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a b s t r a c t 

From the security perspective, emulation is often utilized to analyze unknown malware 

owing to its capability of tracing fine-grained runtime behavior (i.e., execution path explo- 

ration). To this end, attackers equip their malware with powerful anti-emulation techniques 

that fingerprint the emulated system environment, thereby avoiding dynamic analysis. 

However, this is not the only use case of anti-emulation. Recently, legitimate software 

vendors are also putting significant efforts to prevent their products running on top of 

the emulated execution environment. There are mainly two reasons for this which are: 

(i) securing the intellectual property from emulation-assisted reverse-engineering, and (ii) 

disallowing the customers using the application without purchasing the actual hardware. 

From the previous literature, various anti-emulation techniques were explored. Unfortu- 

nately, existing techniques are mostly discussed and developed with malware’s perspective. 

In this paper, we flip this conventional paradigm and discuss anti-emulation techniques in 

terms of protecting Commercial-Off-the-Shelf (COTS) software . Due to the higher requirements 

for usability, existing anti-emulation techniques are inapt for large-scale application ven- 

dors. To overcome such problem, we introduce three new techniques in vendors perspective 

for deploying their product. We evaluate the efficacy of our techniques in five aspects: (i) 

fast detection speed, (ii) high accuracy, (iii) low power consumption, (iv) a broad range of 

compatibility, and (v) high cost of bypassing. Based on our experiments, we demonstrate 

that misaligning the vectorization (e.g., Intel SIMD, ARM NEON) can be utilized as a promis- 

ing anti-emulation technique among the proposed ones. To confirm the effectiveness, we 

applied our technology against 176 real Android devices and various emulators as a test bed. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

untime detection of the software running environment is 
 well-known topic in the field of reverse-engineering and 
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alware analysis, and so forth. However, this topic is usually 
ocused on malware perspective. There are many malware 
nalysis frameworks based on code emulation. To hinder 
uch analysis, malware use anti-emulation techniques and 

ide their runtime behavior to protect themselves from being 
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emulated. To this end, various methods for anti-emulation
technique has been explored in both academia and industry.
In general, the efficacy of existing anti-emulation techniques
is well suited for malware. 

Recently, however, commercial application vendors are
also using anti-emulation techniques on top of obfuscation
in order to fortify their product from being analyzed. From
a corporate perspective, the anti-emulation technique can
be utilized for: (i) securing the intellectual property from
emulation-assisted reverse-engineering, and (ii) preventing
piracy of using the application service without purchasing
the actual hardware product. The problem of using emulation
techniques for stealing Intellectual Property (IP) and piracy
has been pointed out previously ( Collberg, 2011; Conley et al.,
2003 ). This indicates that legitimate software vendors also re-
quire anti-emulation techniques for protection purpose. 

Unfortunately, existing anti-emulation techniques are
inapt for large-scale application vendors. For example,
heuristic-based anti-emulation techniques such as “checking
the CPU name, process list, or file-system artifacts” are inac-
curate and trivially bypassed. Checking a specific emulator
implementation bug can be unreliable depending on the exact
emulator version. Checking the elapsed CPU clocks while exe-
cuting some instructions are often unreliable due to external
interrupts. In academic literature, the following techniques
have been so far introduced: (i) aggregating various heuristics
and statistical information for emulator detection ( Vidas and
Christin, 2014 ; Jing and Hu, 2014), (ii) using relative/absolute
timing discrepancies of the kernel-level instructions that
involve architecture specific features ( Garfinkel et al., 2007;
Raffetseder et al., 2007 ). All such previous detection tech-
niques are suited for malware detecting the emulated
environment; however, unacceptable for protection feature
for commercial software deployment due to performance and 

accuracy. 
In this paper, we flip the conventional view of the emula-

tor detection research and focus in terms of software vendors
protecting their application from dynamic analysis and piracy.
Anti-emulation technique, in this case, should satisfy five re-
quirements: (i) technique should not notably harm the service
performance, (ii) technique should be accurate to prevent ser-
vice failure, (iii) technique should not involve too much power
consumption, (iv) technique should be compatible with var-
ious system configurations, and (v) technique should not be
easily bypassed by attackers who intends to reverse-engineer
the product. 

Discovering new anti-emulation technique is not the
main contribution part of this paper as there are many
existing methods previously discovered. However, making
a commercially-deployable anti-emulation technique is a
non-trivial research issue. The emulator detection techniques
introduced in this paper avoid heuristics and leverage CPU ar-
chitecture specific features. We first introduce three detection
techniques based on (i): context-switch granularity, (ii) trans-
lation caching of guest basic-block, and (iii) deliberate use
of unaligned memory access with vectorization instructions
and evaluate if they are suited for our purpose. Among the
three techniques, we find that misaligned vectorization based
detection technique most promising (although not perfect)
for our purpose. All the techniques in this paper do not re-
quire any, kernel-level privilege, and it is implemented as an
Android JNI library as a prototype of Samsung’s next-
generation mobile security feature. Another significant advan-
tage of our technique is that it does not require any sensitive
Android permissions such as LOCATION or SENSORS to deter-
mine the environment. Requesting users for such permissions
can be considered dangerous due to a security breach and
privacy issues. To confirm the reliability and deployability of
the proposed technique, we applied it using 176 Android mo-
bile devices of various device vendors and several emulators.
The contribution of this paper can be summarized as follows:

• This is the first paper that explores the efficacy of anti-
emulation techniques regarding legitimate software ven-
dors rather than malware. 

• We introduce and evaluate three emulator detection tech-
niques which leverage CPU architecture specifics and emu-
lator internals thereby not depending on Android-specific
features. 

• We implemented commercially deployable anti-emulation
technique as JNI library and tested against 176 different
Android mobile devices and several emulators. 

2. Background 

2.1. Emulation engines 

In this paper, we assume the QEMU ( Bellard., 2005 ) as de-
facto standard emulation engine. Most of the emulation based
frameworks (e.g., Anubis ( anu ), Android Virtual Device) are
based on QEMU. However, we also consider our anti-emulation
techniques with other engines as well. Unicorn ( Quynh and
Vu ) is a new emulation engine that specifically focuses to var-
ious CPU emulation (Intel, ARM, MIPS, and so forth) and imple-
ments additional features on top of QEMU. Bosch is a different
branch of emulation engine which focuses on supporting full
system emulation of Intel architecture. Considering that our
technique is being developed for mobile devices, we are more
interested in ARM architecture emulation. 

2.2. Previously known techniques 

There are a number of previously known techniques to
distinguish the QEMU execution environment from real
hardware. One of the simplest ways is to look up various
names inside the execution environment. The names could
be the CPU name, device driver name, etc. For instance, QEMU
by default uses its unique CPU name and a device driver
name such as QEMU CPU or QEMU HARDDISK . This approach
seems unsatisfactory, yet it is effective against naïve system
emulators, thus it is commonly observed in practice. A timing
attack is another well-known technique for QEMU detection.
The simplest and most typical example is to measure the
consumed CPU clock cycle count of an instruction. When an
instruction is emulated, the consumed CPU clock cycle count
for executing the emulated instruction usually becomes
higher than it should be in a real CPU. The reason is that
the emulator translates the single guest instruction into a
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et of multiple emulator-generated host instructions.1 If the 
ycle count exceeds a predefined normal range, the malware 
ssumes that the execution environment is not real. Asides 
rom the discussed detection techniques, there are also nu- 

erous additional emulator detection techniques proposed 

n academia and industry ( Strazzere, 2013; Vidas and Christin,
014; fra; Alzaylaee et al., 2017; Lee, 2014 ). 

.3. QEMU internals 

ome of the detection techniques we discuss here take advan- 
age of the architectural design of the emulation component 
nown as the Tiny Code Generator (TCG). TCG is one of the 
ore components in QEMU. The main role of TCG is to convert 
he guest instruction set (which is not executed with a phys- 
cal CPU) into multiple host instruction sets (which are exe- 
uted with a physical CPU) that update the emulated machine 
tate to achieve a semantically equivalent result. The TCG per- 
orms this job in a basic block granularity .2 The translated ba- 
ic block is executed by a physical CPU. This indicates that 
nce QEMU executes the converted basic-block, other QEMU 

mulation components (i.e., interrupt handling) will not be 
rocessed until the TCG finishes processing the converted in- 
tructions of the basic block. This behavior can be observed 

rom the QEMU source file “target-i386/translate.c” in the case 
f x86 architecture. In general, QEMU processes the required 

ubroutines for emulation in sequential order. 

.4. Translation Block Cache 

he QEMU (and emulators in general) adopts the concept 
f translation caching a so-called Translation Block Cache (TB- 
ache) that significantly enhances the emulation performance.
ach time when QEMU translates a particular basic block of 
he guest program, the translated basic block (TB) is cached to 
void repeating the same translation process. If the execution 

ow of the program inside QEMU encounters the same guest 
asic block, the translation process can be omitted, and in- 
tead, the translated code from the TB cache can be executed.
his caching mechanism significantly improves the perfor- 
ance of QEMU. 

