
Revisiting the ARM Debug Facility for OS Kernel Security
Jinsoo Jang

KAIST
jisjang@kaist.ac.kr

Brent Byunghoon Kang
KAIST

brentkang@kaist.ac.kr

ABSTRACT
Hardware debugging facilities, such as watchpoints, have been
used for software development and analysis. In this paper, we ex-
panded the use of watchpoints as a hardware security primitive
for enhancing the runtime security of mobile devices. By analyzing
the watchpoints in detail, we derived useful watchpoint proper-
ties that can be exploited to build security applications. Based on
our analysis, we designed example applications for hardening the
OS kernel by exploiting watchpoints. The proposed applications
were implemented on a Juno development board with 64-bit ARM
architecture (ARMv8). Hardening the kernel by fully enabling the
proposed schemes was found to impose reasonable overhead, i.e.,
3% with SPEC CPU2006.

1 INTRODUCTION
In general, modern electronic devices, such as mobile phones and
PCs, support hardware debugging features (e.g., breakpoints and
watchpoints). These features are defined during the system-on-chip
(SoC) design process, and once integrated, are used for developing
low-level software (e.g., firmware and bootloaders) as part of man-
ufacturing the final product. Debugging features are also available
at device runtime, and have been used to facilitate software devel-
opment (e.g., GDB), to analyze malware [24], and to find critical
bugs that cause race conditions [9, 16]. Thus, previous studies have
capitalized on debugging features for software development and
analysis.

In this paper, we describe the leveraging of hardware debugging
features from a different aspect. We first analyze in detail a debug-
ging facility, specifically a watchpoint on the ARM architecture,
and abstract useful security features such as privileged-aware mon-
itoring. We then show how to leverage these features to enhance
mobile OS security.

As example security applications, we designed a watchpoint-
based kernel execute-only memory (XOM) and privileged access
never (PAN) attributes. XOM [12] aims to prevent the leakage of a
code location and thus hinder a code reuse attack. The 64-bit ARM
architecture supports this feature only for user memory; the user-
level XOM can be enabled through the configuration of the page
table attribute. To activate this feature in the kernel space as well,
we utilize watchpoints, which do not incur any exception for an
instruction fetch from a watchpoint-monitored region. In particular,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DAC ’19, June 2–6, 2019, Las Vegas, NV, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6725-7/19/06. . . $15.00
https://doi.org/10.1145/3316781.3317897

kernel-level XOM is emulated by configuring the watchpoint such
that read access to the kernel text region generates a watchpoint
exception.

PAN is a security feature that prevents a kernel bug from arbi-
trarily reading and using a potentially malicious user memory. In
the ARM architecture, PAN is limitedly supported by high-end pro-
cessors. We designed PAN by exploiting the following watchpoint
properties: (1) the watchpoint can be configured to monitor privi-
leged access only, and (2) is sensitive to an unprivileged instruction
execution. Specifically, we set the watchpoint monitoring to trap
only the kernel-privileged access to the user space during kernel
execution. Then, to ensure that legitimate kernel functions, such as
copy_from_user, can seamlessly access the user memory, we patch
such functions with unprivileged load and store instructions that
never generate watchpoint exceptions against the region set with
kernel-privileged access monitoring.

We implemented our prototype watchpoint-based kernel pro-
tection mechanisms on a Juno development board [6]. The excep-
tion vector and macro for accessing the user space were patched
to implant the watchpoint configuration operations and use the
unprivileged instructions, respectively. During the performance
evaluation, we combined each solution including the existing Linux
security feature (i.e., TTBR-based PAN) and measured the perfor-
mance of each case. We observed an overhead of less than 3% using
SPEC CPU2006.

2 RELATEDWORK
Mobile device security. By using various features of ARM archi-
tecture, novel approaches have been proposed to secure mobile
devices. The privileged access never (PAN) and privileged execute
never (PXN) flags [1] have been leveraged by Linux to restrict priv-
ileged access to and execution of the user memory, respectively.
Sentry [17] takes advantage of the IRAM and cache to protect the
device from DRAM attacks, such as cold boot attacks. The mem-
ory domain and the domain access control register (DACR) are
leveraged by ARMlock [29] and Shreds [14] to enable hardware-
based fault isolation and realize the in-process memory isolation,
respectively. User-level execute only memory (XOM) for mobile de-
vices was developed using page permission manipulation [15] and
a software-based load-masking technique [13]. ARM TrustZone, a
security extension of the processor, has been intensively explored
for critical application logic protection [22], communication chan-
nel security [21], and OS kernel attack [23] and integrity protection
[11]. The hardware-assisted virtualization has also been used for
device security enhancement: OS kernel protection [7] and appli-
cation shielding [20]. Finally, hardware security primitives such
as the physical unclonable function (PUF) have been leveraged to
prevent hardware-based attacks and to establish the root of trust of
the device [26]. In our work, we use hardware watchpoints for the

https://doi.org/10.1145/3316781.3317897

Table 1:Watchpoint control register flag setting formonitor-
ing a particular mode in the non-secure and secure states.

