Check for
Updates

GENESIS: A Generalizable, Efficient, and Secure Intra-kernel
Privilege Separation

Seongman Lee!, Seoye Kim?, Chihyun Songl, Byeongsu Wool, Eunyeong Ahn', Junsu Lee!,
Yeongjin Jang?, Jinsoo Jang®, Hojoon Lee?, Brent Byunghoon Kang!*
1 KAIST ? Sungkyunkwan University > Chungnam National University * Samsung Research America

ABSTRACT

Maintaining the trustworthiness of OS kernels is imperative in
upholding any form of security objective within a system. How-
ever, most commodity kernel designs are monolithic and subject
to frequent changes that may contain or introduce new software
bugs. The uniform privilege and single address space of monolithic
kernels assist the adversary in turning any vulnerability into a
single point of failure. Hence, various isolation designs have been
proposed to enable privilege separation within the kernel. However,
many of these solutions are architecture-dependent because of their
reliance on specific features of their target architecture.

We present GENEsIS, a novel architecture-agnostic intra-kernel
privilege separation design. The main idea behind GENEsIS is to
construct a self-protected execution environment while leveraging
only de facto hardware security primitives in contemporary archi-
tectures. This design principle paves the way for a generalizable
intra-kernel solution that is applicable to other architectures with-
out significant redesign effort; specifically, our prototype leverages
a general hardware feature, such as supervisor-mode access preven-
tion (SMAP) on x86-64, over which we realize two essential tech-
niques for intra-kernel isolation: kernel deprivileging and secure
domain switching. While sustaining its generalizability, GENEsIS in-
troduces moderate performance overhead in standard benchmarks
and real-world applications, such as Nginx and Memcached.

CCS CONCEPTS

« Security and privacy — Operating systems security.

KEYWORDS

intra-kernel privilege separation, operating system

ACM Reference Format:

Seongman Lee, Seoye Kim, Chihyun Song, Byeongsu Woo, Eunyeong Ahn,
Junsu Lee, Yeongjin Jang, Jinsoo Jang, Hojoon Lee, Brent Byunghoon Kang.
2024. GENESIS: A Generalizable, Efficient, and Secure Intra-kernel Privilege
Separation. In Proceedings of The 39th ACM/SIGAPP Symposium on Applied
Computing (SAC "24). ACM, New York, NY, USA, 10 pages. https://doi.org/
10.1145/3605098.3635951

“Brent Byunghoon Kang and Hojoon Lee are corresponding authors

This work is licensed under a Creative Commons Attribution International 4.0 License.
SAC °24, April 8-12, 2024, Avila, Spain

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0243-3/24/04.

https://doi.org/10.1145/3605098.3635951

1366

1 INTRODUCTION

The security of operating system (OS) kernels is critical, as they
serve as a trusted computing base (TCB) of modern computer sys-
tems. As the OS kernels become sophisticated to support a rich
set of functionalities, the growing TCB makes them susceptible to
potential security vulnerabilities. Moreover, they follow the popular
monolithic design, which executes the core kernel and its modules
within a single address space at the same (highest) privilege level.
This exacerbates the problem because a single vulnerability in any
part of the kernel lets attackers compromise the entire system.

Recently, intra-kernel privilege separation [2-4, 6, 8] has emerged
as a new direction in kernel design research. This technique divides
a monolithic kernel into two separate domains, namely, the inner
and outer kernel. The inner kernel is the privileged one, while it de-
prives the outer kernel of the capability to control security-critical
system resources, such as memory management unit (MMU) and
page tables. This design makes the privileged execution of the outer
kernel to be completely mediated by the inner kernel. This creates
an asymmetric trust model purely in software. Although both op-
erate at the same highest hardware privilege level, the inner kernel
has full access permissions to the entire memory and system control
registers, whereas the outer kernel does not.

This new approach promises several benefits, such as TCB mini-
mization, reduced overhead, and self-protection without requiring
hardware extensions. First, it will not require a huge TCB for the
general OS kernel by putting most parts of the kernel at the outer
kernel. The inner kernel includes only the security-critical compo-
nent, i.e, memory management and some privileged instructions
handling, as the TCB. The rest of the kernel (outer kernel) is outside
the TCB. Second, domain-switching is purely software, faster than
hypervisor-enforced solutions. Third, it achieves self-protection
without the involvement of other privileged layers.

Although the intra-kernel separation approach does not require
additional privileged layers, such as virtualization, their implemen-
tations are bound to specific hardware [2-4, 6]. This makes designs
hard to be transferrable to different architectures, which is im-
portant in this era where we use many different architectures to
compose a system framework. Specifically, all prior works rely on
specific hardware features that are exclusive to their target architec-
tures; hence, a design employed in one architecture is unlikely to be
applicable to other architectures without significant re-engineering.

In response, we present GENESIS, a generalizable intra-kernel
privilege separation design. To this end, GENEsIs leverages the Priv-
ileged Access Restriction (PAR) primitive—a (conceptually) common
kernel security feature that is available in most commodity proces-
sors. This primitive is devised to prevent the kernel from accessing
user memory inadvertently. For instance, Supervisor-Mode Access

https://doi.org/10.1145/3605098.3635951
https://doi.org/10.1145/3605098.3635951
https://doi.org/10.1145/3605098.3635951
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3605098.3635951&domain=pdf&date_stamp=2024-05-21

SAC 24, April 8-12, 2024, Avila, Spain

Lee et al.

Outer kernel Outer kernel Outer hypervisor
Tisz wxN [1]] [watenpoint ENABLED
RX RW R RX R RX RW R RX RW
PAGE PAGE -TTT - - - == -I WRITE-PROTECT
‘ CODE | DATA | |TABLE| | CODE | DATA H CODE | DATA | |TABLE ” UNMAPPED | | CODE | DATA (only readable)
Inner kernel Inner kernel Inner hypervisor
RW RW RWX RW “RX T T RW T TRW. T RX RW RW RWX RW
PAGE PAGE PAGE 'I PAGE
“ CODE | DATA | |TABLE| | CODE | DATA H “ CODE | DATA | |TABLE | CODE | DATA TABLE : “ CODE | DATA | |TABLE || CODE | DATA H
(a) HyperSafe and PerspicuOS b) SKEE (ARM32) and Hilps (c) SelMon

PAGE PAGE
[CODE DATA outer kernel m inner kernel TABLE page tables TABLE

shadow mapping
for page tables

WRITE-
PROTECT

protected by
watchpoint

Figure 1: Comparison of prior intra-kernel privilege separation techniques

Prevention (SMAP) on x86 is the most representative one. A con-
ceptually identical feature is available on other architectures, e.g.,
PAN on ARM and SUM on RISC-V. We repurpose this feature to
deprive the outer kernel of its access capability to user memory.
We then extend this restriction to grant the inner kernel exclusive
control over security-sensitive system resources.

In this way, we realize two key techniques: kernel deprivileging
and secure domain-switching, in general, both of which are essential
to bringing intra-kernel privilege separation inside the kernel. The
first one allows the inner kernel to have full access permissions
to MMU-related system resources, whereas the deprivileged outer
kernel is isolated from the inner kernel. The second one ensures
a secure, atomic, and deterministic execution flow at the time of
domain-switching, even when the malicious outer kernel is running
at the highest hardware privilege level as in the inner kernel.

In summary, we make the following contributions:

e We propose GENESIs, a novel architecture-agnostic intra-
kernel isolation design without requiring any higher privi-
leged layer for the inner kernel.

e We implement a prototype of GENESIs on x86-64 and RISC-V
Linux and conceptually address how this design could be
transferrable in other architectures. Notably, we elaborate on
the technical challenges and possible solutions in realizing
our technique.

o We perform a detailed evaluation of GENEsIS on micro- and
macro-benchmarks, including LMBench and SPEC CPU2017,
and real-world applications.