.5. Vectorization 

ectorization is a CPU technology that supports calculating 
ultiple data with a single instruction. For example, Intel 

upports various “Single Instruction, Multiple Data (SIMD)”
nstruction set such as MOVNTPS, MOVAPS to support vec- 
orization. Similarly, ARM supports NEON instruction set 
uch as VLDMIA, VPUSH and so on. The main purpose of 
ectorization instruction is to improve the performance of the 
ultimedia application which performs extensive graphics 

endering. Here, we deliberately use such instructions in a 
rohibited way to detect emulated software environment. 
1 In general, guest indicates an emulated system and host 
ndicates a real hardware-based system is running emulation 

oftware. 
2 Basic block is a set of instructions with no branch executed in 

equential order. 
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. Design 

n this section, we introduce three emulator detection 

echniques that are based on the architectural design of 
ardware/emulator namely: (i) context-switch based de- 
ection, (ii) TB-cache based detection, and (iii) misaligned 

ectorization based detection. Among the detection methods,
he alignment-based technique outperformed others in many 
spects; therefore it is suited for commercial application 

endors for protecting their application from malicious 
everse-engineering to crack the software product. After dis- 
ussing the design efficacy of each techniques, we show their 
roof-of-concept implementation and evaluation respectively 
hen focus to the third technique (misaligned vectorization) 
nd show our full implementation which we refer as isEmu .
sEmu is compared with existing heuristic-based detection 

echniques shown in cal . 

.1. Context switch based detection 

he context switch-based QEMU detection technique lever- 
ges the race condition between two threads lacking proper 
ocking mechanism. The technique does not require any ker- 
el privilege nor depends on timing discrepancy. In multi- 

hreaded programming, multiple threads are executed to- 
ether by sharing the CPU time slice given by the scheduler.
his is possible because of the context switch support from the 
ardware and OS. In general, an involuntary context switch 

ccurs when an external timer event interrupts the CPU. Based 

n the context switching and the QEMU interrupt handling 
echanism, the following facts can be observed; thus we can 

esign a method for distinguishing the QEMU environment 
ccordingly. 

• QEMU uses basic-block granularity to translate and exe- 
cute its guest code. 

• QEMU does not process an external interrupt while a basic- 
block of guest code is being executed. 

As mentioned in the background section of this paper, con- 
ext switching never happens in the QEMU environment while 
 basic block is being executed. However, this behavior is not 
bserved in the real CPU environment. In a nutshell, the in- 
tructions inside a basic block are executed atomically inside the 
EMU environment, whereas no such atomicity is observed with real 
ardware . Using this feature, we can distinguish the QEMU and 

eal CPU by deliberately running a multi-threaded code that 
as a race condition problem. We can write such code by de- 

iberately not using a lock 3 for a critical section consisted of 
 single basic block. By running this code, we can easily reach 

he race condition state in a real CPU environment; however,
he race condition never occurs in a QEMU environment. Fig. 1 
emonstrates this situation in detail. 

In Fig. 1 , a globally shared variable N is increased by one
nd decreased by one inside a critical section consisting of a 
ingle basic block. If threads enter this critical section one at 
 time, we would never observe the N becoming larger than 1 .
3 A lock could be a spinlock, mutex, semaphore, and so forth. 
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Fig. 1 – Different context switching behavior between real 
CPU and QEMU. A circle denotes a thread, and a box 

denotes a critical section composed of a single basic block. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, if multiple threads were about to enter this critical
section together at the same time, we could find the value of
N being larger than that of 2 . As we discussed above, a guest
context switch event does not occur during basic block execu-
tion. As a result, QEMU happens to protect the critical section
(consisting of a single basic block) even if the program does
not use a proper locking mechanism such as mutex or spinlock .
However, in a real CPU environment, we can observe N becom-
ing larger than two, which is an abnormal race condition state.

Therefore, it can be utilized as a universal emulation de-
tection technique that can be used regardless of system con-
figuration specifics. Unfortunately, this detection technique
requires sufficiently long time (e.g., seconds) to accurately
conclude the running environment (if things are fortunate,
race condition state could not occur in real hardware for a
long time). Also, as the technique requires exhaustive repe-
tition of loops, it requires high power consumption. In terms
of bypassing the anti-emulation, we consider it is safe from
trivial bypassing because this phenomenon does not involve
any architectural specifics and it is inevitable to avoid unless
the TCG implementation logic translates the guest code into
a single instruction granularity . However, such implementation
logic severely degrades the overall emulation performance.
Finally, this anti-emulation is only plausible for detecting full-
system emulators that emulate external hardware signals,
thus cannot be applied to detect Unicorn engine. 

We made proof-of-concept C code and verified it
works successfully against three system emulators
( qemu-system-i386/x86_64/arm ) and real CPUs. Us-
ing such code, we later show detailed experiment results of
this technique in Section 4 considering the number of CPU
cores and size of the unlocked basic-block. 

3.2. Translation Block Cache based detection 

Most of the dynamic binary instrumentation (DBI)-based em-
ulators, including QEMU, use a code translation caching mech-
anism to accelerate the performance (details are explained in
the background section). Although this caching system speeds
up the emulation performance, it creates a significant timing
difference against a real CPU, thus can be utilized for detecting
the emulated environment. 

Using this additional layer of the caching system enables
us to create a significant timing discrepancy regarding self-
modifying code that overwrites itself during its execution. In
QEMU, overwriting the code memory breaks the cache coher-
ence of the TB cache. Therefore, the self-modifying code cannot
leverage the TB cache system of QEMU. When a self-modifying
code runs inside the QEMU environment, the TB cache loses
its effectiveness and severely degrades the performance of
code execution speed compared to the non-self-modifying
code. 

Similarly to the TB cache of emulators, the hardware
cache (e.g., L1) also experiences degraded performance when
a code invalidates itself. However, the impact thereof on
the performance is trivial relative to TB cache invalidation.
With high assurance, we can conclude that if the perfor-
mance of self-modifying code dramatically deteriorates (i.e.,
by orders of magnitude) compared to other code, we can
reasonably suspect that the running environment is being
emulated. 

An example of detection can be performed as follows: Con-
sider two code snippets A : a code fragment consisting of 1000
lines of ordinary (non-self-modifying) assembly instructions
such as mov , add , and push ; and B : a self-modifying code frag-
ment consisting of 100 lines of the same set of assembly in-
structions. If we were to iterate the code execution of A and
B numerous times in a real CPU, the total iteration time of
A would be expected to exceed that of B because there are
orders of magnitude more instructions to execute. However,
in an emulation environment, this timing experiment would
show the opposite result since the TB cache would not be uti-
lized in B (self-modifying code) after all. 

The advantages of this technique are that it does not
require kernel-level privilege and it is architecture agnostic.
Also, mitigating this detection attempt is practically impos-
sible as the overall emulation performance is significantly
affected. However, this technique is inadequate to apply to
commercial software because the detection requires a lot of
time for an accurate result, and still, the accuracy cannot be
guaranteed regardless of the cache performance and other
timing issues. For example, the elapsed time of any code
execution could exceptionally be changed due to unexpected
asynchronous hardware interrupts. Also, measuring the
detailed timing requires exhaustive code execution thus
consume power. In terms of bypassing the anti-emulation,
it could be trivially bypassed by disabling the QEMU to
use translation caching. However, the overall performance
severely drops without translation caching feature. 

We made a proof-of-concept detection code in C and ver-
ified it works successfully against several system emulators
qemu-system-i386/x86_64/arm, unicorn and several
Intel CPUs. In the case of ARM architecture, this technique
has another issue regarding the i-cache/d-cache separation.
Due to the implementation of the caching system, ARM
architecture can execute the code before it was invalidated
by self-modification. Because of this reason, self-modifying
code in ARM architecture shows unexpected behavior unless
the cache is handled correctly. We can take advantage of
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Fig. 2 – Different result for misaligned vectorization in real 
CPU and emulator. The alignment fault occurs if CPU is real 
hardware regardless of kernel. Emulators process 
unaligned vectorization as it does not break the correctness 
of the system. 
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4 Due to some exceptional Intel-based Android devices using 
binary-translation with libhoudini. 

5 https://www.dropbox.com/s/8atpfzkv6wu160u/isemu.zip? 
dl=0 . 

6 Due to corporate policy; we would like to ask reviewers and 

editor to keep the link private. 
his feature as an indicator of distinguishing the real ARM 

ardware from the emulator. 

.3. Misaligned vectorization based detection 

emory access alignment issue stems from the incapability 
f earlier (and current) CPUs accessing the cache with byte- 
ranularity. For example, some 32-bit CPU architectures have 
 30-bit addressing line for fetching the memory. Due to the 
ack of 2 bits, such CPU can access the memory only if the tar- 
et memory address is multiple of 4 ( 100 in binary ). For 
uch reason, if the CPU wants to access a memory address that 
s not the multiple of 4, the CPU fetches memory twice and 

e-assemble the memory contents. Vectorization instructions 
f Intel and ARM do not support unaligned memory access at 
he hardware level (even with kernel modification for handling 
lignment feature) thus raises an application-aware fault. In 

eneral, the kernel is capable of handling unaligned memory 
ccess even if the CPU is incapable of handling such type of 
emory access. For example, Linux kernel provides an inter- 

ace for enabling/disabling faulting behavior upon unaligned 

ccess in general purpose instructions. 
However, high-performance vectorization operations such 

s Intel SIMD and ARM NEON are guaranteed to raise fault 
pon unaligned access regardless of kernel configuration. If 
uch fault occurs, the user application is notified by kernel 
ince CPU is incapable of proceeding execution. However, soft- 
are emulators do not have to suffer from such issues be- 

ause any memory access is ultimately reconstructed with 

ultiple combinations of operations at a software level. As a 
esult, unaligned vectorization inside emulator executes the 
orrect semantic of unaligned vectorization with similar per- 
ormance compared to the aligned vectorization. Here, we 
ake advantage of this phenomenon to effectively distinguish 

he software-emulated environment and native hardware en- 
ironment without any kernel-dependency. 

