks sensitive
information such as encryption keys to the spy, and the spy resides
on attacker’s environment to retrieve the information. In partic-
ular, microarchitectural covert channel utilizes shared hardware
microarchitecture resources and often exploits timing difference
that comes from sharing the hardware.

Cache-based covert channel exploits shared cache in CPU to
leak information by exploiting the fact that cache access latency is
smaller than main memory access latency. Percival [10] utilized L1
cache to create a covert channel between two processes running on
simultaneous multi-threading system, while Ristenpart et al. [12]
demonstrated cache-based covert channel can work between dif-
ferent virtual machines in cloud environment. Shared last-level
cache (LLC) enables covert channel communication across different
cores as the LLC is often inclusive of L1 and L2 and guarantees that
eviction of victim data from LLC leads to data eviction from private
L1 and L2 cache. Different LLC covert channel attacks have been
proposed, including Flush+Flush method [4], Prime+Probe method
in virtualized environment [7], and error-free LLC covert channel
with Prime+Probe method [9]. Memory-based covert channels in-
cludes using the memory bus for cross-VM covert channel [14] and
using DRAM row buffers for cross-CPU covert channel [11].

https://doi.org/10.1145/3316781.3317750

CPU

Core

Last-level cache
(LLC)

Trusted boundary

Memory controller
MEE

Untrusted boundary

MEE cache

Integrity tree
region

Protected data
region

(encrypted)

Main
memory

General region

Core …

…

MEE
region

…

Trojan
enclave

Spy
enclave

HW

SW

Figure 1: High-level block diagramofMEE (Memory Encryp-
tion Engine) and our covert channel attack.

2.2 MEE cache
SGX [2] is an extension to Intel architecture that provides integrity
and confidentiality to secure computation running in remote com-
puter where privileged software can potentially be malicious. The
SGX security model assumes the CPU package hardware is trusted,
while the main memory (DRAM) is untrusted as shown in Figure 1.
Users are provided a private region of the main memory, referred
to as enclave, that can store both code and data. SGX guarantees
DRAM confidentiality, integrity, and freshness of the protected data
region by leveraging the Memory Encryption Engine (MEE) [5] – a
hardware component in SGX located within the memory controller.
MEE protects data in the enclave through the integrity tree [3, 5]
that is commonly used to enable a small amount of internal storage
to protect a large amount of memory and often consists of multiple
levels. Integrity tree has to be tamper resistant, and the root level
data of integrity tree are stored on internal SRAM within the CPU
package.

Although the lower levels of the integrity tree are stored in
main memory, they can be trusted by verifying up to root level.
As a result, data for all levels within the integrity tree needs to be
checked to determine integrity and freshness for a single memory
access to the enclave (or the protected data region). In other words,
a single memory access to the protected data region results in
multiple integrity tree data access from the main memory and
significantly increases overall memory access latency. To improve
overall performance, MEE cache [5] is added within MEE to store
recently accessed integrity tree data and reduces the number of
main memory accesses to improve performance. If the integrity
tree data is already loaded into the MEE cache, it signifies that the
integrity tree data already went through integrity and freshness
check and was verified. Integrity check starts from the "leaf" and
moves up to the root of integrity tree. As soon as a MEE cache hit
occurs, MEE stops integrity check from continuing moving up to
the root of integrity tree. In this work, we exploit this MEE cache
to establish a covert channel attack.

2.3 Threat model
We assume a multi-core system that is shared by multiple tenants,
with both the trojan and the spy residing on different cores within
the same CPU, and their goal is to establish a covert channel. We
assume the CPU supports SGX and hyperthreading. The system
software does not provide any additional features to both trojan

rdtsc

t1

Thread 1

t2 rdtsc

rdtsc

(a) Normal application

t1

Thread 2

direct
access

(c) Using hyperthreading to
measure time in SGX

Thread 1

(b) Using OCALL within SGX

Execution time
flow

Thread 1

OCALL

Non-enclave
mode

Enclave
mode

Non-enclave
mode

Enclave
mode

measured
time interval

direct
access

measured
time interval

t1

t2 rdtsc

rdtsc
rdtsc

rdtsc

rdtsc

rdtsc

rdtsc…
…

…
t2

OCALL

measured
time interval

necessary
time interval

Figure 2: Different approaches to measuring time or latency
on x86 system.

and spy, such as shared memory and hugepage, and the system
software does not necessarily have any vulnerabilities.