2 RELATED WORK & BACKGROUND

2.1 Intra-kernel Privilege Separation

PerspicuOS [4] (i.e., nested kernel) leverages the write-protect (WP)
bit of the CRO® control register. The WP bit determines whether the
kernel conforms to the R/W bit in a page table entry; if WP is dis-
abled, the kernel has unrestricted write access to all memory, even
for read-only memory. As seen in Figure 1a, PerspicuOS configures
page tables as read-only and uses the WP bit to deprive the outer
kernel of page table modifications. In this manner, PerspicuOS can
de-privilege the outer kernel and effectively isolate it from the inner
kernel. On a lighter note, the same technique could be applied to
other system software such as hypervisors, as in HyperSafe [8].
SKEE [2] first presents the two variants of intra-kernel isolation
for ARM32 and ARM64 processors. Because no hardware features

1367

are functionally equivalent to WP, SKEE proposes an alternative de-
sign with different hardware features. SKEE for ARM32 re-purposes
TTBR1 (translation table base register) and TTBCR.N (translation table
base control register), which dedicates the mapping of an isolated
environment to the inner kernel and determines which TTBR® and
TTBR1 are used for address translation, respectively. Taken together,
as depicted in Figure 1b, SKEE on ARM32 guarantees that the inner
kernel memory region is activated when executing the inner kernel.
In addition, to grant the inner kernel exclusive control over page
tables, it marks page tables as read-only and then creates a shadow
mapping of page tables accessible only within the inner kernel.

However, SKEE on ARM64 cannot use the same technique be-
cause TTBCR.N in ARM32 was deprecated in ARM64. Therefore,
SKEE creates a top-level page table dedicated to the inner kernel in
a predefined location (0x0). Then, it guarantees that the entry gate
only loads the predefined page table located at 0x0 into TTBR1; this is
done by loading the special zero register (xzr) into TTBR1 at the en-
try gate. However, SKEE on ARM64 relies on virtualization support
(i.e., secondary paging) since it is common for mobile and embedded
devices to reserve the physical address 0x0 architecturally.

In contrast, Hilps [3] realizes authentic intra-kernel privilege
separation on ARM64. To be exact, Hilps re-purposes TxSZ to dy-
namically adjust the range of virtual address space of targeted
system software. Similar to SKEE, it activates and deactivates the
inner kernel region in a strictly controlled manner. In addition,
since TxSZ is a system-wide hardware feature on ARM64 that is
available to all privilege levels, Hilps’s design is applicable to any
other system software, including hypervisor and secure OS.

As an additional example on ARM64, SelMon [6] leverages hard-
ware debugging features, watchpoint, and WXN (Write eXecute Never)
to retrofit intra-level isolation into the hypervisor layer. Specifically,
SelMon configures the permission of the inner hypervisor’s code
to RwX. Next, it activates watchpoint monitoring and WXN during
the outer hypervisor execution, preventing any malicious modifi-
cation and execution of the inner hypervisor’s code, respectively,
as depicted in Figure 1c. The watchpoint and WXN are disabled only
during the inner hypervisor execution. Although SelMon achieves
intra-level isolation by leveraging the general hardware debugging
feature, applying the same technique to other architectures remains
challenging. For example, even though x86 processors are equipped
with a group of debug registers (i.e., DRO-DR3), their functionalities
are geared toward instruction breakpoint, not memory watchpoint;

GENESIS: A Generalizable, Efficient, and Secure Intra-kernel Privilege Separation

the maximum range of memory to be monitored per debug register
is limited to 8 bytes.

Motivation. Despite the significant progress in this area, we ob-
serve that the existing designs often rely on peculiar architecture-
specific features, which render generalization to other architecture
infeasible without significant design changes. For example, the use
of dual page table architecture [2] or dynamic virtual address range
adjustment through TxSZ [3] is unique to ARM. The instant toggling
of paging-based memory protection employed by [4] is an x86 perk
that is convenient but not generalizable.

These observations motivated us to investigate other hardware
features that can be used to design an architecture-agnostic intra-
kernel isolation framework. We found a standard hardware security
feature that is virtually ubiquitous and functionally equivalent in
most modern processors: SMAP in x86, Privileged Access Never
(PAN) in ARM, Permit Supervisor User Memory Access (SUM) in
RISC-V. GENEsIs demonstrates the feasibility of intra-kernel protec-
tion, the design of which is applicable across different architectures.

2.2 SMAP and SMEP

In response to ret2usr attacks [7], Intel released a new ISA extension,
SMAP, to prevent unintended kernel access to the user memory.
First, it extends the CR4 control register with a new 21st bit, called
the SMAP-bit, to indicate the activation of SMAP. Of course, the
kernel should be allowed to legitimately access user memory to
serve a user’s request (e.g., system calls). However, setting a control
register is expensive, as reported in Table 1. Therefore, along with
the SMAP-bit of CR4, Intel extends the ISA with two fast instructions,
stac/clac, to temporarily disable SMAP and allow the kernel to
access the user memory. In more detail, stac and clac set and clear
the AC flag in eflags to disable and re-enable the SMAP protection,
respectively.1 Also, note that in addition to stac and clac, the x86-
64 ISA has the popf and iret instructions, which can also modify
the AC bit in eflags (explained in great detail in §5).

SMAP prevents the supervisor mode from accessing but not
executing user pages. Therefore, attackers can conduct a variant
of the ret2usr attack that hijacks the kernel control flow into the
user’s code. Intel introduced Supervisor-Mode Execution Prevent
(SMEP) to solve this problem. As in SMAP, the SMEP extension
added a new 20th bit called the SMEP-bit into CR4. However, unlike
SMAP, the SMEP extension introduces no new instruction that
temporarily disables its protection because it stands to reason that
under no circumstances does user code run in kernel mode.

3 THREAT MODEL AND ASSUMPTIONS

GENESIs aims to provide a secure execution environment for the
inner kernel, which is isolated from the compromised (outer) kernel.
In detail, we assume that the kernel contains one or more memory
vulnerabilities that can be exploited to grant the attacker arbitrary
read/write/execution primitives, thus allowing the attacker to ob-
tain full control over all software executing outside the inner kernel.
By leveraging such powerful primitives, the attacker will attempt
to corrupt MMU-related system resources such as page tables and

The AC flag is originally introduced to generate an alignment fault (i.e., SIGBUS in
Linux) in the event of misaligned access in the user mode. However, this flag is re-
purposed in kernel mode to control the SMAP state.

1368

SAC *24, April 8-12, 2024, Avila, Spain

system control registers and eventually breach memory isolation
enforced by GENEsIS. Moreover, the kernel-level attacker can col-
lude with a user-level process to launch more sophisticated attacks.
Our threat model is in line with previous related works [2-4, 6].

We assume that the inner kernel (TCB) is formally verifiable and
thus absent of all exploitable vulnerabilities. We further assume
that a secure boot mechanism is applied, thus guaranteeing that
the whole system is securely loaded at boot time. However, provid-
ing protection against physical, side-channel, and DMA attacks is
beyond the scope of this work.

4 GENESIS DESIGN

We introduce the design of GENESIS to realize generalizable intra-
kernel privilege separation. With this in mind, we explain the high-
level design of GENEsIs, which is applied to various architectures
in the same manner. Of course, a specific implementation would
be different across different architectures. Hence, we faced several
technical challenges derived from our design choices and peculiar
architectural features. We will describe how to address them in §5.