The algorithm design of our detection is as follow: First,
e install a fault-handler to catch the hardware fault signal 

nduced by unaligned vectorization. Once the handler is 
nstalled, the actual detection routine deliberately makes 
n unaligned pointer and dereference such pointer with 

ectorization instructions that are affected by target memory 
lignment (e.g., MOVNTPS of Intel, VLDMIA of ARM). If the 
unning environment is emulated, nothing happens upon 

uch memory access. However, in the real hardware-based 

nvironment, CPU immediately raises the fault signal and 

nvokes our callback handler. Based on such different behav- 
or, we decide if the running environment is emulated or not.
ig. 2 is the overall process depicting our detection technique 
ased on misaligned vectorization. Once, the signal handler 
etup process is done while application loading, detection 

rocess (dereferencing the unaligned pointer with specific 
nstruction) is invoked unpredictably. 

Overall, this technique is sufficiently fast and accurate,
lus it does not use a lot of CPU cycles thus power consump- 
ion is low. Also, it has high compatibility with many devices 
ith various configuration. We applied this technique to 176 

eal Android devices and QEMU-based emulators and Uni- 
orn, Bosch engine. Unfortunately, there are few extraordinary 
ases among devices that we tested 

4 ; and Bosch engine does 
mplement the misalignment handling for vectorization thus 
aises faults upon the emulated unaligned memory access.
till, we believe that this is so far the most promising tech- 
ique for anti-emulation for commercial application vendors 

o provide reasonable performance and service quality with a 
equired level of security. 

. Implementation and evaluation 

n this section, we first discuss the implementation and eval- 
ation of the two aforementioned anti-emulation techniques 

context-switch, translation cache). Afterward, we show the 
mplementation of isEmu which utilizes the third technique 
misaligned vectorization, which we find promising) and con- 
uct detailed evaluation comparing with previously existing 
echniques. We provide a private link for the full source code 
f isEmu .5 , 6 We also attached proof-of-concept codes in the 
ppendix including other techniques. 

.1. Context switch based detection 

e implemented the context-switch based emulator detec- 
ion technique by writing a multithreaded application that de- 
iberately unlocks the critical section. In a global memory area,
e declare a simple counter variable (initialized to zero) that 

s shared among two threads. The thread repeats a simple op- 
ration of incrementing (zero to one) the shared variable and 

ecrementing (one to zero) it. It is important that the codes 
or the operation are gathered inside one single basic block.
ecause locks do not protect the critical section that accesses 
he shared-variable, a proper race-condition can temporarily 

https://www.dropbox.com/s/8atpfzkv6wu160u/isemu.zip?dl=0
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cause shared variable state for two . However, since the emula-
tor process context-switch only between basic block transla-
tion, no context-switch occurs within a basic block; thus the
race condition never happens if emulated. Algorithm 1 is the
pseudo-code for implementation. 

Algorithm 1 Context switching-based detection. 

Data : boolean isEmu , integer N , function AtomicThread 

Result: the final value of isEmu 
isEmu = true 
N = 0 
AtomicThread = (Repeat two operations atomically: N=N+1,
N=N-1) 
BeginThread ( AtomicThread ) 
BeginThread ( AtomicThread ) 
while N less than 2 do 

if Detection time out then 

return isEmu 

else 

end 

end 

isEmu = false; 
return isEmu 

The big question of context-switch based emulator de-
tection is how quickly and reliably the race condition occurs in
real-hardware? . Based on the design of detection algorithm, we
believe there are two major factors that affects the speed and
reliability of this technique: (i) number of CPU cores, and (ii)
size of critical section block. To evaluate the efficacy of the al-
gorithm, we conducted two experiments regarding this issue.

The first experiment is measuring the minimal loop counts
until the race-condition state ( N = 2 ) is observed. We imple-
mented the algorithm Algorithm 1 with C and compiled into
Intel and ARM binary. Then counted the loop counts with var-
ious configuration of CPU core numbers.7 Fig. 3 shows the re-
sult of this experiment. From the graphs, X axis is the num-
ber of iteration for escaping the loop and the Y axis num-
ber is the repeated number of evaluation trials for the same
value of X (block size of critical section is 1024 bytes). From
the evaluation result, we can see that this technique is unreli-
able in case the CPU core is single (takes too much time to ob-
serve the race condition). The race-condition state is quickly
reached in case the CPU has multi-core. However, if the num-
ber of CPU core is more than four, there was no particular 
difference. 

The next experiment is to measure how the size of critical
section affects this technique. Obviously, if the size of crit-
ical section is large, the chance of context switch between
the increment and decrement will increase, thus affect the
probability of observing the race condition state. Since the
single-core environment shows the worst performance for
detection, we tried increasing the size of critical section and
wondered if it will increase the detection performance in
single-core environment. Fig. 4 shows our evaluation result.
As expected, increasing the distance between increment
7 We control number of cores via Linux CPU Pinning support with 

taskset utility. 

 

 

 

operation and decrement operation affected the performance
of context-switch based detection. 

4.2. Translation cache based detection 

Translation cache is an essential part of general emulators.
Iterating same translation for same guest code significantly
slow down the overall performance of emulation. There-
fore, emulator caches the result of translation and re-use
if the guest code execution encounters the same code. The
detection using this feature is based on timing. Our proof-
of-concept implementation measures the timing between
self-modifying code and regular codes. The self-modifying
code is implemented by allocating a readable-writable-
executable memory at a fixed memory address and placing a
code that overwrites the memory content of its code address
itself. The regular code is simple no-operation codes which
only consumes CPU cycles. Because the self-modifying code
invalidates the translation cache, the performance impact
is significant. By comparing the relative performance ratio
between the self-modifying code and regular codes, we can
deduce the running environment with high confidence. How-
ever, any timing based detection approach cannot guarantee
its result. Algorithm 2 is the pseudo-code for implementation

Algorithm 2 Translation cache-based detection. 

Data : boolean isEmu , time Tstart , time Tend , time D1 , time D2
function selfMod , function dummyFunc 

Result: the final value of isEmu 
selfMod = (Function modifies its code during execution) 
dummyFunc = (Function executes dummy instructions) 
Tstart = time() Execute selfMod Tend = time() 
D1 = Tend - Tstart 
Tstart = time() Execute dummyFunc 100 times Tend = time() 
D2 = Tend - Tstart 
if D1 greater than D2 then 

isEmu = true 
else 

isEmu = false 
end 

return isEmu 

and Table 1 is the evaluation result. 
The evaluation suggests that the performance impact

of invalidating code cache is significantly higher than real
hardware. In case of the actual device, standard code that
has a sufficiently higher number of instruction took longer
execution time than short self-modifying code. However, in
case of the emulator, self-modifying code shows orders of
magnitude slower performance. In case of ARM real environ-
ment, executing self-modifying code requires special cache
handling, unless the code shows unexpected behavior. In
ARM architecture, the instruction cache (i-cache) and data
cache (d-cache) is separated and has loose coherency. If the
code updates itself with data access instructions, the code in
memory is updated however the instruction cache remains
valid. Therefore, the execution after self-modification could
execute the code before it is supposedly updated, which
causes unexpected behavior. 
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(a) Intel 1-core (b) Intel 2-core

(d) Intel 8-core(c) Intel 4-core

(e) Intel 16-core (f) ARM 4-core

Fig. 3 – Number of loop counts before observing the race-condition state in real hardware. X -axis is the number of iteration 

for escaping the main loop (from pseudo-code) and the Y -axis is the repeated number of evaluation trials for the same 
X -axis result. Block size of critical section is 1KB. 
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(a) Single Core / Block Size 4KB (b) Single Core / Block Size 16KB

(c) Single Core / Block Size 64KB (d) Single Core / Block Size 1MB

Fig. 4 – Relationship between critical section block size and efficacy of context-switch based technique. Experiment 
configurations are same as Fig. 3 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Regarding speed, the detection was faster than we initially
expected because the relative timing difference between stan-
dard code and self-modifying code was high. However, occa-
sionally the timing shows high variance due to external hard-
ware interrupts, which makes this technique less reliable in
various hardware environments. 

4.3. isEmu: unaligned vectorization based detection 

The main goal of this research is finding a sufficiently ac-
curate, compatible and fast emulator detection technique
for commercial deployment. Based on our study, we develop
isEmu : a fast, accurate Android anti-emulation technique.
Considering commercial deployment, the detection attempt
should catch emulators, but more importantly, should not
interfere benign users using real devices. To demonstrate
the improvement of isEmu in this perspective over existing
techniques, we use a publicly available Android emulator
detection tool ( cal ) for comparison. This tool aggregates
various emulator detection heuristics that are previously
discussed ( Vidas and Christin, 2014 ). 

isEmu is implemented as JNI library to target ARM An-
droid devices. The JNI code initially setup signal handler at 
application load time. Once the handler is initialized, the
application can detect the running environment. To install a
signal handler for catching alignment-fault (SIGBUS of Linux), 
we use standard sigaction GLIBC API and register
our callback function. The time consumption of this
process is negligible as additionally calling one more
GLIBC API upon process loading. After the signal han-
dler is installed, the actual detection code makes an un-
aligned pointer (e.g., a 32-bit width pointer that points
valid memory address but the address is not multiple of
32-bit such as 0x10033 ). After making such a pointer,
use LDM/STM instruction to dereference such unaligned
pointer. 
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Table 1 – Timing discrepency of code cache invalidation in hardware and emulator. The execution time is the sum of 
100,000 iteration. Self-Mod is composed with single memory access code that updates itself. Normal is composed with 

addition loop with 100 iteration. 