3 CHALLENGES IN EXPLOITING MEE CACHE
MEE cache differs from other hardware on-chip cache since it caches
integrity tree data. In particular, the challenges of MEE cache-based
attack include the following.

1. MEE cache is only utilized when main memory’s protected data
region is accessed. Unlike data cache in CPU memory hierarchy, the
MEE cache is only accessed when data is loaded from the protected
data region. Thus, enclave’s data needs to be accessed for our covert
channel attack. However, since enclave data can still be cached in
the on-chip cache hierarchy, clflush instruction is used to ensure
access goes to the MEE cache. In addition, clflush does not flush
the integrity tree data in the MEE cache.

2. For each data access to the protected data region, the number
of MEE cache accesses can vary. MEE cache loads the integrity tree
data with multiple levels, and multiple MEE cache access can occur.
If a cache hit occurs within the MEE cache, no further access is
done to move up the integrity tree. However, in any data access to
the protected data region, the lowest level data of the integrity tree
(or the versions data) is always accessed and checked as integrity
check starts from the lowest level of the integrity tree. If a MEE
cache hit occurs for the versions data, no more MEE cache access is
done. Thus, we exploit the versions data in our MEE cache covert
channel attack since its access is guaranteed to occur for each data
access to a protected data region.

3. Hugepage is not available in enclave mode. Hugepages (e.g.,
2MB, 1GB) are commonly supported in modern systems today.
Hugepages have been utilized in LLC Prime+Probe attack [7, 9]
since hugepage size can be larger than the LLC and enables con-
tinuous mapping of the virtual address space to the physically
addressed cache. However, SGX does not support hugepage and
thus, the covert channel attack is implemented with 4kB default
page size.

4. RDTSC instruction is not available in enclave mode. To imple-
ment timing-based side channel attack, time needs to be measured,
and instructions such as rdtsc instruction can be used (Figure 2(a)).
However, rdtsc instruction is not available in the enclave mode
in SGX CPU. As a result, OCALL function1 can be used to execute
rdtsc instruction from the enclave mode (Figure 2(b)); however,
our evaluation shows that OCALL can take between 8000 to 15000

1 OCALL function enables codes within the enclave to call external functions.

Consecutive versions data region

0

15

32

47

16

31

Index
set

…1

17

…

33…

Way 0 Way 1

Set

…

…

Consecutive versions data region

Consecutive versions data region

Eviction
set

…

Figure 3: MEE cache organization for reverse-engineering
the configuration.

clock cycles for the function call itself and results in significant
overhead. To provide a low-overhead mechanism to estimate time,
we exploit hyperthreading available in modern CPUs as well as
the fact virtual address of non-enclave memory region can be di-
rectly accessed from within enclave mode (Figure 2(c)). A thread
in the non-enclave mode continuously retrieves the time stamp
counter value with rdtsc instruction and stores the values in the
non-enclave memory space. A thread in the enclave mode retrieves
the value directly from the non-enclave space with minimal cost
(approximately 50 cycles).2

5. MEE cache structure is not publicly known. In the following
section, we describe howwe reverse-engineer the size and structure
of the MEE cache.

4 REVERSE ENGINEERING THE MEE CACHE
In this section, we describe how we reverse-engineered the MEE
cache organization. All analysis and evaluation are done on an Intel
i7-6700K (Skylake) multi-core CPU, and our analysis suggests that
the MEE cache is 64kB, 8-way set-associative cache with 128 sets.
4.1 MEE cache capacity
In conventional data cache, the working data set can be increased
to determine the cache capacity by observing the change in data
access latency. Hugepage can also be used to map a contiguous
virtual address space to contiguous physical addresses. However,
the same approach cannot be used for a MEE cache since hugepage
is not available, and a single memory access to protected data region
can cause multiple integrity tree data to be loaded into the MEE
cache. In addition, data from each level of the integrity tree can be
loaded into any location within the MEE cache and not necessarily
loaded contiguously.