SSC PAC Security state Watchpoint for
01 10 Non-secure User
01 01 Non-secure Kernel
10 10 Secure User
10 01 Secure Kernel

creation of useful security applications, such as kernel-level XOM
and PAN emulation.

3 WATCHPOINT ANATOMY FOR SECURITY
In this section, we provide a brief introduction to watchpoints, a
self-hosted monitoring feature. Further, watchpoint aspects that are
useful for building security applications for mobile device runtime
protection are explored.

3.1 ARM privilege and security model
Before we discuss watchpoints, we briefly introduce the ARM secu-
rity states and privilege model. Modern ARM processors support
the TrustZone [1] security extension, which separates the processor
security state into non-secure and secure states. Each state can be
entered by configuring the non-secure (NS) flag in the SCR_EL3
register. For example, clearing and setting the NS flag indicates
that the current CPU security state is secure and non-secure, re-
spectively. The user, kernel, and monitor modes exist in the secure
state. By contrast, the user, kernel, hypervisor, and monitor modes
are available in the non-secure state. Self-hosted debugging is sup-
ported for all modes in both states except for the monitor mode,
which only supports external debugging.

3.2 Watchpoint exception routing
By default, the debug exceptions are routed to and handled by the
kernel. In addition, to generate the exceptions in the same mode
that handles the exceptions, the kernel debug enable (KDE) flag
in MDSCR_EL1 must be set and the debug exception mask flag
(D) in the process state (PSTATE) must be cleared. For example, to
generate and handle the debug exceptions in the kernel mode in the
non-secure state, the following configuration should be adopted:
MDSCR_EL1.KDE=1, SCR_EL3.NS=1 and PSTATE.D=0.

3.3 Watchpoint privilege and type
The mode privilege where the exception can be generated is defined
by the combination of the security state control (SSC) and the
privilege of access control (PAC) flags in the watchpoint control
register (DBGWCR). Except for the monitor mode, any mode in
both security states can generate the exceptions depending on the
configuration. Table 1 describes the example combination of flags
for generating the debug exceptions explicitly in a single mode in
the non-secure and the secure states. Besides, the load store control
(LSC) flag in DBGWCR, which is two bits in size, determines the
type of monitoring as read (0b01), write (0b10), or both (0b11).

3.4 Useful security properties
Here, we describe the useful features of watchpoints that inspired
us to design the kernel security applications using watchpoints.
The properties stated below can be leveraged to build security
applications.

(P1) Privilege-aware monitoring. The watchpoint exception
is privilege-sensitive. For example, even if a certain address range
is accessible from the user and kernel, we can configure the watch-
point such that only kernel-privileged access generates the excep-
tions.

(P2) Compatibility with unprivileged operations. In associ-
ation with P1, an unprivileged instruction execution recognizes the
privilege setting of the watchpoint-monitored area. For example,
the execution of unprivileged load (e.g., ldtr instruction on ARM)
against a certain region that is configured with kernel-privileged
access monitoring does not generate any exception.

(P3) Instruction fetch agnosticmonitoring.Because thewatch-
point is a type of data breakpoint, instruction fetch from thewatchpoint-
monitored region does not incur any exception, which is suitable
for implementing execute only memory (XOM).

4 OS KERNEL HARDENING
We propose two watchpoint utilizations for enhancing OS kernel
security (Figure 1): (1) emulation of PAN and (2) enabling kernel-
level XOM. In this section, we briefly present the motivation, design,
and limitations of our approaches.

4.1 PAN emulation
PAN is a hardware-supported security feature that aims to restrict
access to user memory from the kernel. On ARM, this security
feature is available from ARMv8.1 [1], but at the time of writing this
paper, most commercial processors do not support this feature; only
Cortex-A75 and Cortex-A55, two out of 14 available commercial
Cortex-A processors, solely provides this feature [3].