CPU model Type of code Execution time (ms) Remarks 

ARMv7 Self-Mod N/A SIGSEGV (due to cache issue) 
ARMv7 Normal 13 
Intel e5-2630 (32bit) Self-Mod 10 
Intel e5-2630 (32bit) Normal 25 
Intel e5-2630 (64bit) Self-Mod 10 
Intel e5-2630 (64bit) Normal 25 
Intel i5-4670 (32bit) Self-Mod 15 
Intel i5-4670 (32bit) Normal 22 
Intel i5-4670 (64bit) Self-Mod 13 
Intel i5-4670 (64bit) Normal 23 
Intel i7-6700 (32bit) Self-Mod 17 
Intel i7-6700 (32bit) Normal 21 
Intel i7-6700 (64bit) Self-Mod 11 
Intel i7-6700 (64bit) Normal 22 
QEMU-ARMv7 Self-Mod 700 ARM mode 
QEMU-ARMv7 Normal 137 ARM mode 
QEMU-i386 Self-Mod 620 
QEMU-i386 Normal 38 
QEMU-x86_64 Self-Mod 631 
QEMU-x86_64 Normal 40 
Unicorn-ARM Self-Mod 150 ARM mode 
Unicorn-ARM Normal 50 ARM mode 
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8 We use Amazon Device Farm for this experiment ( Amazon, 
2006 ). 

9 isEmu reports x86 real Android devices as “Emulator”. This 
could be considered the wrong result, but we claim that this is 
technically not a false positive as such real devices indeed used 

emulation technique for code execution. However, to distinguish 
According to our experiments, ARM instructions such as 
DR/STR supports hardware-level unaligned access since 
RMv6. However, an instruction such as LDM/STM lacks the 
apability of dereferencing unaligned pointers in general ARM 

rchitecture including the latest. We also implemented In- 
el version of emulation detector using SSE instructions. The 
verall mechanism of detection technique is the same as 
he previously explained way (JNI implementation for ARM 

ndroid device). The key difference between Intel emula- 
or detector and ARM emulator detector is that Intel ver- 
ion uses MOVNTPS SSE instruction instead of LDM/STM of 
he ARM. Similarly to ARM case, Intel MOVNTPS (and sim- 
lar family of other SSE instructions and vector instruc- 
ions) requires specific address alignment (16 for MOVNTPS ) 
hile accessing memory. Algorithm 3 is the pseudo-code for 

mplementation. 

lgorithm 3 Unaligned vectorization-based detection. 

ata : boolean isEmu , pointer PTR function AlignTrapHandler 
esult: the final value of isEmu 
sEmu = true 
lignTrapHandler = (change isEmu to false) 

nstallHandler(AlignTrapHandler) 
TR = misaligned pointer for Read/Write memory 
xecute Vectorization with PTR 

eturn isEmu 

To evaluate the performance impact of isEmu , we ran 

icrobenchmark to measure the consumed clock cycles for 
nstalling the signal handler and processing time of the hard- 
are signal due to unaligned memory access. To evaluate the 

ccuracy, we applied isEmu to test Android application and 
an inside 176 real ARM Android devices 8 and several emula- 
ors including qemu-system-arm and standard Android AVD 

mulator. We also ran the previously existing Android emu- 
ator detection tool ( cal ). This tool executes several Android 

mulator detection heuristic codes written in Java and com- 
ines its result with bitwise OR ( 0 : real device, 1 : emulator).
e dissected the code into three heuristics as follow. 

• H1. Android API based artifacts. 
• H2. Emulator property artifacts. 
• H3. Filesystem artifacts. 

We measured the code execution speed and accuracy of 
ach heuristics and summarized its comparison result with 

sEmu . Three tables Tables 2–4 (for convenience, we split the 
valuation result into three tables) summarizes the evalua- 
ion. In the table, ✔ indicates that the detection code reported 

he accurate result as intended. ✖ indicates that the detection 

ode reported the opposite result. ✸ indicates the detection 

ode was not compatible and refused to run. The evaluation 

nitially used 176 Android devices (for isEmu ) provided by 
mazon Device Farm (Android-All option). However, due to 

requent device updates, some of the devices were removed.
n such case, we makred the evaluation result with "-" sym- 
ol. The evaluation shows that isEmu shows 100% accurate 
esult for all Device Farm cases and emulators.9 However, the 
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Table 2 – Deployment test summary (1/3). 

Device OS Vendor Arch isEmu H1 H2 H3 

Nexus 7 – 1st (WiFi) 4.2.1 ASUS armeabi-v7a ✔ ✖ ✖ ✖ 

Nexus 7 – 1st (WiFi) 4.2.0 ASUS armeabi-v7a ✔ ✖ ✖ ✖ 

Nexus 7 – 1st (WiFi) 4.3.0 ASUS armeabi-v7a ✔ ✔ ✖ ✔ 

Nexus 7 – 1st (WiFi) 4.4.2 ASUS armeabi-v7a ✔ ✖ ✖ ✔ 

Nexus 7 – 2nd (WiFi) 5.0.1 ASUS armeabi-v7a ✔ ✖ ✖ ✔ 

Nexus 7 – 2nd (WiFi) 4.4.2 ASUS armeabi-v7a ✔ ✖ ✖ ✔ 

Nexus 7 – 2nd (WiFi) 4.4.4 ASUS armeabi-v7a ✔ ✖ ✖ ✔ 

Nexus 7 – 2nd (WiFi) 4.3.1 ASUS armeabi-v7a ✔ ✔ ✖ ✔ 

Nexus 7 – 2nd (WiFi) 6.0.0 ASUS armeabi-v7a ✔ ✖ ✖ ✔ 

Memo Pad 7 4.4.2 ASUS x86 ✔ ✖ ✔ ✔ 

Fire HD 7 (2014) 4.4.3 Amazon armeabi-v7a ✔ ✖ ✔ ✔ 

Kindle Fire HDX 7 4.4.3 Amazon armeabi-v7a ✔ ✖ ✔ ✔ 

Blackberry Priv 5.1.1 Blackberry arm64-v8a ✔ - - - 
Galaxy S8 Unlocked 8.0.0 Samsung arm64-v8a ✔ ✔ ✔ ✔ 

Galaxy Tab 3 10.1 4.2.2 Samsung x86 ✔ ✸ ✸ ✸ 

Pixel 8.0.0 Google arm64-v8a ✔ ✖ ✖ ✔ 

Pixel 7.1.2 Google arm64-v8a ✔ ✖ ✖ ✔ 

Pixel 2 8.1.0 Google arm64-v8a ✔ ✖ ✖ ✔ 

Pixel 2 8.0.0 Google arm64-v8a ✔ ✖ ✖ ✔ 

Pixel 2 XL 8.0.0 Google arm64-v8a ✔ ✖ ✖ ✔ 

Pixel XL 7.1.2 Google arm64-v8a ✔ ✖ ✖ ✔ 

Pixel XL 8.0.0 Google arm64-v8a ✔ ✖ ✖ ✔ 

Desire 526G + 4.4.2 HTC armeabi-v7a ✔ – – –
One A9 (Unlocked) 6.0.1 HTC arm64-v8a ✔ ✸ ✸ ✸ 