The cache line size of MEE cache is known to be 64B, and each
data in the integrity tree is also 64B [5]. The integrity tree covers
the versions data which are the counters used as part of compound
nonce in SGX, and the versions data represents the lowest level of
the integrity tree. The 64B of the versions data is used for integrity
check of 512B data in the protected data region; thus, for a 4kB
page size, 4kB/512= 8 versions data are guaranteed to be mapped
contiguously within the MEE cache. In addition, the versions data
are stored along with the corresponding Message Authentication
Code (MAC) tag, referred to as PD_Tag, as the metadata – thus, the
versions data is loaded into the odd index set of the MEE cache
(while the PD_Tag is stored in the even index set). Thus, Figure 3

2 This approach is likely not needed in SGX2 [6] where support for rdtsc is provided.
However, to the best of our knowledge, no current hardware supports SGX2.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 8 16 32 64

Ev
ic

tio
n

pr
ob

ab
ili

ty

Number of virtual address in candidate set

Figure 4: Result of eviction probability in 100MEE cache size
tests according to number of virtual address in candidate ad-
dress set.
shows the consecutive versions data region within the MEE cache,
and the index set describes the set of cache lines across different
consecutive versions data region that have the same set indexwithin
that particular data region. The eviction set is subset of index set
and is defined as the set of cache lines that have the same set index
value (i.e., cache lines across the different cache ways).

The candidate address set is defined as set of virtual addresses
that can load the versions data into the same index set. To reverse
engineer the MEE cache capacity, we used candidate address set
that consists of virtual address with 4KB stride within the protected
data region. If the size of versions data mapped to the candidate
address set space is larger than the MEE cache capacity, then at least
one of the versions data within the candidate address set needs to be
evicted if all of the virtual addresses within the candidate address
set are accessed. The 4KB stride access also minimizes versions
data eviction caused by other levels’ data of integrity tree. Figure 4
plots the eviction probability as the number of virtual addresses in
the candidate address set is increased. Results are collected from
running the experiment 100 times for a given number of virtual
addresses. As the number of virtual addresses in the candidate ad-
dress set increases, the eviction probability also increases and when
there are 64 virtual addresses, the eviction probability reaches 100%.
Therefore, MEE cache capacity can be calculated by multiplying
the number of elements in the candidate address set (64) by the size
of one cache way within consecutive versions data region (16 ×
64B) and determine the overall MEE cache capacity as 64kB.
4.2 MEE cache associativity
In addition to the MEE cache size, the MEE cache associativity also
needs to be known to determine the number of sets. Algorithm 1
summarizes how the MEE cache associativity can be determined.
If the eviction address set can be determined, the number of ele-
ments in the eviction address set corresponds to the MEE cache
associativity.

Lines 13-17 in the algorithm finds a set of virtual address from
the candidate address set, whose versions data is loaded on the
same index set. If the set’s versions data evicts candidate’s versions
data, the candidate is not included in the set because the MEE
cache set, where versions data of the candidate would be loaded, is
already filled with other versions data of the set’s addresses. The set
includes at least one eviction address set if the number of element
in candidate address set is equal or larger than 64 (the number
of element in candidate address set when versions data eviction
always occurs). Line 18-23 finds one test address from the rest of
candidate address set to separate eviction address set from the set
whose versions data is loaded on index set. A test address is chosen

Algorithm 1: Finding eviction address set
input :candidate address set – a set of all virtual address that

can load the versions data into the same index set
output :evict ion address set – a set of virtual address whose

versions data is loaded on the same eviction set

1 Function eviction test (set, victim) begin
2 access victim; flush victim ;
3 // load versions data on MEE cache but flush data from the LLC
4 mfence
5 foreach address ∈ set do
6 access address ; flush address ;
7 end
8 mfence
9 measure t ime to access victim ; flush victim ;