To support this security feature for legacy devices, Linux em-
ulates its behavior [4]. For example, on ARMv8 (64-bit ARM ar-
chitecture), Linux forces the translation table base register for the
user space (TTBR0) to point to an invalid page table during kernel
execution. This makes the entire user space memory inaccessible
to the kernel. However, to support kernel operations that legiti-
mately access the user memory (e.g., copy_from_user), the TTBR0
is temporarily remapped to the valid page table address, making
the entire user space accessible again. This property could be a po-
tential vulnerability because a kernel bug could be exploited when
the protection is disabled.

Watchpoint-based PAN.We can ensure seamless PAN enforce-
ment by using watchpoints, the protection of which is never deac-
tivated during the kernel mode execution. The combination of the
watchpoint properties P1 and P2 enables this feature. In particu-
lar, when the processor switches to the kernel mode, we configure
the watchpoints such that they monitor any access (read/write) to
the user space with kernel privilege (P1). For legitimate operation
support, we replace the load (LDR) and store (STR) instructions
with unprivileged load (LDTR) and store (STTR) instructions in
the kernel functions that access the user space. Because only the

Kernel entry

Kernel exit

User process

Exception
handling

PAN

Monitor kernel-privileged
access to user space

Kernel XOM

Monitor kernel-privileged
access to kernel text

Restore user watchpoint

Kernel APIs

New component

Exception
handler dispatch

Process
scheduling

Resume

Exceptions

Return to user

User space Kernel space

Scheduler

PAN

Update watchpoint based
on new active_mm

context_switch

copy_from_user

PAN
Unprivileged
instructions

patched

Figure 1: Watchpoint-based kernel security applications. For kernel XOM, the watchpoints are configured in kernel entry
to monitor kernel-privileged access to the kernel text. PAN emulation requires the watchpoints to be updated twice, i.e., in
kernel entry and scheduling. PAN configures the watchpoints on the basis of the current process active_mm tomonitor kernel-
privileged access to the user space. Further, kernel functions that directly access the user spaces are patched to use unprivileged
load and store instructions for compatibility with PAN enforcement.

kernel-privileged access to the user space is monitored, the unpriv-
ileged instructions do not incur any watchpoint exceptions (P2).
Cache maintenance instructions executed for the user memory do
not generate exceptions as well. This is an additional benefit of
our approach compared to TTBR0-based PAN. Because the cache
on ARMv8 is physically indexed physically tagged (PIPT) or vir-
tually indexed physically tagged (VIPT) [2], performing the cache
operations requires TTBR0 to be properly (re)mapped.

The monitoring area is defined by referring to the virtual mem-
ory area (VMA) of each process. We traverse mmap in the active_mm
kernel data structure to get all the VMAs for the current process.
The pairs of vm_start and vm_end are members of mmap and indi-
cate the start and end addresses of each VMA. They are stored in the
linked list in ascending order, and all of them need to be monitored
for PAN enforcement. To minimize the number of watchpoints
required for the monitoring, we configure the watchpoints with
maximum size of monitoring, which is 2 GB. Note that the virtual ad-
dress width is 39 bits in our Linux system (e.g., 0X0 - 0x7FFFFFFFFF
for user space). Hence, we generate the first watchpoint monitoring
address value by masking (i.e., AND operation) the first vm_start
with 0x7F80000000 to make the monitoring address aligned with the
monitoring size, which is a watchpoint setup requirement [1]. The
watchpoint control register value is also generated with the 2 GB
setting. We keep traversing the pairs until we get to the vm_start
that does not fall within the 2 GB area. At this point, we create new
watchpoint monitoring address and watchpoint control values in
the same manner. We repeat this procedure until no pairs are left
to be traversed.

The aforementioned procedure is conducted whenever a new
process is scheduled to reflect the current active_mm update. The
generated address and control values are not only set in watchpoint
registers but also stored in our wp_pan data structure array added
in the thread_info kernel structure. wp_pan defines 32-bit and
64-bit long variables to store the generated values of watchpoint
control (DBGWCR) and address (DBGWVR), respectively. Then,
the values in wp_pan are used when the CPU mode switches from

user to kernel in order to reactivate PAN. In other words, the watch-
point registers are configured twice for kernel entry and process
scheduling. Further, note that although the kernel thread does not
access the user space, it borrows the previous process user space
mapping as its own user memory map. Hence, PAN enforcement
based on active_mm is still effective for the kernel threads.

4.2 Kernel XOM
XOM was introduced to overcome code memory disclosure attacks
[27] by forcing a certain memory region to be either readable or
executable, but not both. Toward this end, previous works have used
hardware features, such as memory paging. For instance, XnR [12]
emulates XOM by managing the page faults on user memory pages
that are intentionally set as non-present. Norax [15] uses the access
permission bit in page table entry to force the user memory to be
only executable and not readable. On x86, the extended page table
(EPT) was exploited to enable XOM by removing read permission
from certain memory pages of virtual machines [18, 28].