One M7 (AT/T) 4.4.2 HTC armeabi-v7a ✔ ✖ ✔ ✔ 

One M8 (AT/T) 4.4.4 HTC armeabi-v7a ✔ ✖ ✔ ✔ 

One M8 (AT/T) 4.4.2 HTC armeabi-v7a ✔ ✖ ✔ ✔ 

One M8 (Verizon) 4.4.2 HTC armeabi-v7a ✔ ✖ ✔ ✔ 

One M8 (Verizon) 4.4.4 HTC armeabi-v7a ✔ ✖ ✔ ✔ 

One M9 (AT/T) 5.0.2 HTC arm64-v8a ✔ ✖ ✔ ✖ 

One M9 (Verizon) 5.0.2 HTC arm64-v8a ✔ ✖ ✔ ✖ 

Ascend Mate 7 4.4.2 Huawei armeabi-v7a ✔ ✔ ✔ ✔ 

Honor 6 4.4.2 Huawei armeabi-v7a ✔ - - - 
M8 6.0.0 Huawei arm64-v8a ✔ ✖ ✔ ✔ 

P9 6.0.0 Huawei arm64-v8a ✔ ✖ ✔ ✔ 

Aqua Y2 Pro 4.4.2 Intex armeabi-v7a ✔ ✔ ✖ ✔ 

G Flex (AT/T) 4.2.2 LG armeabi-v7a ✔ ✔ ✔ ✖ 

G Pad 7.0 (AT/T) 4.4.2 LG armeabi-v7a ✔ ✔ ✔ ✔ 

G2 (AT/T) 4.4.2 LG armeabi-v7a ✔ ✔ ✔ ✔ 

G2 (T-Mobile) 4.4.2 LG armeabi-v7a ✔ ✖ ✔ ✔ 

G3 (AT/T) 5.0.1 LG armeabi-v7a ✔ ✔ ✔ ✔ 

G3 (AT/T) 4.4.2 LG armeabi-v7a ✔ ✔ ✔ ✔ 

G3 (T-Mobile) 4.4.2 LG armeabi-v7a ✔ ✔ ✔ ✔ 

G3 (Verizon) 4.4.2 LG armeabi-v7a ✔ ✖ ✔ ✔ 

G5 (T-Mobile) 6.0.1 LG arm64-v8a ✔ ✸ ✸ ✸ 

Nexus 4 4.4.3 LG armeabi-v7a ✔ ✔ ✖ ✔ 

Nexus 5 4.4.2 LG armeabi-v7a ✔ ✖ ✖ ✔ 

Nexus 5 6.0.0 LG armeabi-v7a ✔ ✖ ✖ ✔ 

Nexus 5 5.1.1 LG armeabi-v7a ✔ ✖ ✖ ✔ 

Nexus 5 5.0.1 LG armeabi-v7a ✔ ✖ ✖ ✔ 

Optimus L70 4.4.2 LG armeabi-v7a ✔ ✖ ✔ ✔ 

V20 (AT/T) 7.0.0 LG arm64-v8a ✔ ✖ ✔ ✔ 

V20 (T-Mobile) 7.0.0 LG arm64-v8a ✔ ✖ ✔ ✔ 

V20 (Verizon) 7.0.0 LG arm64-v8a ✔ ✖ ✔ ✔ 

DROID RAZR HD 4.4.2 Motorola armeabi-v7a ✔ ✖ ✔ ✔ 

DROID RAZR M 4.4.2 Motorola armeabi-v7a ✔ ✖ ✔ ✔ 

DROID Turbo 5.1.0 Motorola armeabi-v7a ✔ ✔ ✔ ✔ 

DROID Turbo 2 5.1.1 Motorola arm64-v8a ✔ ✖ ✔ ✔ 

DROID Ultra 4.4.4 Motorola armeabi-v7a ✔ ✖ ✔ ✔ 
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Table 3 – Deployment test summary (2/3). 

Device OS Vendor Arch isEmu H1 H2 H3 

Moto E – 2nd 5.1.0 Motorola armeabi-v7a ✔ ✔ ✔ ✔ 

Moto E – 2nd 5.0.2 Motorola armeabi-v7a ✔ – – –
Moto G (AT/T) 4.4.4 Motorola armeabi-v7a ✔ ✔ ✔ ✔ 

Moto G – 2nd 6.0.0 Motorola armeabi-v7a ✔ ✔ ✔ ✔ 

Moto G – 2nd 5.0.2 Motorola armeabi-v7a ✔ – – –
Moto G – 3rd 6.0.0 Motorola armeabi-v7a ✔ ✔ ✔ ✔ 

Moto G 4 7.0.0 Motorola armeabi-v7a ✔ ✖ ✔ ✔ 

Moto X 5.1.0 Motorola armeabi-v7a ✔ – – –
Moto X 2nd 5.1.0 Motorola armeabi-v7a ✔ ✖ ✔ ✔ 

Nexus 6 5.1.0 Motorola armeabi-v7a ✔ – – –
Nexus 6 6.0.0 Motorola armeabi-v7a ✔ – – –
Nexus 6 7.0.0 Motorola armeabi-v7a ✔ – – –
Find 7a 4.3.0 Oppo armeabi-v7a ✔ ✔ ✔ ✔ 

Excite Go 4.4.2 Toshiba x86 ✔ – – –
Galaxy A3 5.1.1 Samsung armeabi-v7a ✔ ✖ ✔ ✖ 

Galaxy A5 5.0.2 Samsung armeabi-v7a ✔ ✔ ✔ ✔ 

Galaxy E5 5.1.1 Samsung armeabi-v7a ✔ ✔ ✔ ✔ 

Galaxy E7 4.4.4 Samsung armeabi-v7a ✔ ✔ ✔ ✔ 

Galaxy Grand 2 4.4.2 Samsung armeabi-v7a ✔ ✔ ✔ ✔ 

Galaxy Grand Neo Plus 4.4.4 Samsung armeabi-v7a ✔ ✔ ✔ ✖ 

Galaxy Grand Prime 4G 5.1.1 Samsung armeabi-v7a ✔ ✖ ✔ ✔ 

Galaxy Grand Duos 4.4.4 Samsung armeabi-v7a ✔ ✖ ✔ ✔ 

Galaxy J1 Ace 4.4.4 Samsung armeabi-v7a ✔ ✖ ✔ ✔ 

Galaxy J1 Duos 4.4.4 Samsung armeabi-v7a ✔ ✖ ✔ ✖ 

Galaxy J2 4G 5.1.1 Samsung armeabi-v7a ✔ – – –
Galaxy J5 4G 5.1.1 Samsung armeabi-v7a ✔ ✖ ✔ ✔ 

Galaxy J7 4G 5.1.1 Samsung armeabi-v7a ✔ ✸ ✸ ✸ 

Galaxy Light 4.4.2 Samsung armeabi-v7a ✔ ✖ ✔ ✖ 

Galaxy Note 2 (AT/T) 4.4.2 Samsung armeabi-v7a ✔ ✔ ✔ ✖ 

Galaxy Note 2 (AT/T) 4.3.0 Samsung armeabi-v7a ✔ ✖ ✔ ✔ 

Galaxy Note 2 (Verizon) 4.4.2 Samsung armeabi-v7a ✔ ✔ ✔ ✖ 

Galaxy Note 3 (AT/T) 4.4.2 Samsung armeabi-v7a ✔ ✖ ✔ ✔ 

Galaxy Note 3 (AT/T) 4.4.4 Samsung armeabi-v7a ✔ ✔ ✔ ✔ 

Galaxy Note 3 (Sprint) 5.0.0 Samsung armeabi-v7a ✔ ✔ ✔ ✔ 

Galaxy Note 3 (T-Mobile) 5.0.0 Samsung armeabi-v7a ✔ ✔ ✔ ✔ 

Galaxy Note 3 (Verizon) 4.4.4 Samsung armeabi-v7a ✔ ✔ ✔ ✔ 

Galaxy Note 4 (AT/T) 4.4.4 Samsung armeabi-v7a ✔ ✔ ✔ ✔ 

Galaxy Note 4 (AT/T) 5.0.1 Samsung armeabi-v7a ✔ ✔ ✔ ✔ 

Galaxy Note 4 (Sprint) 4.4.4 Samsung armeabi-v7a ✔ ✔ ✔ ✔ 

Galaxy Note 4 (T-Mobile) 4.4.4 Samsung armeabi-v7a ✔ ✔ ✔ ✔ 

Galaxy Note 4 (Verizon) 5.0.1 Samsung armeabi-v7a ✔ ✖ ✔ ✔ 

Galaxy Note 4 (Verizon) 4.4.4 Samsung armeabi-v7a ✔ ✔ ✔ ✔ 

Galaxy Note 4 SM-N910H 5.0.1 Samsung armeabi-v7a ✔ ✖ ✔ ✖ 

Galaxy Note5 (AT/T) 5.1.1 Samsung arm64-v8a ✔ ✖ ✔ ✖ 

Galaxy Note5 (AT/T) 7.0.0 Samsung arm64-v8a ✔ ✔ ✔ ✖ 

Galaxy Note5 (T-Mobile) 5.1.1 Samsung arm64-v8a ✔ ✔ ✔ ✖ 

Galaxy Note5 SM-N920C 6.0.1 Samsung arm64-v8a ✔ ✔ ✔ ✖ 

Galaxy Note8 (Unlocked) 7.1.1 Samsung arm64-v8a ✔ ✔ ✔ ✔ 

Galaxy S DUOS 3 4.4.4 Samsung armeabi-v7a ✔ ✔ ✔ ✔ 

Galaxy S3 (AT/T) 4.3.0 Samsung armeabi-v7a ✔ ✔ ✔ ✖ 

Galaxy S3 (T-Mobile) 4.3.0 Samsung armeabi-v7a ✔ ✔ ✔ ✖ 

Galaxy S3 (Verizon) 4.3.0 Samsung armeabi-v7a ✔ ✔ ✔ ✖ 

Galaxy S3 (Verizon) 4.4.2 Samsung armeabi-v7a ✔ ✔ ✔ ✔ 

Galaxy S3 LTE (T-Mobile) 4.3.0 Samsung armeabi-v7a ✔ ✔ ✔ ✖ 

Galaxy S4 (AT/T) 4.4.2 Samsung armeabi-v7a ✔ ✖ ✔ ✔ 

Galaxy S4 (AT/T) 4.4.4 Samsung armeabi-v7a ✔ ✔ ✔ ✔ 

Galaxy S4 (AT/T) 5.0.1 Samsung armeabi-v7a ✔ ✔ ✔ ✔ 

Galaxy S4 (T-Mobile) 4.4.4 Samsung armeabi-v7a ✔ ✔ ✔ ✔ 

Galaxy S4 (US Cellular) 4.4.2 Samsung armeabi-v7a ✔ ✖ ✔ ✔ 
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Table 4 – Deployment test summary (3/3). 

