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ABSTRACT
Memory disclosure vulnerabilities have been exploited in the leak-
ing of application secret data such as crypto keys (e.g., the Heart-
bleed Bug). To ameliorate this problem, we propose an in-process
memory isolation mechanism by leveraging a common hardware-
feature, namely, hardware debugging. Specifically, we utilize a
watchpoint to monitor a particular memory region containing se-
cret data. We implemented the PoC of our approach based on the
64-bit ARM architecture, including the kernel patches and user
APIs that help developers benefit from isolated memory use. We
applied the approach to open-source applications such as OpenSSL
and AESCrypt. The results of a performance evaluation show that
our approach incurs a small amount of overhead.

1 INTRODUCTION
Memory disclosure vulnerabilities [17] have been remotely or lo-
cally exploited by attackers for the leakage of secret data. For in-
stance, the Heartbleed vulnerability (CVE-2014-0160) [4] persis-
tently reads up to 64 KB of process memory, leading to the leakage
of a crypto key for the server process. Unfortunately, process-level
isolation given by the OS is insufficient to prevent such an attack
because the attacker can take advantage of the lack of in-process
memory isolation.

Previous studies have proposed several ways to enable in-process
memory isolation and thus mitigate the vulnerability to a memory
disclosure. Shred [14] provides programming primitives that help
developers define and fulfill access control of a critical memory re-
gion. SeCage [20] also enables isolating a secret compartment from
the remaining process compartments by leveraging a hardware-
assisted virtualization technique. Although these approaches effec-
tively isolate critical regions, their adoption is generally difficult be-
cause previous works have required specific hardware components,
the availability of which is dependent on the hardware architec-
ture. For example, Shreds uses the memory domain and the domain
access control register (DACR), which are only supported in the
32-bit ARM architecture. SeCage leverages a VMFUNC instruction,
which is part of the virtual-machine extensions (VMX) on x86.

In this paper, we propose an architecture agnostic approach that
aims at realizing in-process memory isolation. We leverage the
hardware watchpoint to create secure memory on a thread basis.
This basically exploits the fact that configuring the watchpoint for
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a certain memory region with read and write monitoring capability
allows access control to that region, and thus readily builds an
isolated region. Further, most importantly, the watchpoint can be
configured on each processor independently, which facilitates the
design of thread-based security mechanisms.

Our prototype of watchpoint-based security application is imple-
mented on a Juno development board [7] using Linaro Release 17.10
[9]. Because the watchpoints need to be configured with privileged
mode, we patch the Linux kernel to insert watchpoint configura-
tion operations in the kernel exit code. Moreover, we additionally
implement a user library and a kernel driver to provide watchpoint
configurability to user applications. In the performance evaluation,
the proposed approaches are found to impose a small overhead. A
maximum overhead of 5% is imposed for OpenSSL applied with
in-process secure memory.

2 BACKGROUND AND RELATEDWORK
2.1 Self-hosted debugging
Commercial processor architectures, such as ARM and x86, gen-
erally support two types of debug mechanisms: (1) external and
(2) self-hosted (internal) debugging. External debugging refers to
performing debugging using external hardware equipment, such
as a JTAG debugger. Self-hosted debugging exploits debug-related
exceptions raised by a processor. The exceptions are caught and
handled by privileged software, such as the OS kernel. Several
debug facilities are provided by processors to support self-hosted
debugging. For instance, breakpoint registers allow a breakpoint ad-
dress to be set for an instruction execution that needs to be trapped
by raising a breakpoint exception. By using watchpoint registers,
access to a certain memory region can be configured to incur a
watchpoint exception.

The aforementioned debugging facilities have been leveraged
in various ways. GDB [3] is a well-known user-level software de-
bugger that can set hardware breakpoints (and watchpoints) by
invoking a ptrace system call that configures breakpoint registers.
Ninja [22] provides a stealthy malware analysis framework by com-
bining the processor debug features and security extensions (i.e.,
ARM TrustZone). Ether [16], a hypervisor-based malware analyzer,
exploits the hardware trap flag to monitor every single instruc-
tion execution. Kivati [15] and RaceHound [10] adopt hardware
watchpoints to detect atomicity violations. Previous works have
mainly used debug facilities for offline analysis and tracing of appli-
cations. By contrast, here, we show how to exploit debug facilities,
particularly hardware watchpoints, for runtime attack prevention.