However, the techniques used in these works are not sufficient
for enabling kernel-level XOM on ARM for the following reasons:
(1) XOM emulation might cause frequent kernel page faults and
thus incur an extremely high performance overhead. (2) Removing
read permission of kernel pages causes a prefetch abort exception
on ARM architecture [1] regardless of whether the page is mapped
by the OS page table or EPT; hence, paging nuances cannot be used
for supporting kernel-level XOM on ARM.

Software-only approaches have also been introduced. LR2 [13]
demonstrates that XOM can be created by splitting the virtual
memory into two halves and masking the address bit to isolate
the read operation in one half (i.e., data). However, this approach
might require significant changes in the OS kernel layout. kRˆX
[25] implements the kernel XOM by using SFI and Intel MPX [5],
which is only available on x86.

Watchpoint-based kernel XOM. As discussed in Section 3.4,
an instruction fetched from the memory region that is monitored
by the watchpoint does not incur any exceptions (P3). This property

is beneficial when we create execute-only memory for the kernel
space. We just need to configure a single watchpoint to monitor the
kernel text area. The watchpoint value register is set to the starting
address of the kernel text. Read access monitoring is sufficient for
XOM, but write access can also be set for kernel integrity protec-
tion. Configuration and activation of the watchpoint are conducted
when the CPU mode is switched from user to kernel. Owing to the
privilege-aware monitoring (P1), we can configure the watchpoints
to monitor only kernel-privileged accesses, which implies that the
watchpoint does not need to be reconfigured (deactivated) for re-
turning to the user mode as long as the user process does not use
the watchpoint.

According to ARM [1], the monitoring start address should be
aligned with the size of minitoring. Based on this requirement,
the monitored kernel text area needs to be aligned with its size.
Further, the size needs to be a power of two. Our Linux kernel size
(Linux kernel version 14.12 with Linaro 17.10) is approximately
8.7 MB, which requires 16 MB to be monitored in order to cover
the entire text area and satisfy the requirement. Because the text
and data sections are adjacently located in memory by default, the
text and data need to be decoupled. Toward this end, we enforce
the alignment with 0x1000000 between the text and the data by
manipulating a linker script.

On ARM architecture, the size of the immediate value for an
individual instruction is limited (e.g., 12 bits for LDR instruction);
thus, a 64-bit value cannot be fully expressed by a single instruction.
To address this problem, a compiler uses a literal pool [8], which
stores data in code sections. In the Linux kernel, we find such cases.
For example, the get_symbol_pos function reads the address value
stored in the literal pool to lookup the kernel symbol information
in the data segment. To support such benign operations, we patch
the kernel code such that XOM is temporarily disabled during
execution. This can be simply conducted by flipping the ‘enable bit’
in the watchpoint control register.

5 IMPLEMENTATION
We implemented our prototype on Juno board, offering Cortex-A57
and Cortex-A53 based on big.LITTLE architecture. We used Linaro
software platform, which supports ARM Trusted firmware and
64-bit Linux (4.12.0).

For XOM enforcement for the kernel text, the kernel_entry
macro in entry.S is patched. The macro is used by the exception
vector. As the exceptions can occur in both user and kernel modes,
the macro handles both cases. For the entry from user to kernel,
we clear PSTATE.D and configure watchpoints based on the kernel
text address and size. On the other hand, we only clear PSTATE.D
for exception occurrence during the kernel mode execution to keep
activating XOM (note that debug exceptions are automatically dis-
abled upon exception occurrence). To separate the text and the data
segments, we modified the vmlinux.lds.S linker script to enforce
the 16 MB alignment between the text and the data.

PAN implementation requires the kernel_entry macro to be
patched similarly to that of XOM. Further, the context_switch
function in sched/core.c is patched to update the watchpoint
configuration based on active_mm of the newly scheduled process.
The kernel functions that aim to access the user space, such as

Table 2: System call performancewith TTBR-based PAN and
watchpoint-based PAN (in µs).