Device OS Vendor Arch isEmu H1 H2 H3 

Galaxy S4 (Verizon) 4.4.2 Samsung armeabi-v7a ✔ ✔ ✔ ✔ 

Galaxy S4 (Verizon) 5.0.1 Samsung armeabi-v7a ✔ ✖ ✔ ✔ 

Galaxy S4 Active (AT/T) 4.4.2 Samsung armeabi-v7a ✔ ✔ ✔ ✔ 

Galaxy S4 Mini GT-I9195 4.4.2 Samsung armeabi-v7a ✔ ✖ ✔ ✔ 

Galaxy S4 mini (Verizon) 4.4.2 Samsung armeabi-v7a ✔ ✔ ✔ ✔ 

Galaxy S4(Unlocked) 5.0.1 Samsung armeabi-v7a ✔ ✖ ✔ ✖ 

Galaxy S5 (AT/T) 4.4.4 Samsung armeabi-v7a ✔ ✔ ✔ ✔ 

Galaxy S5 (AT/T) 6.0.1 Samsung armeabi-v7a ✔ ✔ ✔ ✔ 

Galaxy S5 (AT/T) 4.4.2 Samsung armeabi-v7a ✔ ✔ ✔ ✔ 

Galaxy S5 (T-Mobile) 4.4.2 Samsung armeabi-v7a ✔ ✔ ✔ ✔ 

Galaxy S5 (Verizon) 4.4.4 Samsung armeabi-v7a ✔ ✔ ✔ ✔ 

Galaxy S5 (Verizon) 6.0.1 Samsung armeabi-v7a ✔ ✖ ✔ ✔ 

Galaxy S5 Active (AT/T) 4.4.2 Samsung armeabi-v7a ✔ ✔ ✔ ✔ 

Galaxy S6 (T-Mobile) 7.0.0 Samsung arm64-v8a ✔ ✖ ✔ ✖ 

Galaxy S6 (T-Mobile) 6.0.1 Samsung arm64-v8a ✔ ✔ ✔ ✖ 

Galaxy S6 (Verizon) 6.0.1 Samsung arm64-v8a ✔ ✖ ✔ ✖ 

Galaxy S6 (Verizon) 5.0.2 Samsung arm64-v8a ✔ ✖ ✔ ✖ 

Galaxy S6 Edge 5.0.2 Samsung arm64-v8a ✔ ✖ ✔ ✖ 

Galaxy S6 Edge 7.0.0 Samsung arm64-v8a ✔ ✔ ✔ ✖ 

Galaxy S6 Edge (Verizon) 5.0.2 Samsung arm64-v8a ✔ ✖ ✔ ✖ 

Galaxy S6 Edge SM-G925F 6.0.1 Samsung arm64-v8a ✔ ✖ ✔ ✖ 

Galaxy S6 Edge + (AT/T) 5.1.1 Samsung arm64-v8a ✔ ✖ ✔ ✖ 

Galaxy S6 Edge + (T-Mobile) 5.1.1 Samsung arm64-v8a ✔ ✔ ✔ ✖ 

Galaxy S6 SM-G920F 6.0.1 Samsung arm64-v8a ✔ ✖ ✔ ✖ 

Galaxy S7 (AT/T) 6.0.1 Samsung arm64-v8a ✔ ✔ ✔ ✔ 

Galaxy S7 (T-Mobile) 6.0.1 Samsung arm64-v8a ✔ – – –
Galaxy S7 Edge (AT/T) 6.0.1 Samsung arm64-v8a ✔ ✔ ✔ ✔ 

Galaxy S7 Edge SM-G935F 6.0.1 Samsung arm64-v8a ✔ ✖ ✔ ✖ 

Galaxy S7 SM-G930F 6.0.1 Samsung arm64-v8a ✔ ✖ ✔ ✖ 

Galaxy S8 (T-Mobile) 7.0.0 Samsung arm64-v8a ✔ ✔ ✔ ✔ 

Galaxy S8 + (T-Mobile) 7.0.0 Samsung arm64-v8a ✔ ✔ ✔ ✔ 

Galaxy S9 (Unlocked) 8.0.0 Samsung arm64-v8a ✔ ✔ ✔ ✔ 

Galaxy S9 + (Unlocked) 8.0.0 Samsung arm64-v8a ✔ ✖ ✔ ✔ 

Galaxy Tab 3 7.0 (Sprint) 4.2.2 Samsung armeabi-v7a ✔ ✸ ✸ ✸ 

Galaxy Tab 3 7.0 (T-Mobile) 4.4.4 Samsung armeabi-v7a ✔ ✔ ✔ ✔ 

Galaxy Tab 3 Lite 7.0 4.2.2 Samsung armeabi-v7a ✔ ✖ ✔ ✖ 

Galaxy Tab 4 10.1 (WiFi) 5.0.2 Samsung armeabi-v7a ✔ ✖ ✔ ✔ 

Galaxy Tab 4 10.1 (WiFi) 4.4.2 Samsung armeabi-v7a ✔ ✖ ✔ ✔ 

Galaxy Tab 4 7.0 (WiFi) 4.4.2 Samsung armeabi-v7a ✔ ✖ ✔ ✔ 

Galaxy Tab S2 9.7 6.0.1 Samsung arm64-v8a ✔ ✖ ✔ ✔ 

Galaxy Tab S2 8.0 (WiFi) 6.0.1 Samsung arm64-v8a ✔ ✖ ✔ ✔ 

Galaxy Tab S2 8.0 (WiFi) 5.1.1 Samsung armeabi-v7a ✔ ✖ ✔ ✖ 

Venue 8 7840 5.1.0 Dell x86 ✔ ✖ ✔ ✔ 

Nexus 10 (WiFi) 4.3.0 Samsung armeabi-v7a ✔ ✖ ✖ ✔ 

Xperia Z1 Compact 4.3.0 Sony armeabi-v7a ✔ ✔ ✔ ✔ 

Xperia Z3 4.4.4 Sony armeabi-v7a ✔ ✖ ✔ ✔ 

Xperia Z4 Tablet 5.0.2 Sony arm64-v8a ✔ ✖ ✔ ✖ 

Fever 4G 5.1.0 Wiko arm64-v8a ✔ ✖ ✔ ✔ 

Lenny 2 5.1.0 Wiko armeabi-v7a ✔ ✸ ✸ ✸ 

Pulp 4G 5.1.1 Wiko armeabi-v7a ✔ ✸ ✸ ✸ 

Rainbow 4G 4.4.2 Wiko armeabi-v7a ✔ ✖ ✔ ✔ 

qemu-system-i386 N/A N/A emulator ✔ N/A N/A N/A 

qemu-system-x86_64 N/A N/A emulator ✔ N/A N/A N/A 

qemu-system-armel N/A N/A emulator ✔ N/A N/A N/A 

qemu-system-aarch64 N/A N/A emulator ✔ N/A N/A N/A 

Unicorn N/A N/A emulator ✔ N/A N/A N/A 

AVD 32bit (Nexus 5) 7.1.1 N/A emulator ✔ ✔ ✔ ✔ 

AVD 64bit (Nexus 5) 7.1.1 N/A emulator ✔ ✔ ✔ ✔ 
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Table 5 – Overall comparison summary of isEmu and other techniques. 

Technique Average speed (ms) Code compatibility Detection accuracy 

isEmu 0.064 176/176 (100.0%) 176/176 (100%) 
H1 16.26 162/169 (95.8%) 85/169 (50.2%) 
H2 26.07 169/169 (100%) 146/169 (86.3%) 
H3 8.38 169/169 (100%) 132/169 (78.1%) 
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xisting methods based on API/Property/Filesystem artifacts 
hows unacceptable false positives. 

Other than accuracy, we also measured code execution 

peed for each evaluation cases. The average detection speed 

f isEmu is 0.064 ms . On the other hand, H1 , H2 , H3
hows average detection speed of 16.26 , 26.07 , and 8.38 ,
espectively. 

Heuristics for detecting Android emulators such as H1 ,
2 , and H3 could be utilized more efficiently by massively 
ombining similar artifacts and using a statistical approach.
ndeed, Morpheus suggests that there are more or less 10,000 
imilar artifacts for Android emulator detection. While such 

n approach is another insightful way for anti-emulation, a 
arge aggregation of artifacts could be time-consuming and 

an be relatively unreliable in other aspects such as compat- 
bility, power consumption. In addition, isEmu do not require 
ny Android permissions while other heuristics require three 
ermissions ( READ_PHONE_STATE, ACCESS_NETWORK, 
NTERNET ). Table 5 summarizes overall evaluation result of 
sEmu compared to other heuristic methods. 