2.2 In-process memory protection
Variousways have been proposed to protect applications. As hypervisor-
based approaches, TrustVisor [21] and Inktag [18] enable devel-
opers to isolate critical logic in the hypervisor-protected memory.
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Similarly, ARM TrustZone [2] and Intel SGX [6] provide security
hardware primitives that can create a trusted execution environ-
ment in which the developers can deploy critical resources, such as
crypto key and services.

However, despite the strict isolation between the critical and
non-critical domains, such techniques remain vulnerable to attacks
that are performed inside the protected region owing to the coarse
protection granularity (e.g., heartbleed attack [4]). To address this
problem, SeCage [20] was proposed as a hypervisor-based approach
that separates an application into several compartments, and iso-
lates and protects them by creating exclusive extended page table
(EPT) mappings for each compartment. Further, VMFUNC [5] has
been leveraged to minimize the performance overhead during EPT
changes. On ARM, Shreds [14] exploits the memory domain [1] to
provide fine-grained in-process private memory. Although SeCage
and Shreds address important problems, it is difficult to gener-
ally apply them to high-end devices for the following reasons: (1)
VMFUNC is only available on x86 and (2) the memory domain is
obsolete on 64-bit ARM architecture.

3 WATCHPOINT ON ARM
Because our prototype is implemented on ARM, we discuss ARM
architecture-based watchpoint. To generate the watchpoint excep-
tion, the relevant watchpoint registers need to be configured along
with the setting of the monitor debug events (MDE) flag in the mon-
itor debug system control register (MDSCR_EL1). With ARM, there
are two types of watchpoint registers: the debug watchpoint value
register (DBGWVR(n)_EL1, n = 0-15) and the debug watchpoint
control register (DGBWCR(n)_EL1, n = 0-15). The watchpoint value
register (DBGWVR(n)_EL1, n = 0-15) sets up the starting address of
the monitoring. The watchpoint control register (DGBWCR(n)_EL1,
n = 0-15) comprises important attributes such as the monitoring
size and activation control. The monitoring size is determined by
referencing the BAS and MASK flags. For instance, the MASK flag
is leveraged to monitor the address range, the size of which is a
power of 2; the minimum and maximum sizes are 8 bytes and 2
GB, respectively. The two types of registers with the same index (n)
should be configured together to properly set up the watchpoint.
According to ARMv8 [1], the number of watchpoint pairs can be
as high as 16. However, in our development board [7], we have
four available watchpoint register pairs, i.e., from (DBGWVR0_EL1,
DBGWCR0_EL1) to (DBGWVR3_EL1, DBGWCR3_EL1). Most im-
portantly, the watchpoint registers are banked for each processor.
This enables us to design watchpoint-based solutions on a thread
basis.

Configuration requirement. The watchpoint configuration
should strictly comply with the monitoring size and the address-
alignment requirements. The starting address of the monitoring,
the size of which is less than or equal to 8 bytes, needs to be aligned
with a word or doubleword. For a size of larger than 8 bytes, the
monitoring size should be a power of 2, and the starting address of
the monitoring should be aligned with that size. If this requirement
is not satisfied, the watchpoints will not be activated.

4 ATTACK MODEL
We assume that an application can encompass a vulnerability in
which arbitrary process memory is leaked. The attacker’s goal is
exfiltrating secret data by exploiting the vulnerability. However, we
do not assume a kernel-privileged attacker. If the kernel is already
compromised, exploiting the memory disclosure vulnerability of an
application will not be necessary. Therefore, we trust the OS kernel
as the trusted computing base (TCB) of our proposed mechanism.

5 IN-PROCESS SECURE MEMORY
To address in-process abuse, such as a heartbleed attack, we de-
signed a method to provide in-process secure memory using hard-
ware watchpoints.