4.1 Design Objectives

The primary goal of GENESIS is to retrofit intra-kernel privilege
separation into a monolithic kernel. To achieve this, GENESIS must
realize two key and complementary techniques: kernel deprivileging
and secure domain switching.

Kernel deprivileging deprives the potentially compromised ker-
nel of the capability to manage MMU-related system resources
directly. Specifically, GENEsIs breaks a monolithic kernel into the
(privileged) inner and (non-privileged) outer kernels. The inner
kernel manages the MMU system resources, that is, MMU control
registers and page tables, and enforces isolation between the outer
and inner kernels. In contrast, the outer kernel is relegated and
thus hands over the control of the MMU configuration registers and
page tables to the inner kernel (Hereafter, we use the term security-
critical operations to refer to a set of instructions that control the
above system resources). Similar to the trap-and-emulate approach,
the inner kernel intercepts and verifies a security-critical operation
from the outer kernel. If verified, the inner kernel emulates it on
behalf of the outer kernel.

Secure domain switching ensures that the domain switching
between the outer and inner kernels is done only through a well-
controlled interface. The inner kernel must completely mediate all
security-critical operations. To this end, GENESIS’s entry and exit
gates are carefully designed to thwart any attempt to maliciously
exploit them for escaping the memory access control enforcement
and surreptitiously performing security-critical operations.

4.2 Kernel Deprivileging

Figure 2 shows the design overview of GENEsIs, mainly focusing on
the kernel deprivileging. To endow the inner kernel with exclusive
rights to MMU-related system resources, GENEsIS first configures
the mapping of page tables as read-only (as shown on the left side
of Figure 2a). This configuration prohibits the outer kernel from
modifying page tables directly, thus preserving all mappings of
kernel address space, i.e., the correctness of page permissions in
page table entries (PTE), throughout the system lifetime. Otherwise,

SAC 24, April 8-12, 2024, Avila, Spain

Kernel Virtual Address Space

Lee et al.

Outer Kernel :

~
Inner Kernel

oapE GATE:WAY P COTDil Virtual Memory Physical Memory
v - age Table
S« / Management SUK
| set_pgtbl I —
! ™ : 7494 X P N
B A A . dafa PAGETABLES || .
i "' AW -' ! CODE ! \S‘%O\\
v .E Pri J ! only readable ‘%0»%0\\
T [*1 Instroetions | NRONAN
isih ki 3 § PAG&BLE M & :- + |
L SHADOW appe
L o) PAGEGABLES || as Usex H PAGE TABLES |
User Supervisor Page Tables SHADO! Shadow Sensitive | | M— \
Page Page (read-only) { PAGETABLE | Page Tables ----- > Ops. workflow roadablo / writable

(a) GENESIS architecture

(b) Shadow mapping for page tables

Figure 2: The design overview of GENESIs

an adversary would corrupt the access permissions in PTEs and
escape the access control enforced by GENESIS.

Although such write protection ensures the integrity of page
tables against unauthorized modifications from the outer kernel, it
also blocks all benign page table updates from the inner kernel. To
solve this problem and empower the inner kernel with complete
control over the page tables, we leverage page aliasing and the
Privileged Access Restriction (PAR) primitive such as SMAP in x86
and SUM in RISC-V. Specifically, GENEsIs leverages the page aliasing
technique to create the shadow mapping of page tables such that
additional virtual pages are mapped onto the same physical pages
for page tables, as illustrated in Figure 2b. (We refer to such aliased
pages as shadow page tables.) Then, GENEsIs marks shadow page
tables to be user pages.

Along with the shadow page tables, PAR enables the inner kernel
to access the page tables legitimately. It was initially designed to
prevent unintended kernel access to the data located within the
user address space. For example, when handling system calls, the
Linux kernel unavoidably receives potentially malicious input (e.g.,
a user-controllable pointer) from user processes. Hence, it imposes a
self-restriction and accesses the user memory only through specific
kernel APIs such as copy_from/to_user. The PAR protection is
temporarily turned off during their execution, enabling the kernel
to access the user memory legitimately.

However, we use the PAR protection for a purpose other than
what it was intended for; we re-purpose PAR to impose a strict
restriction to hitherto unfettered access to its kernel address space.
More specifically, GENEsIS configures security-sensitive data be-
longing to the inner kernel, e.g., the aforementioned shadow page
tables, as user-mode pages. Then, it ensures that PAR protection
is always enabled during the outer kernel execution and only tem-
porarily disabled during the inner kernel execution, which is en-
forced by our secure domain-switching mechanism (refer to §4.3).
Consequently, the outer kernel is deprivileged and delegates the
authority of page table manipulations to the inner kernel.

In addition to the write-protection of page tables, GENESIs guar-
antees that the inner kernel completely mediates all updates of
security-sensitive system control registers, i.e., CR®, CR3, CR4, IDTR,
and MSRs in x86-64; and SATP, STVEC, SSTATUS in RISC-V;2 otherwise,
these could potentially lead to full compromise of the system.
2IDTR is an acronym for “Interrupt Descriptor Table Register.” SATP and STEVC are

acronyms for “Supervisor Address Translation and Protection” and “Supervisor Trap
Vector Base Addresss Register,” respectively.

1369

More specifically, the inner kernel mediates all updates of the
page-table base register (CR3 and SATP), loading only the verified
top-level page tables. In addition, GENEsIS ensures the integrity of
the CRO and CR4 control registers; otherwise, the outer kernel clears
CRO.PG (paging bit) or CR.WP to disable MMU-based memory protec-
tion or undermine SMAP and SMEP in CR4 to subvert the security
guarantees of GENEsIs. For the same reason, in RISC-V, GENEsIS
protects the MODE field in STAP[63:60], preserving the paging
mechanism, and also guarantees the integrity of SSTATUS.SUM, con-
stantly enforcing SUM-based isolation. Finally, in the case of IDTR
and STVEG, it is essential to guarantee that the inner kernel seizes
control of the entry point of the interrupt handlers to ensure the
atomicity of its execution. (The reason for enforcing the atomic
execution is explained in the following subsection.)

To this end, GENEsIs must ensure that all security-critical in-
structions are removed from the outer kernel code and forces the
outer kernel to request the inner kernel to perform security-critical
operations on its behalf. Specifically, we mainly leverage a compiler
to identify and instrument those security-critical operations auto-
matically, minimizing manual instrumentation. However, note that
unintended (misaligned) privileged instructions can be introduced
and exploitable, depending on the architecture, particularly having
a variable-length ISA such as x86. We assume that such unintended
instructions are identified and eliminated, which can be achieved
through orthogonal techniques such as binary rewriting [9].

4.3 Secure Domain Switching

To securely transfer control from and to the inner kernel, our GEN-
EsIs design includes well-controlled entry and exit gates, which are
carefully designed to prevent any attempt to maliciously exploit
these gates to regain control flow while PAR is turned off. First, this
domain-switching mechanism guarantees that both disabling the
PAR protection and executing the inner kernel are performed only
through the entry gate. Second, it ensures that once the control
flow enters the inner kernel, the exit is possible only through the
designated exit points, i.e., the exit and trap gates, re-enabling PAR
protection.