. Discussion 

.1. Other methods for dynamic analysis 

n this paper, we made discussion based on assumption that 
ttackers are equipped with emulators to analyze commer- 
ial software. However, there are other methods for analyz- 
ng an unknown binary. For example, DroidScope ( Yan and 

in ), TaintDroid ( Enck et al., 2014 ), DroidBox ( Lantz et al., 2012 ),
nd ANANAS ( Eder et al., 2013 ) are Android analysis frame- 
ork based on Dalvik VM manipulation rather than emula- 

ion. Analysis framework based on Dalvik VM manipulation 

argets Java code for their analysis and do not handle JNI 
odes. To trace the Java codes, such frameworks typically in- 
erts hooks in Java bytecode level. For example, TaintDroid 

hanges the Dalvik VM to effectively trace the behavior of an 

nknown Android application. Other frameworks also change 
he kernel to trace the application. For example, Andrubis 

odifies the kernel to trace the unknown application. Such 

pproaches for analyzing the application is an effective way 
o gather execution traces regarding API calls, system calls.
etecting such analysis attempt could be done in many ways 

we do not discuss this issue in-depth in this paper), such as 
xamining the hash of Dalvik VM code and comparing it with 

 known value to figure out if the contents are changed from 

ublicly known version. 
enign users from the analysis engine, we plan to detect such pe- 
uliar cases in another way. 

e

a
e

.2. Cycle-level emulator 

lthough there are dynamic analysis frameworks based on 

mulators, not all the emulators are meant for security 
nalysis. For example, there are cycle-level simulators ( Franke,
008 ) which its primary goal is to debug the newly-developed 

oC hardware in a cycle-accurate manner. Using such simu- 
ator, hardware-specific behavior such as alignment-fault can 

e emulated exactly same as real hardware. However, using 
uch simulator for dynamic software analysis is inadequate 
ecause their execution speed is orders of magnitude slower 
han a real machine. For example, booting up a simplest em- 
edded Linux system with such simulator takes up almost a 
hole day. 

.3. Intel based android devices 

hile testing the deployability of our technique (unaligned 

ectorization based emulator detection), we have encoun- 
ered some peculiar cases where Android devices were built 
n top of Intel architecture. We found that Android de- 
ices such as ASUS Memo Pad 7 , Samsung Galaxy Tab 
 , Dell Venue 8 7840 , and Toshiba Excite Go is based
n Intel x86 architecture. Surprisingly, the native code of JNI 
hich is based on ARMv7 instructions successfully operates 
nder such configuration. Such devices use x86 based ARM 

mulation engine ( libhoudini , lib ) to run the ARM binary 
ith Intel chip. Therefore, reporting such devices as emulator 

s technically correct, but could be considered wrong in terms 
f providing service to benign users. We plan to use other mea- 
ures for distinguishing such peculiar cases. 

.4. DBI 

ynamic Binary Instrumentation (DBI) techniques such as 
ntel PIN tools ( pin; Nethercote and Seward, 2007 ) are also 
sed for analyzing and improving the runtime performance 
r enforcing a security policy. For supporting this, It allows 
 programmer to instrument code instructions at runtime.
ore specifically, it gains control over all control transfer 

nstructions and thus is able to intercept an instruction and 

reate a new instruction sequence for instrumentation. In this 
rocess, to improve efficiency, It creates the code cache to 
euse instrumented instruction sequences, which makes it 
nnecessary to generate the instruction sequences again. As 
EMUs TCG translates and generates a translated instruction 

equence in basic block granularity, DBI frameworks also gen- 
rate a code cache as a basic block unit. 

It seems like that our method that utilizes the unaligned 

ccess mechanism can be applied to DBI frameworks. How- 
ver, there is the difference between them. Unlike emulators 
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that translate an instruction set into host instruction set,
DBI frameworks directly copy the executable code and run
it natively with minimal change. In other words, an emu-
lator is able to execute a binary which has a different ISA
from the host machine. (e.g., running arm binary on x86
machine) However, DBI frameworks only execute a binary
which has the same ISA as the host machine. Therefore,
a translated misaligned vectorization instruction behaves
just like running on the real machine, not like an emulated
environment. However, instead of the way to detect DBI
using unaligned access mechanism, the other methods (e.g.,
race condition, TB cache thrashing) can be utilized for DBI
detection. It is achieved by the DBI code cache technique
that translates and generates the code cache in a basic block
unit. 

5.5. Anti-anti VM 

Regarding bypassing the detection, anti-anti-vm technique
(deactivating the detection mechanism) can be considered.
In general, anti-anti-vm tools additionally implements API
wrappers ( ant ), or modifies instruction semantics ( ant ) to
manipulate the information that the anti-vm detection tech-
nique expects. At this point, no publicly known anti-anti-vm
detection tools considered our anti-emulation technique.
However, in theory, any anti-emulation attempts can be pre-
vented the same as any obfuscated binary can be eventually
analyzed. The problem is the cost of this prevention/analysis.
In the case of isEmu , the emulator can prevent the de-
tection attempt if the alignment-fault feature is accurately
implemented in the emulator code translation process. Imple-
menting such redundant features regarding alignment-fault
requires re-defining the translation codes of various memory
access instructions. In the case of the context-switch based-
detection, the anti-anti-vm technique can be implemented by
making emulator update its program counter after executing
each instruction, which reforms QEMUs TCG framework and
deprives the benefit of basic-block-level translation. Overall,
the complete emulation of all hardware architectures may
lead to huge performance degradation and also requires
many engineering efforts. 

6. Related work 

To date, various anti-emulation techniques have been pro-
posed to detect the existence of dynamic analysis systems
in emulated environments ( Raffetseder et al., 2007; Yokoyama
et al., 2016; Thompson et al.; sym, 2006; Dinaburg et al., 2008;
Garfinkel et al., 2007; Jing et al., 2014; Lau and Svajcer, 2010;
Omella, 2006; Pék et al., 2011; Petsas et al., 2014; Vidas and
Christin, 2014; Wang et al., 2012 ). In general, anti-emulation
techniques exploit the discrepancies between real devices and
emulators. As Petsas et al. suggested, these techniques can be
categorized into three classes: static, dynamic, and intricacy-
based. In general, static detection techniques use filesystem
artifacts, hard-coded strings. Dynamic detection technique
gathers runtime information such as sensor data value. Fi-
nally, intricacy-based techniques exploits the architectural
discrepancy such as instruction behavior. isEmu can be cat-
egorized as intricacy-based technique. 

6.1. Morpheus 

Static detection approach fingerprints artifacts (e.g., APIs, files,
etc.) that are initialized with fixed value while system initial-
ization. For example, one approach can retrieve current build
information using android.os.Build class which has HARD-
WARE and PRODUCT field. If an application runs on a naive
Android emulator, this HARDWARE and PRODUCT field has
goldfish and google_sdk, respectively. These static-based tech-
niques can detect the emulator quickly, but they may be easily
bypassed or unreliable as our evaluation demonstrated. How-
ever, due to a large number of artifacts, such detection at-
tempts are still dominant as shown in Morpheus ( Jing et al.,
2014 ). Jing et al. proposed Morpheus framework that systemat-
ically and automatically collects visible artifacts and ranks de-
tection heuristics in order of effectiveness. More specifically,
it retrieves visible artifacts and their contents from real de-
vices and emulators. In the analysis phase, Morpheus classify
the artifacts and its contents into Type E and Type D heuris-
tics, which indicates emulators and real devices, respectively.
Overall, it uncovers more than 10,000 detection heuristics and
ranks top 10 detection heuristics in each File, API and Property
type. 

6.2. SandPrint 

SandPrint ( Yokoyama et al., 2016 ) discussed various arti-
facts for disclosing the application running environment.
Five static-detection primitives (installation, network, etc.)
are used for gathering various artifacts. Afterward, SandPrint
conducts a comprehensive analysis regarding the detection
feature selection based on clustering and learning methods.
While SandPrint focuses on revealing sandboxed running en-
vironment, we focus to detect emulators based on binary-
translation. Another difference between this work and ours
is that SandPrint is based on the Windows environment and
its main discussion is predicated under the assumption that
sandboxes are designed for malware. On the other hand,
isEmu assumes Android environment, and it is designed un-
der the assumption that malicious users cracking the intellec-
tual property of software via code-level emulator. 

6.3. Detecting System Emulator 

Detecting System Emulator ( Raffetseder et al., 2007 )
demonstrated that emulators are not necessarily stealth-
ier than virtual machines, as suggested by Bayer et al.
(2006) and Vasudevan and Yerraballi (2006) . They demon-
strated various kernel-level technique that measures the
relative timing performance of privileged instructions. In par-
ticular, the paper shows that in a real machine environment,
the CR3 register access time is similar to the access times
of other registers; however, in the QEMU environment, the
CR3 access time is orders of magnitude slower than that of
the other registers. On the other hand, the cache invalidation
speed in a real machine environment is orders of magnitude
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lower than that of the emulator. The paper additionally dis- 
ussed other discrepancies of CPU behavior regarding instruc- 
ion bugs, model specific registers, and alignment checking 
n x86. While the previous discussion regarding alignment 
heck based detection requires kernel modification thus unfit 
or commercially deployed application, unaligned vector- 
zation based detection in this is paper is solely based on 

ser-privileged instructions without any kernel dependency 
herefore suited for commercial application deployment. 

.4. Virtualization detection: new strategies and their 
ffectiveness 

hompson et al. suggested the Counter-Based Timing mech- 
nism to distinguish QEMU. This method demonstrated 

hat QEMU shows abnormally faster timing performance of 
he CPUID instruction compared to nop . Their experiment 
howed that the timing performance of the CPUID instruction 

s approximately 10 times slower than nop in the QEMU envi- 
onment; however, the ratio of CPUID to nop reached 200 from 

 native environment. This detection technique can be rather 
rivially mitigated by slowing down the execution speed of the 
PUID instruction by using QEMU thus inappropriate for com- 
ercially used software. 