5.1 Secure memory creation
As discussed in Section 3, the watchpoints are configurable on a per
CPU basis. By exploiting this feature, we can create the in-process
secure memory by enabling watchpoint read/write monitoring for
a certain memory area. Once the monitoring is enabled, any access
to the area causes the watchpoint exception, which can be caught
and verified by the kernel. We exploit this property to conduct
access control to the area. The monitoring will be disabled only
when the legitimate (allowed) code accesses the area (we discuss
access control to the area in the following section).

As shown in Figure 1, a simple approach whereby each secure
memory slot is dynamically and thus sparsely allocated might limit
the number of creatable slots to be equal to the number of watch-
points, which is SoC-dependent and four in our case (note that we
assume that the minimum slot size is 8 bytes here). Further, Figure
2 shows that more than one watchpoint is required to protect a
slot if the size or starting address of the slot is not aligned with a
power of two. Thus, to maximize the number of possible slots, we
allocate the secure memory slots from a reserved linear memory
area. In addition, we ensure that the size and address of the slots
are aligned with a power of two and that the sizes of all slots are
equal.

With this allocation strategy, the maximum number of slots
(Nslot ) should be carefully chosen to ensure that the following
conditions are satisfied: (1) the entire slot size should be covered
by the available watchpoints and (2) when a certain slot is used
(i.e., not monitored by the watchpoint), the remaining slots should
be monitored by configuring the available watchpoints. To satisfy
(1), the size of the reserved area should be within Nwp (number
of supported watchpoints) * 2 GB (maximum monitoring size of
each watchpoint), which is 8 GB in our system. Further, the size of
certain area (a group of continuous slots) that is monitored by each
watchpoint should be a power of two. As each slot size is a power
of two, the number of slots to be monitored by each watchpoint
should also be a power of two. This implies that Nslot is a sum of
powers of two.

Satisfying (2) is more restrictive than satisfying (1) because of
the watchpoint configuration requirement and the fact that size
of the remaining slots under a certain watchpoint monitoring is
not a power of two when an open slot exists. As can be seen in
Figure 3, finding the target open slot can be regarded as continuing
to bisect the memory area that includes the slot until the size of



Secure slot: A Secure slot: B

Read/write monitoring
WP_0

Memory 0x8000 0x9000 0x104000

… …

0x108000

…

Read/write monitoring
WP_1

Figure 1: Sparse slot allocation limits the number of cre-
atable secure slots to be equal to the number of available
watchpoints.

Secure slot size = 0x1800

WP_0 (size = 0x1000)

Memory 0x0 0x1800

……

0x1000

WP_1 (size = 0x800)

a) Slot size is not aligned with power of two. 

Secure slot size = 0x2000

WP_0 (size = 0x1000)

Memory 0x7000 0x9000

……

0x8000

WP_1 (size = 0x1000)

b) Slot start address is not aligned with slot size.

Figure 2: More than two watchpoints are required to protect
a secure slot (a) if the size of the slot is not aligned with a
power of two or (b) the starting address of the slot is not
aligned with the size of the slot.

the bisected area equals the slot size, which is similar to binary
search. The bisection can be conducted asmany times as the number
of watchpoints (Nwp ), as one of the bisected memory areas that
does not include the target slot in each step needs to be monitored
by a watchpoint. This implies that Nslot should be 2N wp (Nwp :
number of supported watchpoints), which is 16 in our development
environment supporting four watchpoints. Besides, each bisected
area should be monitored by a single watchpoint. Thus, the size of
the first bisected area, which is the largest one, should be within
2 GB. As a result, the size of each slot (Ssize ) can be as large as 2
GB/(half of Nslot ), which is 256 MB (2 GB/8) in our case.