Although the outer kernel cannot perform security-critical op-
erations directly, it operates in the privileged mode (i.e., ring 0 in
x86-64 and S-mode in RISC-V) as normal. Because the inner and
outer kernels run at the same hardware privilege level, there is no
special control transfer instruction, such as sysenter and vmcall

GENESIS: A Generalizable, Efficient, and Secure Intra-kernel Privilege Separation

1 exit:

2 movq (%rsp), %rsp // restore stack pointer
3 popfq // restore eflags

4 clac // re-enable SMAP

5 ret // return to outer kernel
6

7 entry:

8 pushfq // save eflags

9 cli // disable interrupts

10 stac // disable SMAP

11 movq %rsp, %r9 // save orig stack pointer

movq PER_CPU_VAR(inner_stack), %rsp // switch to inner stack
pushqg %r9
jmpq .Linner_handler

// save orig stack pointer
// jump to inner kernel

SAC *24, April 8-12, 2024, Avila, Spain

registers nor memory, which may be controlled by an adversary.
Therefore, it is not necessary to check whether their operands are
correctly configured, which makes the length of the instruction
sequence of the gates relatively shorter (more efficient) than that
of prior works. An example is the assembly code snippet of the exit
gate in PerspicuOS [4], which enables WP before returning to the
outer kernel:

// Get current CRO value
// Set WP in CR@ copy

// Write back to CR@

// Ensure WP set

// If not, loop back

mov %cro, %rax

1: or CRO_WP, %rax
mov %rax, %cro
test CRO_WP, %eax

1
2
3
4
5 je 1b

Figure 3: The entry and exit gates in x86-64

in x86-64, that escalates its privilege and transfers the execution to
a predefined entry point. Therefore, secure domain transitions can
only be achieved by executing a consecutive series of instructions in
an atomic, deterministic, and exclusive manner, even in the presence
of a malicious and compromised outer kernel.

To explain how GENESsIs can achieve the above properties, we
present the x86-64 gate implementation. The technical explanation
of RISC-V gates, which is conceptually equivalent to the x86-64
counterpart, can be found in §5.2. The assembly code of the entry
and exit gates is given in Figure 3. The entry gate disables interrupts,
turns off the SMAP protection, switches the original stack to the
inner stack, and finally enters the inner kernel. The procedure
of the exit gate is done in the reverse order of the entry gate. In
the following, we elaborate on how GENEsIs achieves the atomic,
deterministic, and exclusive nature of the entry and exit gates.

Atomic Execution. The entry gate executes the cli instruction
to disable interrupts (In. 9), guaranteeing atomic execution of the
instruction sequence of the entry gate. It also reserves the eflags
register (In. 8) to preserve and restore the current processor status
and a set of system flags, e.g., the interrupt flag (IF), because the
cli instruction clears the IF flag in eflags. This atomic execution
in the gateway is expanded into the inner kernel execution, thereby
preventing the outer kernel from diverting the control flow (e.g.,
using interrupts) while executing the inner kernel.

However, disabling interrupts using the cli instruction alone
does not offer sufficient protection. For instance, an adversary could
directly jump into the middle of an instruction sequence, especially
into the stac instruction, ignoring the initial steps, thereby dis-
abling the SMAP protection but not the interrupts; if so, as the
inner kernel execution is preemptable, the outer kernel can regain
the control flow while the SMAP protection is disabled. To over-
come this problem, GENEsIs ensures the integrity of the interrupt
descriptor table (IDT) and IDTR, considering them as part of the
TCB. Given that neither IDT nor IDTR is under the control of the
outer kernel, all entry points of interrupt handlers can be consid-
ered as additional exit gates (referred to as trap gates). Based on
this observation, we instrument these trap gates to compulsorily
re-enable the SMAP protection when an interrupt occurs during
the inner kernel execution.

Deterministic Execution. The entry and exit gates disable and
enable the SMAP protection through stac and clac in lines 10 and
4, respectively. In short, the stac and clac instructions are deter-
ministic per se, which means that their behavior depends on neither

1370

As seen in line 3, enabling WP can be performed only by moving the
general-purpose register, rax, into CRO; hence, the instruction that
configures CRO is not deterministic; an attacker can directly jump to
that instruction with an abnormal value in rax to circumvent WP.
To resolve this problem, PerspicuOS checks whether rax contains
a predefined value after setting up CRO (In.4). If not, it configures
CRO repeatedly until WP is enabled (In. 2-5).

Similarly, all prior intra-kernel solutions [2-4, 6] suffer from the
same limitation; they require additional checks on their control
registers to ensure that only the intended value is correctly loaded,
incurring non-negligible overheads. Moreover, the gate instruction
sequence length increases in proportion to the number of control
registers to be set, resulting in high domain-switching overhead. In
the worst example, SelMon [6] requires setting up four system reg-
isters as bootstrapping of the intra-level isolation in the hypervisor
mode. In summary, SMAP-related instructions, i.e., stac and clac,
are per se deterministic and ideal candidates for realizing a secure
domain-switching mechanism.

Exclusiveness guarantees that the entry gate is the only way to
enter the inner kernel. As the address space of the inner kernel is
exposed to the outer kernel, an attacker might jump directly to the
inner kernel’s code by surpassing the entry gate. Even so, such an
attempt to access the inner kernel’s data will trigger a fault because
the data are mapped as user pages and SMAP is activated. This
exclusiveness can be achieved by removing the stac instruction,
except the entry gate, from the outer kernel’s code.

4.4 Enabling Legitimate Access to User Memory

The outer kernel no longer has access to user memory; the only
entity that can legitimately access user memory is the inner kernel.
However, the outer kernel still has to access user memory, for
example, when handling system calls and delivering a signal to the
user process. In such cases, the outer kernel needs to request the
inner kernel to access the user memory on its behalf. As seen in
§4.2, the kernel carefully restricts its access to user-level memorys;
the kernel enforces that the user-level memory can be accessed
only through specific kernel APIs, such as copy_to/from_user.
We redirect all invocations to the inner kernel, thereby enabling
the inner kernel to interpose the user memory access.

The inner kernel must guarantee that no exception occurs during
the execution of the inner kernel. Otherwise, the corresponding
handler is invoked and then resumes execution back to where it
left off after the handler finishes. PAR protection is re-activated
in this process, and the resumed execution cannot be continued.

SAC 24, April 8-12, 2024, Avila, Spain

Nonetheless, accessing userspace memory could trigger a page fault,
for example, when accessing a swapped-out page or writing a page
marked as read-only to support copy-on-write (CoW).

To address this problem, GENEsIs ensures that a page fault is
handled before it is triggered and delegates this task to the outer
kernel to avoid bloating the TCB of the inner kernel. The outer ker-
nel performs a semantically equivalent page fault handling routine
before accessing user pages. In detail, it first checks the permission
of the pages to be accessed and predicts the occurrence of page
faults; for example, it identifies whether any of the pages to be
accessed is un-mapped or CoWed by checking the present-bit of
the corresponding PTE and mismatch between the permission of
the PTE and VMA struct, respectively. Then, if identified, the outer
kernel makes a page table update request to the inner kernel to
map the page to its proper physical memory. Finally, after the inner
kernel verifies and emulates that request, the outer kernel can ask
the inner kernel to access the user memory on its behalf. Omitting
these steps will eventually lead to a page fault in the inner kernel,
leading to a system crash.

4.5 Enforcing Isolation from User Processes

To leverage PAR for isolation within the kernel space, GENESIS
configures all pages that contain the inner kernel’s data as user-
accessible. However, this design alone provides no isolation be-
tween user processes and the inner kernel because modern OS
kernels adopt a shared virtual address space between user pro-
cesses and the kernel. To resolve this issue, GENESIS incorporates
kernel page table isolation (KPTT) [5]. At first glance, it seems that
GENESISs also can be transparently compatible with KPTI, but unfor-
tunately this is not the case. We defer to the end of the following
section (§5) the details of what impedes the direct adoption of KPTI
and how KPTI can be modified to be smoothly integrated into the
GENESIs design.