.5. Attacks on more virtual machine emulators 

ymantec ( sym ) published a paper ( sym, 2006 ) that broadly 
overs the execution environment of fingerprinting tech- 
iques. The paper surveys several virtual machines including 
MWare ( vmw, 2006 ), Xen ( xen ), Parallels ( par ), VirtualBox ( vir ),
ochs ( boc ), and QEMU ( Bellard., 2005 ). This paper mainly fo-
used on the behavioral difference caused by implementation 

ugs in specific instructions. Their work indicates that there 
re a number of discrepancies in virtualized and emulated en- 
ironments running on real hardware. However, emulator de- 
ection based on such discrepancies are less accurate to be 
sed for commercial products. 

.6. Compatibility is not transparency: VMM Detection 

yths and Realities 

ther than the timing attack, various techniques have 
een proposed to distinguish the running environment for 
irtual and native platforms. VMM Detection Myths and Re- 
lities ( Garfinkel et al., 2007 ) demonstrated logical, resource 
nd timing discrepancies to reveal the virtual machine en- 
ironment. The logical and resource discrepancies exploit 
he difference between a hardware interface and shared 

hysical resources. The timing discrepancy measures the 
iming difference of instructions between the virtualized and 

ative environments. The indicators for timing discrepancy 
ncluded increased clock cycles by using device virtualization,
dditional page faults induced by memory virtualization, and 

rivileged instructions overhead by using CPU virtualization. 

.7. Defeating the transparency features of dynamic 
inary instrumentation 

reviously, there are some researches for DBI detection ( Li and 

i, 2014 ). DBI frameworks such as Dynamorio should provide a 
ransparent environment for a binary as they do not translate 
he entire set of instruction (mostly branches). However, since 
he DBI framework shares the virtual address space with the 
nstrumented binary. Therefore, there can be discrepancies 
etween a native execution and instrumented one. For exam- 
le, DBI frameworks can change the program resources re- 
arding signal handlers, memory, file descriptors, and loaded 

ibraries, etc. Such change can be heuristically detected in 

any ways. Identifying such instrumentation is conceptually 
imilar to anti-emulation, however, in this paper, we mainly 
ocus on full ARM system emulation for mobile applications. 

.8. Ether vs nEther 

ther ( Dinaburg et al., 2008 ) demonstrated the mitigation of a 
iming attack by relying on the local system timer. The mitiga- 
ion was based on a method that feeds the malware with the 
djusted time information. When a request for system time 
ccurred, Ether adjusted the time information to exclude the 
mount of time spent, whereas the virtualization/emulation 

elated components such as the exception handler routine.
ther also mentioned that their mitigation approach fails if 
he malware succeeds in retrieving time information from the 
ystem external clock such as the network time. However, af- 
er Ether was published, nEther ( Pék et al., 2011 ) showed that
he timing attack that was supposedly prevented by Ether can 

till be disclosed by measuring other timing sources such as 
PU RPM, and DMA. 

. Conclusion 

n this paper, we focus on finding an anti-emulation tech- 
ique for protecting the intellectual property of corporate 
oftware products in large-scale deployment. In particular,
e mainly discussed three detection techniques leveraging 
rchitectural internals of hardware and emulator design (con- 
ext switch, translation cache, and misaligned vectorization).
he presented techniques outperformed previously known 

ethods in many terms. We have conducted various experi- 
ents regarding the proposed anti-emulation techniques to 

nd a method suited for our purpose. In the end, we conclude 
hat misaligned vectorization based detection is a promising 
nti-emulation technique suited for protecting commercial 
oftware and developed isEmu . To verify the practicality and 

eployability of our technology, we tested isEmu and three ex- 
sting heuristic detection methods against 176 various models 
f mobile devices and several emulators. isEmu is a universal 
ndroid emulator detection app that works without any An- 
roid permissions. The evaluation result so far suggests that 
isaligned vectorization based anti-emulation guarantees 

he correctness (peculiarities are discussed in Section 5 ) with 

etter performance. We are currently porting this technique 
or Samsung’s next-generation mobile security feature. 
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// gcc −o s e l f s e l f . c −m32

#include <s t d i o . h>

#include <sys /mman. h>

820

unsigned long long rd t s c ( ) {
asm( ” rd t s c ” ) ;

}

void modify1 ( ) {825

asm( ”movl $0xc031c031 , 0x66666000” ) ;
Human Resource Development Project for Brain Scouting,
IITP (Institute for information & communications Technology
Promotion), ICT & Future Planning, and Office of Naval Re-
search ( NRF-2017R1A2B3006360 , IITP-2017-0-01889 , IITP-2017-
0-01853 , N00014-18-1-2661 ). 

Appendix A. Proof-of-concept source codes 
// gcc −o race race . c − l p t h r ead −m32770

#include <s t d i o . h>

#include <pthread . h>

#define NOP4 ”nop\n””nop\n””nop\n””nop\n”

#define NOP16 NOP4 NOP4 NOP4 NOP4775

#define NOP64 NOP16 NOP16 NOP16 NOP16

#define NOP256 NOP64 NOP64 NOP64 NOP64

#define NOP1024 NOP256 NOP256 NOP256 NOP256

unsigned int l o ck = 0 ;780

void∗ race (void∗ p) {
while (1 ) {

asm(

”mov %0, %%eax\n”

” inc %%eax\n”785

”mov %%eax , %1\n”

: ”=r ” ( l ock ) : ” r ” ( l ock )

) ;

asm(

NOP1024790

) ;

asm(

”mov %0, %%eax\n”

”dec %%eax\n”

”mov %%eax , %1\n”795

: ”=r ” ( l ock ) : ” r ” ( l ock )

) ;

}
return 0 ;

}800

int main ( ) {
FILE ∗out ;

int i = 0 ;

pthread t p ;805

pthr ead c r ea t e (&p , 0 , race , 0) ;

p th r ead c r ea t e (&p , 0 , race , 0) ;

while ( l ock < 2 ) {
p r i n t f ( ”This i s QEMU\ r ” ) ;

}810

p r i n t f ( ”This i s not QEMU!\n” ) ;

return 0 ;

}
815

Listing 1 – Context switch based detection. 

asm( ”movl $0xc3c3c3c3 , 0x66666004” ) ;

}

void modify2 ( ) {830

asm( ”movl $0x90909090 , 0x66666000” ) ;

asm( ”movl $0x909090c3 , 0x66666004” ) ;

}

void s e l f ( ) {835

i f ( ( ∗ ( ( char∗) 0x66666000 ) ) == 0x90 ) {
modify1 ( ) ;

}
else {

modify2 ( ) ;840

}
asm( ”push %eax” ) ;

( ( void (∗ ) (void ) ) 0x66666000 ) ( ) ;

asm( ”pop %eax” ) ;

}845

void dummy( ) {
int a , b ;

for ( a=0; a<100; a++){
b += a ;850

}
}

void f i x ( ) {
asm( ”push %eax” ) ;855

dummy( ) ;

asm( ”pop %eax” ) ;

}

unsigned int anchor=0;860

void run ( const char∗ inst name , void (∗ f ) ( ) , int l ) {
register int i ;

unsigned long long t2 , t1 ;

i = l ;

t1 = rd t s c ( ) ;865

while (1 ) {
f ( ) ;

i f ( i==0) break ;

i−−;

}870

t2 = rd t s c ( ) ;

p r i n t f ( ”%s : %l l u \n” , inst name , t2−t1 ) ;

}

int main ( int argc , char∗ argv [ ] ) {875

void∗ p = mmap( ( void ∗) 0x66666000 , 0x1000 ,

PROT WRITE|PROT READ|PROT EXEC, MAPANONYMOUS|
MAP SHARED, −1, 0) ;

p r i n t f ( ” a l l o c a t e d at : %p\n” , p) ;

run ( ” s e l f ” , s e l f , 1000) ;880

run ( ” f i x ” , f i x , 1000) ;

run ( ” f i x ” , f i x , 1000) ;

run ( ” s e l f ” , s e l f , 1000) ;

return 0 ;

}885

Listing 2 – TB cache based detectirrron. 

https://doi.org/10.13039/501100010418
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#include <s t d i o . h>

#include <s t d l i b . h>

#include <s t r i n g . h>890

#include <s i g n a l . h>

#include <uni s td . h>

#include <ucontext . h>

void AlignTrapHandler ( int signum , s i g i n f o t ∗ i n fo , struct895

ucontext ∗ sc ) {
p r i n t f ( ”hardware !\n” ) ;

e x i t (0 ) ;

}
900

int main (void ) {

// se tup a l i g n t rap hand ler

struct s i g a c t i o n act ;

memset(&act , 0 , s izeof ( act ) ) ;905

act . s a s i g a c t i o n = AlignTrapHandler ;

act . s a f l a g s = SA SIGINFO ;

s i g a c t i o n (SIGSEGV, &act , NULL) ;

// t r i g g e r una l i gned v e c t o r i z a t i o n910

asm ( ”mov %rsp , %rax\n”

” inc %rax\n”

”movntps %xmm0,(% rax ) ” ) ;

p r i n t f ( ” emulator !\n” ) ;915

return 0 ;

}

Listing 3 – Unaligned access based detection. 
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