Algorithm 1: setupWP() is recursively invoked to config-
ure the watchpoints with the aim of monitoring every slot
other than the target slot.
1 setupWP (start , end, tarдetSlot , slotSize);
2 /* start , end , tarдetSlot are virtual addresses */
3 mid = (end − start) / 2;
4 if mid <= tarдetSlot then
5 configWPRegister(start ,mid);
6 if (end −mid)! = slotSize then
7 setupWP(mid, end, tarдetSlot , slotSize);
8 end
9 else
10 configWPRegister(mid, end);
11 if (mid − start)! = slotSize then
12 setupWP(start ,mid, tarдetSlot , slotSize);
13 end
14 end

WP_0 
size = Sslot

Memory

Open
slot1Slot0

WP_0 
size = Sslot * 2

Memory

Open
slot1Slot0 Slot2 Slot3

WP_1 
size = Sslot

Nwp= 2

Nwp= 1

WP_1 
size = Sslot * 2

Memory
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slot5Slot4 Slot6 Slot7

WP_0 
size = Sslot * 4

Nwp= 3

Slot1Slot0 Slot2 Slot3

WP_2 
size = Sslot

WP_...

Memory
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Slot

2k-2+1

Slot2k-2 …… Slot2k-1

WP_0 
size = Sslot *2k-1

Nwp= k

Slot1Slot0 …… Slot2k-1

WP_1 
size = Sslot*2k-2

……

…WP_k-1 
size = Sslot

…

Normal use Normal use

Normal use Normal use

Open secure slot Closed secure slot

Figure 3: Total number of slots can be as high as 2N wp when
we assume that the size of each slot is aligned with a power
of two and all slot sizes are equal.

5.2 Access control
For access control of the secure slot, the watchpoint should properly
be configured on the basis of access to the slot. We assume that
the critical code region that is allowed to access the slot is verified
in advance and thus the possibility of this region containing a
vulnerability is minimized. Note that this assumption is generally
found in previous works that aim to provide an isolated and a
secure memory region [14, 18, 20, 21]. Before executing the critical
code, we open the slot so that it is accessible. This is achieved by
configuring the watchpoints such that every slot other than the
slot to be accessed is monitored. We configure the watchpoints by
recursively searching for a group of slots that is monitored by each
watchpoint, as shown in Algorithm 1. First, we bisect the entire
reserved memory. One of the bisected areas that does not contain
the target slot is monitored by configuring the watchpoint. For
the other area of the bisection that contains the target slot, we
recursively run the algorithm until the last one remaining is the
target slot. As discussed in Section 5.1, because the total number
of slots is 2N wp , Nwp recursions are required to configure all the
watchpoints.

Exit from a certain critical region is required to protect (monitor)
the secure slot associated with the region by reconfiguring the
watchpoint. Compared to the entry, this procedure is quite simple.
We enable watchpoint read/write monitoring for the entire reserved
memory, the size of which is Sslot × Nslot . In our prototype, the
maximum size of the reserved memory can be as large as 4 GB
(256 MB * 16) because Ssize is limited to 256 MB. Therefore, a



Table 1: User library for in-process secure memory creation.

API Description
initSlotAll (int slotSize) Reserves a memory with size = Sslot × Nslot
enterCriticalRegion (int slotNum) Makes the specified slot accessible
exitCriticalRegion (int slotNum) Makes all slots not accessible
wp_malloc (int size, int slotNum) Allocates a heap memory in the specified slot
wp_free (void *p, int slotNum) Frees an allocation in the specified slot

configuration of at most two watchpoints each monitoring 2 GB is
sufficient for this purpose.

5.3 Components and usage
In this section, we present the core user library and kernel com-
ponent designed for realizing the creation of in-process secure
memory. In addition, a simple usage example is presented.

User library.We created a user library that provides five APIs
to support watchpoint-based in-process secure memory creation.
initSlotAll calculates the entire memory size required for allocating
all slots (Sslot x Nslot ) and reserves the memory. Before the cal-
culation, the input parameter slotSize is rounded up to a power of
two. The reserved memory is also size-aligned by internally using
a memalign API. Note that the API can be amended to enable the
configuration of the reserved slot number (based on the power of
2) in case the total number of required slots is fewer than Nslot .
enterCriticalRegion and exitCriticalRegion generate the value of each
watchpoint control and value register for opening and closing the
corresponding slot that is indicated by the slotNum parameter. The
generated values are delivered to the kernel driver for the actual
watchpoint register settings. In addition, enterCriticalRegion ran-
domizes the current stack address by subtracting a random value
prior to the execution of the function prologue. exitCriticalRegion
restores the original stack address after the function epilogue is
completed. wp_malloc and wp_free can be used in the critical code
region, which allocates and frees the memory in the corresponding
slot, respectively.