System call Linux TTBR_PAN WP_PAN
gethostname 269.7 302.4 (1.12×) 309.5 (1.14×)
settimer 229.6 253.5 (1.10×) 244.1 (1.06×)
getdomain 216.3 255.3 (1.18×) 248.7 (1.14×)
pipe 1191.6 1221.1 (1.02×) 1222.6 (1.02×)
sched_getaffinity 225 263.9 (1.17×) 252.3 (1.12×)
getcwd 306.7 327.3 (1.06×) 322.7 (1.05×)
semctl 266.1 298.9 (1.12×) 303.8 (1.14×)
ptrace 195.1 202.2 (1.03×) 202.7 (1.03×)

copy_from_user and get_user, are patched to use the unprivi-
leged load and store instructions in association with the PAN en-
forcement. Note that the Linux kernel uses the functions to access
the kernel spaces as well (e.g., get_user invocation in dump_mem).
To this end, we selectively use one of the privileged and unprivi-
leged instructions depending on the addr_limit value of the cur-
rent process, which can dynamically be adjusted using set_ds()
in the kernel.

6 SECURITY ANALYSIS
In our PAN andXOM implementation, thewatchpoint configuration
is conducted by the kernel. As the solutions expect kernel-privileged
attacks, resilience to attacks that attempt to compromise the watch-
points should be carefully considered. In this regard, the security
of XOM and PAN can be enhanced by adopting fine-grained ASLR
[19]; the location of the code chunk that configures the watchpoints
can be obfuscated by applying ASLR. Meanwhile, as an alternative
to adopting ASLR, we can use the kernel integrity monitors [10, 11],
which are widely deployed on commercial mobile devices, to protect
the watchpoint-based security solutions. The integrity monitors
trap, verify, and emulate security critical operations. Similarly, we
can protect the watchpoint configuration as part of such security
critical operations. The feasibility of coordinating our approaches
with existing defensive measures will be explored in the future.

7 PERFORMANCE EVALUATION
LMBench. To evaluate the kernel-level solution overhead, we ran
LMBench for each solution and their combinations: WP_XOM,
TTBR_PAN, WP_PAN, WP_XOM + TTBR_PAN, and WP_XOM +
WP_PAN. In our experiment, WP_XOM uses one watchpoint and
WP_PAN requires a maximum of three watchpoints to cover all
VMAs for a certain active process. Figure 2 shows the run time of
each case normalized to Linux. WP_XOM imposes less overhead
compared to other cases, the maximum of which is 17% in the
write system call test. It indicates the tendency that the tests with
less elapsed time, such as simple syscall, are observed with more
overhead.

Among the PAN solutions, WP_PAN outperforms TTBR_PAN
in most test cases. The maximum overhead of WP_PAN was at
most 27% for the read system call. However, the performance of
TTBR_PAN, specifically in signal handling, was much worse. More
than 200% and 300% overhead was incurred by enabling TTBR_PAN
and WP+XOM + TTBR_PAN, respectively. We believe that this is
due to the fact that the kernel needs to frequently access the user

1.13 1.04 1.17 1.01 0.99 1.02 0.99 1 1.06
1.28 1.26 1.29 1.22 1.15

3.11

1.02 1.03
1.11

1.13 1.27 1.18 1.06 1.08 1.15
1.01 1 1.03

1.36 1.38 1.33 1.23 1.15

4.24

1.03 1.02 1.11.14
1.36

1.26 1.09 1.09 1.2 1 1 1.03

0

1

2

3

4

5

Simple syscall Read Write fstat open/close Signal handler fork+exit fork+execve fork+/bin/sh

R
el

at
iv

e
p

er
fo

rm
an

ce

WP_XOM TTBR_PAN WP_PAN WP_XOM+TTBR_PAN WP_XOM+WP_PAN

Figure 2: Performance measured by LMBench with watchpoint-based XOM and PAN, TTBR-based PAN, and their combina-
tions. The result is normalized to Linux (lower is better). In most cases, watchpoint-based PAN outperforms TTBR-based PAN.
Specifically, in handling signals, the overhead of TTBR-based PAN surges up owing to the high ratio of accessing the user
space in its entire operation.

0.99
1

0.99 1 1 1

1.02

1 1
1.01

0.99

1.02

1
1.01

1 1 1
1.01

1 1 1
1

0.98 0.99
1 1 1 1 1 1 1

1.01

0.99
1 1

1.01 1.01
1

0.99

1.02

1
1.01

1.03

1
0.99 1 1

1.01
1 1

1.02

1 1

1.03

0.99

0.95
0.96
0.97
0.98
0.99

1
1.01
1.02
1.03
1.04

bzip2 gcc mcf gobmk hmmer sjeng libquantum h264ref omnetpp astar xalancbmk

R
el

at
iv

e
p

er
fo

rm
an

ce

WP_XOM TTBR_PAN WP_PAN WP_XOM + TTBR_PAN WP_XOM + WP_PAN

Figure 3: SPEC CPU2006 with watchpoint-based XOM and PAN, TTBR-based PAN, and their combinations. The result is nor-
malized to Linux (lower is better). A maximum overhead of 3% was imposed for the XOM and PAN combination with the
ASTAR test case.