5 TECHNICAL CHALLENGES

Several technical challenges arise from integrating our design into
the complex x86-64 CISC architecture. In this section, we explain
how we addressed such technical challenges. Although we proto-
type GENESIS on x86-64 and RISC-V, here, we mainly focus our
discussion on GENESIS x86-64, for its implementation poses addi-
tional challenges in comparison to its RISC-V counterpart.

5.1 x86-Specific Implementation

Preventing direct execution of privileged instruction. The
execution of privileged instructions is only allowed within the
inner kernel. Because of the exclusive nature of the entry gate, any
attempt to modify a page table directly by transferring the control
flow into the middle of the inner kernel code will eventually fail
because the SMAP protection is enabled. However, when it comes to
executing privileged instructions, the entry gate cannot guarantee
the exclusive property. For example, let us suppose that a privileged
instruction that modifies the CR3 register (i.e, mov %rax, %cr3)and
the code page containing that instruction is mapped into the inner
kernel address space. Because the outer and inner kernels share the
same virtual address space, an attacker can execute the privileged
instruction directly without passing through the entry gate. Hence,

1371

Lee et al.

1 entry:

2 pushfq // Save eflags

3 cli // Disable interrupts

4 mov %cr4, %rax // Read CR4

5 and ~CR4_SMEP_SMAP, %eax // Clear SMEP and SMAP

6 mov %rax, %cré // Configure CR4

7 jmpg .Linner_handler // Enter the inner kernel
8

9 exit:

10 mov %cré4, %rax // Read CR4

11 1: or CR4_SMEP_SMAP, %eax // Set SMEP and SMAP bit
12 mov %rax, %cré // Configure CR4

13 and CR4_SMEP_SMAP, %eax

14 cmp CR4_SMEP_SMAP, %eax // Check CR4

15 jnz 1b // If invalid, loop back
16 popf // Restore eflags

17 clac // Enable SMAP

18 ret // Return to the outer kernel

Figure 4: The SMEP-based entry and exit gates

the direct execution of the CR3 modification instruction with the
maliciously crafted page table contained in the rax register results
in a complete compromise of the GENEsIs-enforced isolation. Note
that PerspicuOS and our hitherto design entail the same problem
because the deployed WP and SMAP prevent access to the inner
kernel data but not the inner kernel code execution.

Therefore, PerspicuOS proposes a method that temporarily maps
the code pages that maintain privileged instructions only during
the inner kernel execution but without details on the technical
aspects of this method. Moreover, realizing this temporary mapping
involves a technical challenge in that a page table can be shared
among all threads. Therefore, once the inner kernel naively marks
the code page as present, the outer kernel, running on other cores
using the same page table (e.g., running another thread in the same
process), can also see the same mapping as the inner kernel. Hence,
it can directly execute privileged instructions in the mapped code
page, opening a race window between mapping and unmapping
the code page.

To remedy this problem, we leverage SMEP to restrict the direct
execution of privileged instructions from the outer kernel. We take
advantage of the fact that disabling SMEP protection renders user-
mode code pages executable. Specifically, GENEsIs partitions the
code pages of the inner kernel into two different code pages, as
shown on the right side of Figure 2a: one for maintaining privileged
instructions, consisting of user-mode pages; and the other for the
rest of the inner kernel’s code, consisting of kernel-mode pages. In
addition, GENESIS exposes an additional type of entry/exit gates,
allowing the inner kernel to safely disable and re-enable SMEP pro-
tection. Figure 4 shows the assembly code of SMEP-based entry/exit
gates. These gates are implemented similar to the SMAP-based
gates, but with two differences: (1) SMEP-based gates configure not
only SMEP but also SMAP to access the inner kernel’s data; and
(2) configuring the CR4 register is done using a non-deterministic
instruction. Hence, to ensure the determinism of the execution se-
quence, we insert a validity check on the value of the CR4 register;
if not correctly configured, the CR4 register is continuously updated
until SMEP and SMAP are enabled. Note that the CR4 register exists
for each core; thus, once it is set up for the inner kernel on a cer-
tain core, only the inner kernel can execute privileged instructions,
whereas the outer kernel running on the other cores cannot.

GENESIS: A Generalizable, Efficient, and Secure Intra-kernel Privilege Separation

Safely executing POPF and IRET. In addition to stac and clac,
the AC bit in %eflags can be modified by popf and iret. GENEsIs
ensures that these instructions are not misused by the outer kernel
to circumvent SMAP.

In the case of popf instructions, GENESIs places a clac instruc-
tion immediately following every popf instruction. Consequently,
even if an attacker successfully modifies the AC bit, the clac in-
struction will enable SMAP protection. Furthermore, this scheme is
effective even if the attacker performs a more sophisticated attack
such that an interrupt may be generated immediately after execut-
ing the popf instruction but before the clac instruction, because
the interrupt eventually leads to transferring control to the inter-
rupt handler (trap gate) that is under the control of GENEs1s and
thus the SMAP protection will be reactivated.

When returning from the kernel to either the kernel or the user
spaces, iret is used to switch back to an interrupted execution
context, resuming the execution from the interrupted point and
restoring the privilege level and stack. Specifically, iret restores a
saved interrupt context, which is saved on the kernel stacks when
an interrupt is raised. An interrupt context consists of five registers,
including the return address (%rip), code segment selector (%cs),
status register (%eflags), stack pointer (%rsp), and stack segment
selector (%ss). The two least significant bits of the saved %cs indi-
cate the privilege level after the return. Because iret can modify
%eflags, GENEsIs must forbid it from being misused; otherwise,
the outer kernel could simply abuse it by supplying a maliciously
crafted %eflags input and thus take the control flow without SMAP
protection. To execute iret securely without inadvertently setting
the AC bit and then returning to the outer kernel, GENEsIs han-
dles iret differently depending on the location—i.e., user or kernel
space—where the execution flow will be transferred.

When returning from kernel to user, GENESIS treats iret as a
privileged instruction, and the inner kernel mediates all execution of
iret. Specifically, the inner kernel first copies the interrupt context
into a read-only page using a paging aliasing mechanism. This
read-only page is used as a stack for later use by iret, and this step
is essential for ensuring time-of-check to time-of-use (TOCTTOU)
consistency. Immediately before executing iret, it inspects the
value of %cs to ensure that the execution flow is transferred to the
user space. At this point, the inner kernel does not need to guarantee
that the AC bit of %eflags is not set, because the semantics of the
AC bit is completely changed in the user mode. Note that iret can
only be executed through the SMEP-based entry gate. However,
after iret finishes its execution, the control flow is immediately
returned to the user space and never reaches the corresponding exit
gate, implying that the user process is executed while the SMAP and
SMEP protections are disabled. Nonetheless, this has no detrimental
effect on the security guarantees of GENESIs; these protections
are specifically tailored to prevent the kernel from inadvertently
accessing or executing the user memory. Furthermore, when re-
entering kernel mode, the trap gates guarantee that SMEP and
SMAP are re-enabled.