Kernel patch & driver. Because the watchpoint-related regis-
ters are only configurable with kernel privilege, we patch part of the
kernel and create a kernel driver. The kernel driver communicates
with user APIs, such as enterCriticalRegion and exitCriticalRegion,
through an ioctl system call. The driver just obtains the values
of watchpoint-related registers from the user space and copies
them into sec_thread_mem data structure, which is inserted in the
thread_info Linux data structure as part of our implementation.
The copied values are referenced and set in the watchpoint regis-
ters later when the mode switches from kernel to user. For adding
sec_thread_mem and setting the watchpoint register on user mode
entry, the Linux kernel source is patched.

Listing 1: Example of API usage in AESCrypt.

1 int main(int argc , char *argv []){
2 /* Variable initialization */
3 ...
4 unsigned char *pass_input;
5 unsigned char *pass;
6 ...
7
8 initSlotAll (0x2000); // Memory reservation. Each

slot size is 0x2000.

9 enterCriticalRegion (0); // Open the slot #0.
10 pass_input = (unsigned char *) wp_malloc(MAX_PASSWD_BUF

, 0); // Malloc in the slot #0.
11 pass = (unsigned char *) wp_malloc(MAX_PASSWD_BUF , 0);
12 exitCriticalRegion (0); // Close the slot #0.
13 ...
14
15 /* Processing an input parameter */
16 if (passlen == 0) {
17 ...
18 enterCriticalRegion (0);
19 passlen = passwd_to_utf16 (( unsigned char*) optarg ,

strlen ((char *) optarg), MAX_PASSWD_LEN , pass);
20 exitCriticalRegion (0);
21 ...
22 }
23
24 /* Encrypting the input stream */
25 if (mode == ENC) {
26 ...
27 enterCriticalRegion (0);
28 rc = encrypt_stream(infp , outfp , pass , passlen);
29 exitCriticalRegion (0);
30 ...
31 }
32
33 /* Cleanups */
34 ...
35 enterCriticalRegion (0);
36 memset(pass , 0, MAX_PASSWD_BUF);
37 wp_free(pass , 0); // Free in the slot #0.
38 wp_free(pass_input , 0);
39 exitCriticalRegion (0);
40 return rc; // End of main.
41 }

Usage example. We used the APIs to secure an open source
file encryption application, namely AESCrypt (Listing 1). We pro-
tect password inputs by locating them in the in-process secure
memory. pass_input and pass variables are allocated in secure
slot #0. Note that an arbitrary slot number (within 15) can be used
depending on the application design (e.g., allocating an exclusive
slot for each individual thread). These variables are stack variables
in the original source code but we change them to heap variables
by using the wp_malloc API. We invoke the enterCriticalRegion and
exitCriticalRegion APIs before and after calling subroutines such as
passwd_to_utf16 and encrypt_stream because these functions
need to access the protected variables. Finally, before exiting from
the main function, we free the allocations in the secure slot by using
the wp_free() API. Note that our aim is to show the feasibility of cre-
ating the in-process secure memory using watchpoints. Thus, we
simply instrumented code with a coarse-grained definition of the
critical region, i.e., function granularity. However, we expect that
the granularity can be made finer by adopting previous approaches
for privilege separation [12]. In addition, the security of critical
code can be enhanced by compiler-based code instrumentation
techniques (e.g., secret leakage prevention) [14].

5.4 Compatibility
The ptrace system call supports user interfaces for configuring
debug-related registers including watchpoints. Hence, an attacker
can abuse a system call to corrupt the watchpoint configuration for
in-process secure memory protection. We give higher priority to
our security solution in the watchpoint configuration. Thus, if the
watchpoints are already used for user-level security, the ptrace
system call is ignored. We argue that this is a reasonable approach



Table 2: Performance and LoC of open source applications
hardened with in-process secure memory (in µs).