memory for the preparation of signal handler invocation (e.g., copy-
ing current kernel stack into user memory) and thus reconfigure
the TTBR repeatedly. By contrast, owing to the harmony between
watchpoint and unprivileged instructions (P2), WP_PAN can natu-
rally access the user memory without additional operations. Finally,
combining WP_XOM with PAN solutions increases the overhead
slightly but it is negligible in the tests with long elapsed time, such
as fork+exit, fork+execve, and fork+/bin/sh.

System calls. To further investigate the performance difference
between the PAN solutions, we ran additional tests that invoke sev-
eral system calls that require the kernel services to explicitly access
the user memory. For example, kernel directly writes the user mem-
ory via the copy_to_user function to support the gethostname
system call. Table 2 shows the time elapsed for 100 iterations of each
system call. In contrast to the signal handling test in LMBench, the
performance difference in the additional tests between TTBR_PAN
and WP_PAN was not that significant (within 5%). We suspect that
the portion of accessing user memory in the additional tests is
even smaller than that of signal handling; thus, the impact of the
overhead is limited.

SPEC CPU2006. Finally, we ran SPEC CPU2006 benchmarks
for the five aforementioned cases. Figure 3 shows the benchmark
results normalized to Linux. Compared to the results obtained with
LMBench, the overhead measured by CPU2006 was even lower
because the performance impact of security measures was obscured
by the relatively long runtime of the CPU2006 test programs. In
most cases, the overhead was negligible (at most 3%). Further, we
could not find distinguishable performance differences between the

respective cases. The proposed measures impose overhead based
on the occurrence of general system events such as the context
switch and interrupt. Thus, as long as the test program does not
intentionally (or frequently) create exceptions or yield CPU time,
we will observe similar overhead between the tests. Finally, the
overhead imposed by PAN was slightly higher than that by XOM
because of the higher complexity of the PAN enforcement operation
(e.g., traversal of active_mm).

8 DISCUSSION
8.1 Feasibility
In our approach, the number of supported watchpoints is important
to ensure the effectiveness of the protection. In a PAN emulation,
we checked all process memory mappings by referring to the maps
file in /proc and found that a maximum of three watchpoints, each
monitoring 2 GB of memory, are sufficient for protecting our Linux
environment. For application memory mapping requiring more
than four watchpoints in a PAN emulation, we can temporarily use
the TTBR-based approach. In addition, the OS memory allocation
mechanism can be enhanced to condense the application memory
allocation under the watchpoint monitoring.

Meanwhile, the current kernel XOM implementation can be rein-
forced with additional security artifacts such as code diversification,
return address hiding, and kernel module protection [13, 18]. In
particular, protecting the module text might require reorganizing
the kernel memory map to properly locate the text under watch-
point monitoring. We expect four watchpoints to be sufficient for
protecting additional static kernel objects.

8.2 Compatibility
GDB, a user-level debugger, can monitor data accesses by configur-
ing the watchpoints. The configuration is triggered by a system call
(e.g., ptrace), which directly updates the relevant registers. However,
this mechanism might disable our kernel protection solutions. We
resolve this issue in a similar manner as our PAN implementation.
An array of watchpoint-related structures is added to thread_info.
We then update the array with watchpoint configuration values that
are generated during the system call handling instead of directly
updating the watchpoint registers. By doing so, we can preserve
the watchpoint setup for kernel solutions. Later, switching to user
mode, the values in the array are configured as the watchpoint reg-
ister values. For the kernel debugging (e.g., KGDB), our solutions
need to be disabled by recompiling the kernel.

8.3 Scalability
As illustrated in Table 1, the watchpoints can be enabled during
both a secure state and a non-secure state. Hence, our approach
can be adopted in the trusted execution environment (TEE) for
secure OS protection. Because the debugging registers are shared
between two states, every processor mode switch between states
might require saving and restoring the debugging register values,
in addition to the watchpoint setting for secure OS protection. In
addition, the watchpoints are supported in the hypervisor layer,
which opens the door to the design of useful security facilities for
an enhancement in hypervisor security. For example, the kernel
integrity monitor running in the hypervisor layer [10] can protect
its text region by configuring the watchpoints.