When returning from kernel to kernel, we could not apply the
same approach as in the above case because it does not go through
the exit gate after executing the iret instruction, exiting from the
inner kernel without re-enabling SMEP and SMAP. Therefore, we

1372

SAC *24, April 8-12, 2024, Avila, Spain

Kernel Mode | User Mode
|
Inner Kernel |
|
CR3 [12:11] = Ob11
Outer Kernel
f | %
Trampoline | Trampoline
Kernel | User
PGD PGD
U
User Space CR3 [12:11] = 0b00 User Space
|
|
|
|

Figure 5: The overview of KPTI workflow

handle this differently: GENESIs emulates iret’s behavior by pro-
viding a semantically equivalent instruction sequence. Specifically,
the iret instruction restores %rip, %rsp, %rflags, %cs, and %ss.
The first three can be directly modified using the ret, mov, and popf
instructions, respectively, but the last two cannot be easily altered,;
instead, switching segment selector registers (e.g., %cs and %ss) is
only allowed through special instructions such as 1ret, 1call, and
iret. Fortunately, Linux kernels deploy only one segment per code
and stack segment. Hence, switching the %cs and %ss registers can
be avoided when returning from kernel to kernel. Consequently, we
need only restore %rsp, %eflags, and %rip. This can be achieved
through an instruction sequence as follows: (a) copy the return
address and %eflags content to the top of the stack to be switched,
(b) restore the stack pointer, and (c) execute the popf, clac, and
ret instructions in order. Here, it is unnecessary to check the AC
bit of %eflags because clac is executed immediately after popf.

Integrating with KPTI. GenEsts adopts KPTI to unmap the inner
kernel memory from the user space and completely isolate it from
the user processes. The KPTI workflow is presented in Figure 5. It
deploys two separate page tables: one for kernel use, with mappings
to both the kernel and user spaces; and the other for user use, with
mappings for user space (except for a very limited subset of kernel
pages, hereinafter referred to as trampoline pages).

Nevertheless, it cannot be applied directly and seamlessly to
GENEsIs. Specifically, KPTI maintains the trampoline code, which
is mapped to both kernel and user page tables and is in charge of
switching between the two page tables. Switching page tables is per-
formed by loading %cr3 with the corresponding page table. Because
this instruction (e.g., mov %rax, %cr3) is a privileged instruction,
it must be mediated by the inner kernel. However, as shown in
Figure 5, there is no inner kernel mapping after loading the user
space page table (e.g., switching from the kernel to user space) and
before loading the kernel space page table (e.g., switching from the
user to kernel space), making it challenging for the inner kernel to
mediate this privileged instruction.

To address this problem, we assemble all privileged instructions
in the trampoline code within a user page. We then provide tiny en-
try and exit gates that are used exclusively in the trampoline code to
execute privilege instructions directly (e.g., loading %cr3) without
the inner kernel intervention. This gate is similar to SMEP-based
gates, but switching to the dedicated stack can be avoided because

SAC 24, April 8-12, 2024, Avila, Spain

1 _entry:

2 csrr t6, CSR_STATUS // Read CSR

3 addi sp, sp, -16 // Adjust the stack pointer

4 sw t6, (sp) // Save CSR

5 sw ra, 8(sp) // Save the return address

6 csrc CSR_STATUS, SR_IE // Disable Interrupt

7 1i t6, SR_SUM // Load SUM immediate value (18th)
8 csrs CSR_STATUS, t6 // Set the SUM-bit (Disable SUM)

9 jalr _inner_handler // Jump to the inner kernel

11 _exit:
12 1i t6, SR_SUM // Load SUM Immediate value (18th)
13 csrc CSR_STATUS, t6 // Clear the SUM bit (Re-enable SUM)

14 1w t6, (sp) // Load the saved CSR

15 1w ra, 8(sp) // Restore the return address

16 addi sp, sp, 16 // Adjust the stack pointer

17 andi t6, t6, SR_IE // Bitwise-and to get the IE bit

18 beqz t6, _to_ret // Check if the IE was set

19 csrs CSR_STATUS, SR_IE // If set, restore the IE bit
20 _to_ret:

21 ret // Return to the outer kernel

Figure 6: SUM-based entry and exit gates

all instructions executed between the entry and exit gates are deter-
ministic; for example, the following assembly code demonstrates
page table switching from the user to kernel space:

/* User-mode Page */

mov %cr3, %rdi // Get current CR3 value
bts @x3f, %rdi // Set noflush bit
and Oxffffffffffffe7ff, %rdi // Switch to kernel PCID & page table

// Set CR3
// Jump to the exit gate

mov
jmp

%rdi, %cr3
.Ltrampoline_exit_gate

Specifically, this instruction sequence (1) retrieves the current %cr3
value, (2) sets the noflush bit, which otherwise flushes all TLB
entries upon the %cr3 update, (3) switches to the kernel’s PCID and
page table by clearing the 11th and 12th bits of %cr3, respectively (as
illustrated in Figure 5), (4) updates %cr3, and finally (5) jumps to the
corresponding exit gate. (Switching to the user PGD is performed
by setting the 11th and 12th bits of %cr3.) During execution, there
are no instructions where the execution depends on the memory
content or attacker-controlled input. Because the page that contains
this instruction sequence is mapped as a user page, any attempt to
directly jump in the middle of the instructions will trigger a fault,
crashing the system. Furthermore, when switching to the user PGD,
the page table switching routine ends with an exception return
instruction—either iret or sysret—responsible for switching from
the kernel to the user mode. This precludes collusive user processes
from being executed with the kernel PGD inadvertently.

5.2 Implementation on RISC-V

We implemented GENEsIs RISC-V to ascertain the generality of
GENESsIs design. With our design explained with the x86 version,
elaborating on the design of the RISC-V version would be rather re-
dundant. The implementations for the two architectures are largely
equivalent except for the handling of the peculiarity of the SUM
feature on RISC-V. Hence, here, we explain the adaptation of the
SUM feature into GENESIS.

SUM bears some similarities with SMAP in that it introduces the
SUM-bit in the current status register (csr). However, it does not
provide deterministic instructions to control the SUM bit, implying

1373

Lee et al.

Arch. Instructions Cycles
Write %cr3 176
Write %cr3 (w/o TLB flush) 161
Toggle SMAP (stac/clac) 25
Write to %cro for WP 174
x86-64 Write to %cr4 for SMAP 114
Write to %cr4 for SMEP 505
PerspicuOS’s entry/exit gates 388
GENEsIS’s SMAP-based entry/exit gate 66
GENEs1s’s SMEP-based entry/exit gate 1220
Write SATP (w/ flush) 31
RISC-V Toggle SUM (csrs/csrc) 15
GENESsIS’s SUM-based entry/exit gate 113

Table 1: The number of cycles taken to execute instrs.

that toggling the SUM-bit in gates may require additional checks.
Nevertheless, we overcome this shortcoming by using csrs and
csrc instructions. To be specific, Figure 6 shows the SUM-based
entry and exit gates. Note that csrs and csrc can only set and
clear specific bits in csr, respectively. For csrs in line 8, it sets the
SUM-bit to disable the SUM protection and thus might be misused
by an attacker. However, this instruction cannot be abused because
the execution always jumps to the inner kernel’s entry point after
setting the SUM-bit. For csrc in line 13, it can only enable the SUM
protection and thus cannot be abused.

Interestingly, SUM prevents not only accessing but also executing
user memory; this is analogous to the integration of SMAP and
SMEP. Hence, SUM is sufficient for GENESIS’s purpose (e.g., the
prevention of executing privileged instructions and accessing the
inner kernel data), avoiding the use of redundant hardware features
such as SMEP in x86.

However, such functionality that allows the kernel to execute
user codes is excluded from SUM and deprecated in the RISC-V stan-
dard specification (since v1.11 [1]); thus, recent standard-compliant
processors do not allow the kernel to execute user pages, regardless
of the SUM status. Hence, to enable the inner kernel to restrict the
privileged instructions, we reintroduce this dropped feature into
RISC-V. It is reasonable because RISC-V is an open-source and thus
an extensible architecture. We modified the Rocket Chip with only
one line of code and tested it on a Xilinx VC707 board. It requires
non-invasive hardware modification, thereby incurring almost no
lookup table (LUT) overhead (0.04%).