Application Original Hardened LoC
OpenSSL 706.2 742.1 (1.05×) 35
Minizip 1708.3 1745.8 (1.02×) 22
AESCrypt 113516.4 113973.9 (1.00×) 33

because debuggers such as GDB rarely contain secret data, and are
thus not expected to need such an applied security scheme (e.g.,
in-process secure memory).

6 IMPLEMENTATION
Our example applications were implemented on a Juno ARM refer-
ence board equipped with Cortex-A57 and Cortex-A53 multicore
processors and 8 GB of DDR3 memory. It supports ARMv8 (64-bit
architecture) and provides four hardware watchpoints.

The four watchpoints are fully utilized to create up to 16 secure
slots per thread. The kernel driver is built as a loadable kernel
module (LKM), which creates a device file, /dev/secthreadmem.
In addition, the kernel_exit macro in entry.S is patched by in-
serting watchpoint setup operations to enable protection when
switching to user mode. Finally, the user library is built as a shared
library (.so); thus, it can be dynamically linked to an application.
The library maintains an array that stores 16 individual memory
allocation statuses to support wp_malloc in each slot. For the stack
base address randomization conducted by enterCriticalRegion, we
use the 14 least-significant bits of the processor cycle counter value
as the randomization entropy. Because our system is enabled with a
stack alignment check that forces the stack address to be quadword
aligned, we shift the stack-based address by a multiple of 16 bytes.

7 SECURITY ANALYSIS
The robustness of our solution depends on the integrity of the
watchpoint configuration. Because the watchpoint configuration
is a privileged operation, any user privilege attack that attempts
to directly manipulate the configuration will fail. Any indirect at-
tempt to disable the configuration such as abusing our APIs (e.g.,
enterCriticalRegion) can be defeated by checking the call sites of
the APIs in a runtime. The metadata of legitimate call sites can
be created during compile time. The stack used by the critical re-
gion is also obfuscated by the address randomization approach, the
entropy of which is 214, making it difficult for an attacker to find
the footprint of the critical region (this can also be enhanced by
zero masking the stack used). Any vulnerabilities existing in the
critical region might neutralize the benefit of the secure memory.
For example, a memory corruption vulnerability encompassed by
the critical code might exfiltrate the secret data to non-protected
memory. Several mitigations such as privilege separation [13] and
critical code instrumentation [14] have been suggested to address
this problem. Adopting similar approaches will improve the efficacy
of our approach.

8 PERFORMANCE EVALUATION
We first measure the performance of APIs for the in-process secure
memory creation. We then apply the APIs to three open source
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Figure 4: Performance of in-process secure memory APIs
and libc functions (in µs).

applications and assess the overhead incurred by adopting a new
security feature.

API performance. We compare each API execution time with
generic libc functions, such as getpid and mmap. The results are
shown in Figure 4. Among our APIs, initSlotAll requires the longest
execution time, which is approximately 9× that of getpid. This is
because the operations conducted by initSlotAll are more complex
than those of other APIs; it rounds up the requested slot size to a
power of 2, invokes memalign to reserve memory for all slots, and
initializes the flags for managing the memory allocation in each slot.
The elapsed times for enterCriticalRegion and exitCriticalRegion are
much shorter than that for initSlotAll but longer than those for the
reference libc functions. They both invoke ioctl system calls to
communicate with our kernel driver to update the sec_thread_mem.
In addition, enterCriticalRegion generates each watchpoint configu-
ration value on the basis of the algorithm shown in Algorithm 1.
wp_malloc and wp_free are faster than other APIs. They internally
handle the memory allocation and freeing in each slot. Because the
allowed memory operation size in each slot is fixed and is limited
to the size of the initialized slot, additional system calls such as
sbrk are not required.