10 return t ime
11 end

12 candidate address set ← {A, A + 4KB, A + 8KB, ... }
13 index address set ← {}, evict ion address set ← {}
14 foreach candidate ∈ candidate address set do
15 if eviction test (index address set, candidate) = main

memory access latency with versions data hit then
16 insert candidate into index address set
17 end
18 end
19 foreach test ∈ (candidate address set − index address set)

do
20 foreach address ∈ index address set do
21 access address ; flush address ;
22 end
23 mfence
24 if eviction test (index address set, test) = main memory

access latency with level0 data hit then
25 foreach tarдet ∈ index address set do
26 foreach address ∈ index address set do
27 access address ; flush address ;
28 end
29 mfence
30 if eviction test (index address set − tarдet , test) =

main memory access latency with versions data hit then
31 insert tarдet into evict ion address set
32 end
33 end
34 end
35 end

if its versions data is evicted by the eviction address set. Finally, line
24-32 collects eviction address set by checking whether versions
data of the test address is evicted or not by excluding address one
by one from the index address set. If the versions data is not evicted,
the excluded address is an element of the eviction address set. Based
on the algorithm, we discover 8 virtual addresses in the eviction
address set and determine the number of MEE cache ways to be 8.
5 MEE CACHE COVERT CHANNEL
Knowing the MEE cache configuration (i.e., 64kB 8-way set associa-
tive cache), in this section, we describe how covert channel can be
established over the MEE cache. The covert channel exploits timing

0

50

100

150

200

N
u
m

b
er

of
sa

m
p
le

s

Level 0
data hit

Level 1
data hit

Versions
data hit

Level 2
data hit

Root level access

Access latency of protected data region in main memory (cycles)

Figure 5: Histogram results of protected data region main
memory access latency
difference between MEE cache hit and miss when accessing the
main memory’s protected data region. MEE cache covert channel
assumes the trojan and spy are running on different physical core.
Trojan tries to evict spy’s versions data in MEE cache to send bit
signal. If spy’s versions data is evicted by the trojan’s versions data,
spy’s protected data region access latency will increase.
5.1 MEE cache access latency
As described in the previous section, the versions data of the in-
tegrity tree is always checked in the MEE cache for a hit (or a miss)
and thus, versions data will be used in our covert-channel attack.
Since the covert-channel attack is based on the timing difference,
we first analyze the MEE cache access latency and understand the
timing difference between versions data hit or miss in the MEE
cache when accessing the main memory’s protected data region. In
Figure 5, a latency distribution of main memory access is shown
with different MEE cache hit (or miss) behavior. The result were
obtained by accessing data in protected data region with different
stride accesses, including 64B, 512B, 4KB, 32KB, and 256KB. With
64B and 512B stride access, 64B versions data loaded into the MEE
cache (consisting of 8 counter values) covers 512B region of the
memory – thus, results in effective spatial locality across multi-
ple accesses and results in version data hit or in some cases, level
0 data with high probability. However, when accessing the main
memory in 4KB, 32KB, and 256KB strides, there is a (cold) miss
of the versions data but often results in level 1 or level 2 data hit
within the MEE cache and results in higher latency. The results in
Figure 5 show a clear trend of increasing latency as the level within
the integrity tree that MEE cache hit occurs also moves up. While
the difference between level 2 data hit or accessing the root level is
relatively small, the different between the lowest level MEE cache
hit (i.e., versions data hit) compared with a miss is rather significant.
In this work, we exploit this timing difference between versions
data hit and miss which have a difference of at least approximately
300 cycles.
5.2 Limitations of Prior covert channel attack
Prime+Probe [7] has been proposed for LLC covert channels and
can also be applied to the MEE cache. The spy would have the
eviction set for the versions data, and trojan has single virtual
address whose versions data is conflicted with the eviction set. The
trojan evicts one of the versions data in the spy’s eviction set, and
the spy decodes the signal by probing or measuring total latency.