6 PERFORMANCE EVALUATION

We thoroughly evaluated the efficiency of GENEsIs against com-
monly used micro- and macro-benchmark suites, including LM-
Bench and SPEC CPU2017, and real-world applications. The eval-
uations were conducted on Intel i9-9900K with 32GB of memory,
running Linux 5.9.0. Due to the page limit, we mainly focus on the
results for x86-64 and only present the numbers for RISC-V, along
with a brief explanation.

Domain Switch Cost. One dominant source of overhead in GENE-
sts is the round trips between the two domains, involving passing
through domain-switch gates. To understand the switching cost, we
started with a micro-benchmark that measured the latency of the
switch gates in CPU cycles. The results are summarized in Table 1.
The last three rows show the cycles required for a single invocation
of the corresponding entry and exit gates. GENEs1s’s SMAP-based

GENESIS: A Generalizable, Efficient, and Secure Intra-kernel Privilege Separation

SAC *24, April 8-12, 2024, Avila, Spain

Orig. GENESIS on x86-64 PerspicuOS (x86-64) RISC-V
Benchmark - — — -
base +kpti +pgthl +privinst +usercopy +pgthl +privinst orig. GENESIS
null syscall() 0.04522 204% 197% 1140% 1121% 1.59% 938% 0.2370 132%
open()/close() 0.60732 34.2% 53.7% 223% 212% 17.3% 185% 9.7394 26.4%
read() 0.09494 101% 101% 577% 579% 0.53% 482% 0.5729 197%
write() 0.07068 131% 126% 754% 756% 1.99% 628% 0.5183 65.6%
select() (10 fds) 0.1662 59.7% 59.8% 356% 397% 1.77% 275% 1.5771 94%
Latency () stat() 0.23998 39.5% 53.8% 257% 277% 16.6% 216% 5.6271 61.9%
fork() + execve() 162.4955 10.1% 36.8% 73.8% 70.5% 97.1% 137% 12173.6 0.69%
fork() +exit() 51.6544 10.2% 28.8% 62.7% 57.3% 91.4% 126% 1735.9 6.36%
fork() + /bin/sh 533.5982 5.58% 37.3% 56.3% 54.3% 100% 101% 18732.6 2.91%
sigaction() 0.0935 101% 101% 669% 635% 3.02% 470% 0.9052 155%
Page fault 0.1042 9.21% 73.6% 116% 116% 313% 355% 1.7088 12.2%
. UNIX socket I/O 13750.84 -0.27% -0.02% 9.16% 20.8% -3.49% 7.37% 530.286 3.4%
Bandwidth (MB/s)

TCP socket I/O 13569.38 -0.01% -0.37% 1.78% 8.40% -2.67% 1.44% 167.856 1.4%

Table 2: LMBench results

domain switch was 5.9% faster than that of PerspicuOS. Notably,
PerspicuOS’s domain switching is 3.69x faster than hypercall, i.e.,
vmcall in x86 (please refer to Table 3 in [4]).

However, the SMEP-based domain switch has a substantial over-
head, taking approximately 1220 cycles. To pinpoint the source
of the observed overhead, we measured the latencies of main op-
erations performed during domain switching (e.g., manipulation
of %cro, %cr3, and %cr4). We found that the toggling of SMEP in-
curs the highest overhead (505 cycles) among them, rendering the
SMEP-based gate slower than the SMAP-based counterpart.

LMBench. We used LMBench as a micro-benchmark, which mea-
sures the latency and throughput of a set of OS primitives. Further-
more, the overhead is broken down into four sources: kpti, page
table protection (pgtbl), privileged instruction delegation (privinst),
and user memory access delegation (usercopy). As summarized in
Table 2, we highlight the results that yield a clear difference in
bold and present the cumulative overheads from kpti to usercopy.
Moreover, for comparison, we performed the same experiment on
our version of PerspicuOS with the pgtbl and privinst protection.

kpti incurs an extra overhead of context switching between the
kernel and user modes owing to page table switching. Consequently,
short-lived benchmarks, with mode switching taking up most of the
time, exhibit a significant slowdown; the null syscall benchmark
is a worst-case example, with 204% overhead.

For pgtbl, all page table modifications are interposed by the inner
kernel, and entering and exiting the inner kernel are only allowed
through the SMAP-based gates. In addition, it involves an additional
layer of indirection (i.e., shadow mapping of page tables) to access
the page tables. As expected, the three fork-related benchmarks
whose overhead is dominated by the cost of modifying page tables
suffer from runtime overheads due to frequent domain switches.
Similarly, the results of PerspicuOS’s pgtbl version resemble those
of GENEsIs but suffer from the expensive switching costs. Notably,
the page fault benchmark has the most significant increase in the
overheads of 73.6% and 303% in GENESsIs and PerspicuOS, respec-
tively; it involves costly page table modifications mediated by the
inner kernel because the page fault handler terminates the faulted
process and releases all allocated memory.

With privinst, the execution of security-sensitive privileged in-
structions must go through the expensive SMEP-based gates. In
particular, switching between the kernel and user modes, which
frequently occurs, involves the use of privileged instructions (i.e.,

1374

mov %cr3, iret, and sysret), thereby incurring excessive over-
heads. Moreover, trap gates introduce extra overhead, compulsorily
(re)activating the SMAP and SMEP protections. Consequently, priv-
inst introduces a non-negligible mode-switching overhead between
the kernel and user modes, similar to that in the kpti case. An ex-
ample of the worst case is the null syscall benchmark, which
experiences a significant slowdown of 1140%.

For usercopy, while going through SMAP-based gates promising
low-cost domain switch, no page fault exception should be raised in
the inner kernel. This requires checking the present bit of the PTE
of a to-be-accessed user page, necessitating traversing multilevel
page tables. Moreover, if the page is marked non-present, a mapping
for the corresponding page is created. Consequently, this leads to a
major bottleneck in user-access intensive benchmarks, as shown in
the last two rows in Table 2.

As for RISC-V, we briefly describe the results of GENESIS on
RISC-V, which is shown in the last two columns in Table 2. Note
that the performance evaluation was conducted with all features of
GENEsIs (kpti, pgtbl, privinst, and usercopy) enabled. Interestingly,
GENESIS RISC-V is shown to induce lower overhead than its x86
version. Due to the vastly different environments (high-end pro-
cessor vs. SoC), it is rather difficult to make a direct comparison.
However, we conjecture there are three reasons for this: First, as we
can see by comparing .orig in x86-64 and .orig in RISC-V, our RISC-V
processor provides significantly lower performance than the x86
one. This is attributed to the long execution time of benchmarks
and is particularly evident in the case of long-lived benchmarks. For
example, the fork + execve benchmark is up to 75X slower than
x86, whereas the null syscall benchmark is 5x slower. There-
fore, the overheads imposed by GENEsIs are amortized over the
long execution time of long-lived benchmarks, such as fork- and
I/O-related ones. Second, our RISC-V Linux supports a three-level
paging scheme (as opposed to x86’s four-level), leading to a reduc-
tion in the number of required page table updates, especially in
fork-related benchmarks. Third, SUM-based switches are much
faster than SMEP-based switches. Therefore, the cost of frequent
kernel/user context switches, which involve swapping page tables
for KPTI, is relatively cheap in RISC-V GENESIS.