9 CONCLUSION
We analyzed in detail the properties of debugging facilities, namely,
watchpoints, and showed how to leverage them as hardware secu-
rity primitives. The practicality of our approach was demonstrated
by designing and implementing two security applications: kernel
XOM and PAN. Based on a performance evaluation, our approach
was shown to incur negligible overhead. Specifically, watchpoint-
based PAN outperformed TTBR-based PAN, which is one of the
kernel security features in Linux.

ACKNOWLEDGMENTS
This work was supported by the NRF (NRF-2017R1A2B3006360),
IITP (IITP-2017-0-01889), and ONR (N00014-18-1-2661) grants.

REFERENCES
[1] 2018. ARM Architecture Reference Manual ARMv8, for ARMv8-A architec-

ture profile. (May 2018). https://developer.arm.com/docs/ddi0487/latest/
arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

[2] 2018. ARM Cortex -A Series: Programmer’s Guide for ARMv8-A. (May
2018). http://infocenter.arm.com/help/topic/com.arm.doc.den0024a/DEN0024A_
v8_architecture_PG.pdf

[3] 2018. Efficient Application Processors for Every Level of Performance. (May
2018). https://www.arm.com/products/processors/cortex-a

[4] 2018. Exploit Methods/Userspace data usage. (May 2018). https://kernsec.org/
wiki/index.php/Exploit_Methods/Userspace_data_usage

[5] 2018. Introduction to Intel Memory Protection Exten-
sions. (May 2018). https://software.intel.com/en-us/articles/
introduction-to-intel-memory-protection-extensions

[6] 2018. Juno ARM Development Platform SoC. (May 2018). https://www.arm.
com/files/pdf/DDI0515D1a_juno_arm_development_platform_soc_trm.pdf

[7] 2018. Lifting the (Hyper) Visor: Bypassing Samsungąŕs Real-Time Kernel
Protection. (May 2018). https://googleprojectzero.blogspot.com/2017/02/
lifting-hyper-visor-bypassing-samsungs.html

[8] 2018. Literal pools. (May 2018). http://www.keil.com/support/man/docs/armasm/
armasm_dom1359731147760.htm

[9] 2018. Racehound. (May 2018). https://github.com/kmrov/racehound
[10] 2018. Real-time Kernel Protection (RKP). (May 2018). https://www.samsungknox.

com/pt-br/blog/real-time-kernel-protection-rkp
[11] Ahmed M Azab, Peng Ning, Jitesh Shah, Quan Chen, Rohan Bhutkar, Guruprasad

Ganesh, Jia Ma, and Wenbo Shen. 2014. Hypervision across worlds: real-time
kernel protection from the ARM trustzone secure world. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications Security. ACM,
90–102.

[12] Michael Backes, Thorsten Holz, Benjamin Kollenda, Philipp Koppe, Stefan Nürn-
berger, and Jannik Pewny. 2014. You can run but you can’t read: Preventing
disclosure exploits in executable code. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 1342–1353.

[13] Kjell Braden, Lucas Davi, Christopher Liebchen, Ahmad-Reza Sadeghi, Stephen
Crane, Michael Franz, and Per Larsen. 2016. Leakage-Resilient Layout Random-
ization for Mobile Devices.. In NDSS.

[14] Yaohui Chen, Sebassujeen Reymondjohnson, Zhichuang Sun, and Long Lu. 2016.
Shreds: Fine-grained Execution Units with Private Memory. In Security and
Privacy, 2016. SP 2016. IEEE Symposium on. IEEE.

[15] Yaohui Chen, Dongli Zhang, Ruowen Wang, Rui Qiao, Ahmed M Azab, Long Lu,
Hayawardh Vijayakumar, and Wenbo Shen. 2017. NORAX: Enabling execute-
only memory for COTS binaries on AArch64. In Security and Privacy (SP), 2017
IEEE Symposium on. IEEE, 304–319.

[16] Lee Chew and David Lie. 2010. Kivati: fast detection and prevention of atomicity
violations. In Proceedings of the 5th European conference on Computer systems.
ACM, 307–320.

[17] Patrick Colp, Jiawen Zhang, James Gleeson, Sahil Suneja, Eyal de Lara, Himanshu
Raj, Stefan Saroiu, and Alec Wolman. 2015. Protecting Data on Smartphones
and Tablets from Memory Attacks. In Proceedings of the Twentieth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’15). ACM, 177–189.

[18] Stephen Crane, Christopher Liebchen, Andrei Homescu, Lucas Davi, Per Larsen,
Ahmad-Reza Sadeghi, Stefan Brunthaler, and Michael Franz. 2015. Readactor:
Practical code randomization resilient to memory disclosure. In Security and
Privacy (SP), 2015 IEEE Symposium on. IEEE, 763–780.