Results (Figure 6(a)) fromMEE cache covert-channel using Prime+
Probe method shows that proper communication cannot be estab-
lished with the spy. For LLC Prime+Probe [7], the timing difference

3000

3200

3400

3600

3800

4000

4200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pr
ob

e
tim

e
(c

yc
le

s)

Bit sequence

0 0 0 0 0 0 0 01 1 1 1 1 1 1 1

0

200

400

600

800

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Pr
ob

e
tim

e
(c

yc
le

s)

Bit sequence

(a)

(b)

Figure 6: Results of MEE cache covert channel communica-
tion using (a) Prime+Probe and (b) this work. Trojan is send-
ing ‘010101...’ bit sequence in this example.
when probing between LLC hit and miss sufficiently large enough
to determine if eviction occurred or not. However, the probing time
of eviction set in the MEE cache is significantly high (compared to
the timing difference between MEE cache hit or miss) because of
the multiple main memory accesses required to access the data in
the protected memory region – i.e., whether there is a MEE cache
versions data hit or a miss, the main memory always needs to be
accessed. As a result, each probe operation requires 8 main memory
accesses (for the 8 cache ways), resulting in a probing latency that
exceeds 3500 cycles. Thus, the difference of approximately 300 cy-
cles for MEE cache hit or miss is insufficient for the covert channel
given the inherent system noise and performance variations that
can occur when accessing the main memory. Since the existing
Prime+Probe is not suitable to MEE cache covert channel, we min-
imize the number of cache ways that need to be accessed in our
implementation to ensure the difference in MEE cache access can
be used for the covert channel.

5.3 MEE cache covert channel implementation
In Prime+Probe [7], the spy maintains the eviction set, and the
trojan evicts one of the data. We also leverage a similar approach
but in this work, we reverse the roles as the trojan maintains the
eviction set, and the spy only needs to probe a single cache way.
This enables the spy to leverage the MEE cache versions data hit or
miss for the covert channel since the number of memory access is
significantly reduced. The MEE cache covert channel consists of
the following steps:
1. Prime : spy primes the MEE cache but only a single cache way.
2. Eviction : trojan evicts all cache ways if communicating a ‘1’.
3. Probe : spy probes the single cache way and primes a single cache
way if MEE cache miss occurs.
Similar to other cache-based covert channel, the trojan and spy
must first agree on same index in consecutive versions data region
(Figure 3), and any arbitrary index can be used. The same index
in consecutive versions data region can be selected by choosing
the same 512B virtual address space unit within 4KB page. The
trojan creates an eviction set by using Algorithm 1 and accesses
the eviction set to communicate with the spy.

Before Prime step occurs, the spy utilizes the agreed index to
determine the monitor address which is defined as the address that
will be evicted by the trojan. After finding monitor address, MEE
cache covert channel can be implemented based on Algorithm 2.
One challenge with the trojan’s eviction is the MEE cache replace-
ment policy. While the details of the replacement policy are not

Algorithm 2: MEE cache covert channel protocol
Datasend [N], Datar ecv [N]: N data bits to be sent and received
eviction set: a set of virtual address whose versions data is loaded on
same MEE cache set

monitor address: virtual address whose versions data is conflicted with
versions data of eviction set

Tsync : size of timing window shared between trojan and spy
Tr ecv : time for receiving data bits

Trojan’s operation:

for i ← 0 to N − 1 do
if Datasend [i] = 0

busy loop for time Tsync
else if Datasend [i] = 1

access eviction set in forward direction
flush eviction set in forward direction
mfence
access eviction set in backward direction
flush eviction set in backward direction
busy loop for remaining time of Tsync

endif
end

Spy’s operation:

for time Tr ecv do
measure t ime to access monitor address
flush monitor address
if t ime = main memory latency with versions data hit