SPEC CPU2017. We further used the SPEC CPU2017 benchmark
suite as a macro benchmark to understand the performance impact
of GENEsIs on real-world workloads. This suite contains a collec-
tion of applications, for example, the Perl interpreter and GNU

SAC 24, April 8-12, 2024, Avila, Spain

1.8x10°
overhead
baseline
genesis —¥—

overhead
baseline
genesis —K—

100 100

1.6x10°
1.4x108
80 80
1.2x10°8

1x108

60 60

800000

Overhead (%)
Latency (ms)
Overhead (%)

40 40

Throughput (req/s)

600000

400000

20 20

AV

0
700,90, 700,500, 700,505, 0y, 90,
%0020, 2030096 05000 05,

[# of Requests]-{File Size (KB)]

200000

0
700, 00,700, 500, "00,, %00, .70, 500,
.50 %o 7070 %2y 0 %8y S0

[# of Requests}-{File Size (KB)]

(a) Throughput (b) Latency

Figure 7: I/O performance overhead against Nginx

C compiler. We ran three iterations for all test suites with their
reference input. Our results show that GENEsIs imposes negligible
runtime overhead for all workloads (< 1% slowdown on average).

Nginx and Memcached. We experimented with the Nginx web
server and Memcached caching system using I/O-intensive work-
loads to evaluate the degree of I/O performance degradation. No-
tably, this experiment is ideal for observing the worst-case overhead
of GENESsIs because most of the execution time is spent in kernel
mode, with frequent and costly inner kernel-mediated user-memory
accesses. For the Nginx case, our evaluation used Apache Bench-
mark (ab) to issue 500-1000 HTTP keep-alive requests for a file
ranging from 5K to 50KB in size to the Nginx server on the local-
host. As shown in Figure 7, the throughput and latency overheads
are on average 35% and 47%, respectively. (cf. 24% and 29% for Per-
spicuOS; 9.8% and 10.9% for RISC-V) For the Memcached case, we
used the memslap benchmark with the default configuration (i.e., a
ratio of 9:1 for get/set operations, key size of 64 bytes, value size of
1024 bytes) and measured the time needed to handle 10,000 get/set
operations. The overhead for this case is 10.7% for x86 and 2.7%
for RISC-V, which is relatively better than the Nginx case because
Memcached is not only I/O-bound but also memory-bound and thus
amortizes the high cost of I/O operations. (cf. 7.2% for PerspicuOS)

7 DISCUSSION

We presented the implementation of GENESIs on x86-64 and RISC-V
in this work. We argue that the fundamental design principles can
be applied to other architectures. This is primarily because the PAR
(i.e., SMAP and SUM) and SMEP-equivalent primitives are readily
available in other contemporary architectures.

As an example, in ARM64, functionally equivalent hardware fea-
tures are available as PAN and PXN (Privileged eXecute Never) since
ARMv38.1. PAN is functionally equivalent to and, not least, shares
architectural similarities with SMAP:; it extends the PSTATE register
(corresponding to %eflags in x86) with a new 22nd bit, called the
PAN-bit, to indicate the state of PAN. Moreover, it provides a fast
and intrinsically-deterministic instruction (i.e., msr pan, #imm) to
manage the newly added bit. Additionally, as in iret in x86, the
exception return instruction (i.e., eret) can change the PAN state
and thus must be regarded as a security-sensitive operation.

However, PXN has a slightly different hardware implementation;
in detail, it is implemented as one of the attributes in the page
table entry (i.e., the 53rd bit), whereas SMEP on x86 is implemented
as a control register. Hence, leveraging PXN to deprive the outer
kernel of the use of privileged instruction cannot be realized as in

1375

Lee et al.

SMEP; modifying the PXN bit in a PTE corresponding to a code page
containing privileged instructions leaves the code page vulnerable,
e.g., as in the PerspicuOS case explained in §5. This discrepancy
prompted us to explore an alternative to PXN.

Inspired by SelMon [6], WXN (Write eXecute Never) can be a
viable candidate; this feature is functionally equivalent to NX-bit
in x86 but is implemented as a control register—not as a page table
attribute. Therefore, it can be utilized to restrict the use of privileged
instructions, as depicted in Figure 1c. However, this technique
cannot be applied directly for such purpose; for instance, when
executing eret and returning to user mode, it cannot re-enable WXN
after executing eret, similar to the iret case (§5). Though in the
case of SMEP, running a user process without SMEP protection does
not harm the security, this is not the case for WXN because it leaves
the user processes running with WeX disabled. However, this can
be overcome by leveraging the UXN (Unprivileged eXecute Never),
enabling the preservation of W®X in user mode even though WX
turns off, because of the fact that UXN overrides WXN.

8 CONCLUSION

We proposed GENESIs, a novel architecture-agnostic design for
realizing intra-kernel privilege separation. We demonstrated the
feasibility of the proposed design by implementing it on x86-64 and
RISC-V Linux kernels, while incurring moderate performance over-
head. GENESIs is available at https://github.com/KAIST-CysecLab/
GENESIS

ACKNOWLEDGMENTS

This work also was supported by National Research Foundation of
Korea (NRF) grant (NRF-2020R1A2C2101134, NRF-2022R1C1C1010494,
and RS-2023-00240697) and Institute for Information & commu-
nications Technology Promotion (IITP) grant (No. 2020-0-01840,
2021-0-00724, 2022-0-00688, 2022-0-01199, and 2022-0-01202).

REFERENCES

[1] John Hauser Andrew Waterman, Krste Asanovi. 2021. The RISC-V instruction set
manual volume II: Privileged architecture version. https://github.com/riscv/riscv-
isa-manual/releases/tag/Priv-v1.12

Ahmed M Azab, Kirk Swidowski, Rohan Bhutkar, Jia Ma, Wenbo Shen, Ruowen
Wang, and Peng Ning. 2016. SKEE: A lightweight Secure Kernel-level Execution
Environment for ARM. In Network and Distributed System Security Symposium
(NDSS).

Yeongpil Cho, Donghyun Kwon, Hayoon Yi, and Yunheung Paek. 2017. Dynamic
Virtual Address Range Adjustment for Intra-Level Privilege Separation on ARM.
In Network and Distributed System Security Symposium (NDSS).

Nathan Dautenhahn, Theodoros Kasampalis, Will Dietz, John Criswell, and Vikram
Adve. 2015. Nested kernel: An operating system architecture for intra-kernel
privilege separation. In Proceedings of the Twentieth International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS).

Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clémentine Maurice,
and Stefan Mangard. 2017. Kaslr is dead: long live kaslr. In International Symposium
on Engineering Secure Software and Systems (ESSoS).

Jinsoo Jang and Brent Byunghoon Kang. 2020. SelMon: reinforcing mobile device
security with self-protected trust anchor. In Proceedings of the 18th International
Conference on Mobile Systems, Applications, and Services (MobiSys).

Vasileios P Kemerlis, Michalis Polychronakis, and Angelos D Keromytis. 2014.
ret2dir: Rethinking kernel isolation. In 23rd USENIX Security Symposium.

Zhi Wang and Xuxian Jiang. 2010. HyperSafe: A lightweight approach to provide
lifetime hypervisor control-flow integrity. In IEEE Symposium on Security and
Privacy (S&P).

Chenggang Wu, Mengyao Xie, Zhe Wang, Yinqian Zhang, Kangjie Lu, Xiaofeng
Zhang, Yuanming Lai, Yan Kang, Min Yang, and Tao Li. 2022. Dancing with Wolves:
An Intra-process Isolation Technique with Privileged Hardware. IEEE Transactions
on Dependable and Secure Computing (TDSC).

https://github.com/KAIST-CysecLab/GENESIS
https://github.com/KAIST-CysecLab/GENESIS
https://github.com/riscv/riscv-isa-manual/releases/tag/Priv-v1.12
https://github.com/riscv/riscv-isa-manual/releases/tag/Priv-v1.12

	MAIN MENU
	Search
	Print
	View Full Page
	View Page Width
	Author Index
	Table of Contents