[19] Cristiano Giuffrida, Anton Kuijsten, and Andrew S Tanenbaum. 2012. Enhanced
Operating System Security Through Efficient and Fine-grained Address Space
Randomization.. In USENIX Security Symposium. 475–490.

[20] Jinsoo Jang and Brent Byunghoon Kang. 2018. Retrofitting the Partially Privi-
leged Mode for TEE Communication Channel Protection. IEEE Transactions on
Dependable and Secure Computing (05 2018).

[21] Jinsoo Jang, Sunjune Kong, Minsu Kim, Daegyeong Kim, and Brent Byunghoon
Kang. [n. d.]. SeCReT: Secure Channel between Rich Execution Environment
and Trusted Execution Environment. In Proceedings of the 22nd Annual Network
and Distributed System Security Symposium (NDSS’15), San Diego, CA.

[22] Kari Kostiainen, Jan-Erik Ekberg, N Asokan, and Aarne Rantala. 2009. On-
board credentials with open provisioning. In Proceedings of the 4th International
Symposium on Information, Computer, and Communications Security. ACM, 104–
115.

[23] AravindMachiry, Eric Gustafson, Chad Spensky, Christopher Salls, Nick Stephens,
Ruoyu Wang, Antonio Bianchi, Yung Ryn Choe, Christopher Kruegel, and Gio-
vanni Vigna. [n. d.]. BOOMERANG: Exploiting the Semantic Gap in Trusted
Execution Environments. In Proceedings of the 24th Annual Network and Dis-
tributed System Security Symposium (NDSS’17), San Diego, CA.

[24] Zhenyu Ning and Fengwei Zhang. 2017. Ninja: Towards transparent tracing and
debugging on arm. In 26th USENIX Security Symposium (USENIX Security 17).

[25] Marios Pomonis, Theofilos Petsios, Angelos D Keromytis, Michalis Polychronakis,
and Vasileios P Kemerlis. 2017. kRˆ X: Comprehensive Kernel Protection against
Just-In-Time Code Reuse. In Proceedings of the Twelfth European Conference on
Computer Systems. ACM, 420–436.

[26] Masoud Rostami, Farinaz Koushanfar, and Ramesh Karri. 2014. A primer on
hardware security: Models, methods, and metrics. Proc. IEEE 102, 8 (2014), 1283–
1295.

[27] Kevin Z Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko, Christopher
Liebchen, and Ahmad-Reza Sadeghi. 2013. Just-in-time code reuse: On the
effectiveness of fine-grained address space layout randomization. In Security and
Privacy (SP), 2013 IEEE Symposium on. IEEE, 574–588.

[28] Jan Werner, George Baltas, Rob Dallara, Nathan Otterness, Kevin Z Snow, Fabian
Monrose, and Michalis Polychronakis. 2016. No-execute-after-read: Preventing
code disclosure in commodity software. In Proceedings of the 11th ACM on Asia
Conference on Computer and Communications Security. ACM, 35–46.

[29] Yajin Zhou, Xiaoguang Wang, Yue Chen, and Zhi Wang. 2014. Armlock:
Hardware-based fault isolation for arm. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 558–569.

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
http://infocenter.arm.com/help/topic/com.arm.doc.den0024a/DEN0024A_v8_architecture_PG.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.den0024a/DEN0024A_v8_architecture_PG.pdf
https://www.arm.com/products/processors/cortex-a
https://kernsec.org/wiki/index.php/Exploit_Methods/Userspace_data_usage
https://kernsec.org/wiki/index.php/Exploit_Methods/Userspace_data_usage
https://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
https://www.arm.com/files/pdf/DDI0515D1a_juno_arm_development_platform_soc_trm.pdf
https://www.arm.com/files/pdf/DDI0515D1a_juno_arm_development_platform_soc_trm.pdf
https://googleprojectzero.blogspot.com/2017/02/lifting-hyper-visor-bypassing-samsungs.html
https://googleprojectzero.blogspot.com/2017/02/lifting-hyper-visor-bypassing-samsungs.html
http://www.keil.com/support/man/docs/armasm/armasm_dom1359731147760.htm
http://www.keil.com/support/man/docs/armasm/armasm_dom1359731147760.htm
https://github.com/kmrov/racehound
https://www.samsungknox.com/pt-br/blog/real-time-kernel-protection-rkp
https://www.samsungknox.com/pt-br/blog/real-time-kernel-protection-rkp

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 12.60 points
 Normalise (advanced option): 'original'

 32

 D:20190429080835
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 12.6000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