End-to-end test. We applied our solution to three open source
applications: OpenSSL,Minizip, andAESCrypt. Using the in-process
secure memory, we protect the password usage in each program.
Minizip allows a user to encrypt a compressed file with an input
password. Similarly, AESCrypt uses an input password to proceed
with file encryption and decryption. OpenSSL also provides a func-
tionality that encrypts the input (e.g., private key) using a password.
We slightly change the applications so that the password is isolated
in the secure slot and is accessible only when the legitimate code
associated with the slot is being executed. The lines of changed
code are shown in Table 2.

To evaluate the overhead incurred by activating the secure mem-
ory, we compare the applications with and without protection. For
Minizip and AESCrypt, we measure the entire execution time for
the completion of each task, i.e., file compression and encryption,
respectively. For OpenSSL, we measure in particular the time for
encrypting the private key using a user’s password with the 3DES
algorithm, which can be conducted as part of a private key creation
task. The key creation time can be varied depending on a random
seed value; we simply exempt the time in our comparison (note that
the initSlotAll API is invoked in the key creation part and thus the
API execution time is not included in the OpenSSL evaluation). Ta-
ble 2 shows the result. A maximum overhead of 5% was imposed for



OpenSSL with secure memory. However, the overhead decreased to
zero for AESCrypt, which runs longer than any other applications.
Considering this tendency, we expect the overhead for OpenSSL to
decrease if we include the key creation time.

Note that our implementation does not include the instrumenta-
tion of a legitimate (critical) code that accesses the secure memory.
Thus, applying additional protection techniques such as control
flow integrity (CFI) to the part of the application could degrade
the performance to a certain extent. In addition, the granularity of
the critical region that affects the frequency of API invocation will
influence the performance of a hardened application. The relation-
ship between the granularity and performance will be explored in
our future work.

9 DISCUSSION
Limited number of watchpoints. The feasibility of the proposed
security applications depends on the availability of the watchpoints.
According to our investigation into ARM processor reference man-
uals, modern ARM 64-bit processors for high-end devices (e.g.,
Cortex-A series) provide four watchpoints. Because the semantics
of the watchpoints in terms of their configuration and operation are
the same for all processor versions, our analysis of the watchpoints
and the proposed design are scalable for devices equipped with
such processors.

The limited number of watchpoints can also influence the effec-
tiveness of our solutions. For the in-process secure memory, we
can provide only 16 secure slots that are smaller than those pro-
vided in previous works [14, 20]. However, more watchpoints may
be required depending on the application or OS type. When the
watchpoints are insufficiently provided, we might need to hybridize
other hardware or software primitives. For instance, the secondary
page table can be used together with watchpoints to provide more
than 16 secure slots, although it is expected to incur a much higher
overhead than that incurred when the watchpoints are used.

Compromised kernel.Although we trust the kernel in our pro-
totype design, the mechanism can be readily enhanced to protect a
secure region even in the presence of an untrusted kernel. To realize
this, we can adopt a virtualization technique to trap and emulate
the privileged operations, such as the watchpoint configuration.
Modern mobile devices are already utilizing this technique (i.e.,
instruction trap and emulation) to protect the OS kernel [11, 23].
Therefore, we expect the coordination between the watchpoint and
virtualization technique to require minimal engineering effort.

In-process memory isolation on x86. Our approach is com-
patible with x86, which also supports the hardware debug features
(i.e., DRx registers [19]). However, because of the monitoring range
constraint, which is maximal 8 bytes per watchpoint, only secrets
with a small size (e.g., crypto key) could be protected. To protect
a larger amount of memory, we expect the memory protection
key (MPK) [8, 14] to be a convincing hardware primitive to realize
in-process memory isolation.

10 CONCLUSION
We presented an in-process memory isolation mechanism using
hardware watchpoints to protect critical data from the vulnerability
of a memory disclosure. The isolated memory region can be created

by configuring the watchpoints for read and write accesses to a
particular memory region. Because the watchpoints are banked for
each core, the access control to the protected region can be con-
ducted on a thread basis. The performance evaluation demonstrated
that the overhead in adopting the watchpoints is insignificant.
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