Datar ecv = 0
else if t ime = main memory latency with versions data miss

Datar ecv = 1
endif
busy loop for remaining time of Tsync

end

publicly available, it can be assumed to an “approximate LRU” re-
placement policy, similar to other hardware cache. Thus, to ensure
proper communication with the spy, the eviction process consists
of two phases – a forward phase where the eviction set is accessed
in the forward direction and a reverse phase where the opposite
order is used. The two-phase approach comes at the cost of de-
crease in the communication bit rate but is necessary to reduce the
error rate. While the eviction can take longer, the probe and prime
stage for the next communication bit is overlapped since the probe
of the MEE cache effectively primes the MEE cache for the next
communication.
5.4 Evaluation
We tested and evaluated our covert channel attack on an Intel i7-
6700K CPU (Skylake) with 4 physical cores and 32 GB of memory,
with 128 MB for the MEE region. The system supports SGX and
hyper-threading. We evaluated with Ubuntu 14.04 and SGX SDK
v1.7. The trojan process and spy process were executed on different
physical cores. Results from MEE cache-based covert-channel is
shown in Figure 6(b) with a timing window of 15000 cycles. If the
spy accesses protected data region and finds versions data miss
(approximately 750 cycles), spy decodes it as a ‘1’. If the spy access
results in versions data hit (approximately 480 cycles), the spy
decodes it as a ‘0’.

0

0.1

0.2

0.3

0.4

0.5

0

20

40

60

80

100

120

5000 7500 10000 15000 20000 25000 30000

Er
ro

r
ra

te

Bi
t

ra
te

 (
KB

ps
)

Timing window size

Bit rate Error rate

Figure 7: Trade-off between bit rate and error rate in MEE
cache covert channel as timing window size is varied.

We evaluated our covert channel by varying the timing window
size. For each timing window size, we measured bit rate and error
rate of our covert channel. Figure 7 shows the trade-off between
bit rate and error rate. Bit rate increases as the timing window
size decreases. However, error rate significantly increases between
7500 cycles and 10000 cycles (5.2% → 34%). The trojan accesses
eviction address set in forward and backward operation to send bit
‘1’, and the latency of sending a single bit is approximately 9000
cycles. Therefore, error rate significantly increases if the timing
window size is smaller than 9000 cycles. The MEE cache covert
channel has the lowest error rate (1.7%) when the timing window
size is 15000 cycles. We also evaluated the robustness in two noisy
environments. First environment is when MEE cache is highly
utilized by another physical core at the same time - i.e., another
program frequently loads new integrity tree data from the main
memory to the MEE cache. Two different access stride patterns
(512B and 4KB) were used since it results in different MEE cache
behavior. Second noisy environment is when general cache and
main memory are intensively utilized. We utilized stress-ng tool
to stress the main memory and cache [9, 11] and evaluated with
15000 cycles timing window size.

Figure 8 shows results under different environments when trojan
sends ‘100100...’ 128 bits sequence and red circles indicates error
bit. Without any noise, there is only one error bit among 128 bits
(Figure 8(a)). When additional noise is added with more accesses
to the main memory through the on-chip cache hierarchy, the
error rate has minimal impact since the MEE cache is not accessed
(Figure 8(b)). However, if the MEE cache is highly utilized from
additional noise (Figure 8(c),(d)), the error rate increases to 4 or 5
error bits during the 128 bits sequence.
5.5 Mitigations
There have been many prior work to defend against LLC covert
channel attacks including detection works based on hardware per-
formance counter [1, 4], replay confusion [15], cache partition-
ing [8], and new cache replacement policy [16]. However, as dis-
cussed earlier in Section 3, the MEE cache has very different char-
acteristics and similar approaches used for LLC are not necessarily
valid. In addition, recent LLC from some CPU vendors have pro-
posed non-inclusive LLC and thus, carrying out covert channel
attack based on shared LLC becomes more difficult. In comparison,
this work proposes a new covert channel attack through the shared
MEE cache. However, LLC defense mechanisms can be modified
for the MEE cache by incorporating the characteristics of the MEE
cache to prevent covert channel attack. For example, way-based
partitioning [8] cannot be directly applied to MEE cache as simply
partitioning the cache across different users will not work since the
integrity tree is shared.

1 13 25 37 49 61 73 85 97 109 121

P
ro

b
e
 t

im
e
 (

cy
cl

e
s)

Bit sequence

(a)

0

200

400

600

800

1000

1200

1400

1600

1 13 25 37 49 61 73 85 97 109 121

P
ro

b
e
 t

im
e
 (

cy
cl

e
s)

Bit sequence

(c)

0

200

400

600

800

1000

1200

1400

1600

1 13 25 37 49 61 73 85 97 109 121

P
ro

b
e
 t

im
e
 (

cy
cl

e
s)

Bit sequence

(d)

0

200

400

600

800

1000

1200

1400

1600

1 13 25 37 49 61 73 85 97 109 121

P
ro

b
e
 t

im
e
 (

cy
cl

e
s)

Bit sequence

(b)

Figure 8: MEE cache covert channel results with (a) no noise,
(b) noise from main memory access, and noise from addi-
tional integrity data access with (c) 512B and (d) 4kB stride.
6 SUMMARY
In this work, we proposed a novel cache covert channel attack by
exploiting the MEE cache available in Intel SGX systems. We identi-
fied the challenges in leveraging the MEE cache and described how
the MEE cache structure was reverse-engineered. We implemented
our MEE cache-based covert channel to demonstrate the feasibility
of using this new cache architecture for covert-channel attack.
ACKNOWLEDGMENTS
We thank Professor Brent B. Kang for helpful discussions. This re-
search was supported in part by the National Research Foundation
of Korea (NRF) by the Ministry of Science, ICT & Future Plan-
ning (MSIP)(NRF-2017R1A2B4011457), ONR (N00014-18-1-2661)
grants, and MSIP, under the Human Resource Development Project
for Brain Scouting Program(IITP-2017-0-01889) supervised by the
IITP(Institute for information & communications Technology Pro-
motion).
REFERENCES
[1] S. Briongos et al. Cacheshield: Protecting legacy processes against cache attacks.

CoRR, abs/1709.01795, 2017.
[2] V. Costan et al. Intel SGX explained. IACR Cryptology ePrint Archive, 2016, 2016.
[3] B. Gassend et al. Caches and hash trees for efficient memory integrity verification.

In HPCA, 2003.
[4] D. Gruss et al. Flush+flush: A fast and stealthy cache attack. In DIMVA, 2016.
[5] S. Gueron. A memory encryption engine suitable for general purpose processors.

IACR Cryptology ePrint Archive, 2016.
[6] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 3D:

System Programming Guide, Part 4, 2016.
[7] F. Liu et al. Last-level cache side-channel attacks are practical. In IEEE Symposium

on Security and Privacy, 2015.
[8] F. Liu et al. Catalyst: Defeating last-level cache side channel attacks in cloud

computing. In HPCA, 2016.
[9] C. Maurice et al. Hello from the other side: SSH over robust cache covert channels

in the cloud. In NDSS, 2017.
[10] C. Percival. Cache missing for fun and profit. In Proceedings of BSDCan, 2005.
[11] P. Pessl et al. DRAMA: exploiting DRAM addressing for cross-cpu attacks. In

USENIX Security, 2016.
[12] T. Ristenpart et al. Hey, you, get off of my cloud: exploring information leakage

in third-party compute clouds. In CCS, 2009.
[13] D. Sullivan et al. Microarchitectural minefields: 4k-aliasing covert channel and

multi-tenant detection in iaas clouds. In NDSS, 2018.
[14] Z. Wu et al. Whispers in the hyper-space: High-bandwidth and reliable covert

channel attacks inside the cloud. IEEE/ACM Trans. Netw., 2015.
[15] M. Yan et al. Replayconfusion: Detecting cache-based covert channel attacks

using record and replay. In MICRO, 2016.
[16] M. Yan et al. Secure hierarchy-aware cache replacement policy (SHARP): defend-

ing against cache-based side channel atacks. In ISCA, 2017.
[17] Y. Yarom et al. FLUSH+RELOAD: A high resolution, low noise, L3 cache side-

channel attack. In USENIX Security, 2014.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 12.60 points
 Normalise (advanced option): 'original'

 32

 D:20190429080835
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 12.6000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

