
Interstellar: Fully Partitioned and Efficient Security Monitoring
Hardware Near a Processor Core for Protecting Systems against

Attacks on Privileged Software
YongHo Song

Korea Advanced Institute
of Science and Technology
Daejeon, Republic of Korea
yonghosong@kaist.ac.kr

Byeongsu Woo
Korea Advanced Institute
of Science and Technology
Daejeon, Republic of Korea

wbs79@kaist.ac.kr

Youngkwang Han∗
Korea Advanced Institute
of Science and Technology
Daejeon, Republic of Korea

sft_glory@kaist.ac.kr

Brent ByungHoon
Kang∗

Korea Advanced Institute
of Science and Technology
Daejeon, Republic of Korea
brentkang@kaist.ac.kr

Abstract
The existing approaches to instruction trace-based security moni-
toring hardware are dependent on the privileged software, which
presents a significant challenge in defending against attacks on
privileged software itself. To address this challenge, we propose In-
terstellar, which introduces a partitioned hardware near the CPU’s
main core and leverages the benefit of hardware-level security
monitoring. Interstellar is fully partitioned, parallelized, and simul-
taneously detecting security monitoring hardware. Interstellar’s
design makes it hard for malicious software to reverse-engineer
how Interstellar detects the attacks, and Interstellar efficiently pro-
tects the system against the attacks on the privileged software
(e.g., Trusted Execution Environment (TEE)). Moreover, Interstellar
not only monitors but also blocks various attacks in a timely man-
ner without stalling a CPU core by designing with a finite-state
machine.

We implemented a prototype of Interstellar in Rocket chip using
a hardware description language and evaluated Interstellar with a
Linux kernel and a custom TEE-equipped Linux kernel for Rocket
chip on two different FPGA boards. The performance overhead of
Interstellar is negligible for benchmark applications. The average
performance overhead incurred from Interstellar on 50MHz Rocket
core for three different benchmarks is 0.102%.

CCS Concepts
• Security and privacy→Hardware security implementation;
Operating systems security; Information flow control.

Keywords
Hardware security; Partitioned securitymonitor; Instruction-tracing;
Finite-state machine

∗B. Kang and Y. Han are the corresponding authors.

Y.H. Song, B. Woo, Y. Han, and B. Kang are also affiliated with CySecuLab.

This work is licensed under a Creative Commons Attribution-
NonCommercial International 4.0 License.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3690247

ACM Reference Format:
YongHo Song, Byeongsu Woo, Youngkwang Han, and Brent ByungHoon
Kang. 2024. Interstellar: Fully Partitioned and Efficient Security Monitoring
Hardware Near a Processor Core for Protecting Systems against Attacks on
Privileged Software. In Proceedings of the 2024 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’24), October 14–18, 2024, Salt
Lake City, UT, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10
.1145/3658644.3690247

1 Introduction
Progress in privilege-based systems. Security mechanisms for
modern computing systems are dominantly based on granting dif-
ferent privileges to each software in a hierarchical manner, and
the system software that is protected by a privilege mechanism is
employed to prevent faults and malicious behaviors in some ap-
plications from propagating to their entire system. For example,
an Operating System (OS) kernel can access privileged resources
with its privileged instructions, which can only be executed in the
kernel mode of the CPU hardware. Also, the OS kernel can manage
the page mapping for applications by leveraging the OS privilege.

However, the system software, such as the OS kernel, has a
probability of finding vulnerabilities in the system software due
to its large attack surface. Also, the system software can access
any classified data related to the system’s security or private data
using its privilege. Thus, if an attacker uncovers vulnerabilities in
a large amount of code of the system software, the attacker can
easily leak important data by exploiting the vulnerabilities and by
taking advantage of the system software’s privilege. To protect
important data from the system software that has large attack sur-
faces, Trusted Execution Environments (TEEs) [26, 48] and custom
TEEs [24, 27, 39, 52] have been proposed on the privilege-based
systems by introducing additional minimal Trusted Computing Base
(TCB). Still, the trusted software and security hardware compo-
nents included in TCB depend on another privilege-based security
mechanism.

Security vulnerabilities in the design of privilege-based sys-
tems. Unfortunately, despite these advances in the privilege-based
systems, the existing attacks on OS kernel that exploit vulnerabili-
ties in the privileged software’s code and shared hardware to leak
secrets are still effective on the TCB of the TEE or custom TEE with
some variations. For example, a Return-oriented Programming (ROP)
attack [23, 40], one of the attacks that work effectively on both
OS and TEE if the attacker finds any buffer overflow vulnerability
and necessary gadgets among the code of the privileged software

198

https://orcid.org/0000-0002-4562-5528
https://orcid.org/0009-0003-3339-4923
https://orcid.org/0009-0005-9651-064X
https://orcid.org/0000-0001-8984-1006
https://orcid.org/0000-0001-8984-1006
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1145/3658644.3690247
https://doi.org/10.1145/3658644.3690247
https://doi.org/10.1145/3658644.3690247
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3658644.3690247&domain=pdf&date_stamp=2024-12-09

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA YongHo Song, Byeongsu Woo, Youngkwang Han, and Brent ByungHoon Kang

or the application executed on TEE. In addition, hardware side-
channel-based attacks [20, 21, 41, 42], which exploit vulnerabilities
in microarchitectural hardware resulting from design flaws or in-
terference within shared hardware between different privileges, are
also still effective not only on the OS kernel, but also on the TEEs
and many custom TEEs.

Interestingly, the existing privilege-based system, including the
OS kernel and TEE, has a generalized design principle for imple-
menting its security mechanism. They have TCB consisting of
trusted software, hardware security primitives, and dedicated mi-
croarchitectural components. Then, they utilize the trusted software
that has the highest (or special) privilege to isolate the TCB from
the other vulnerable software. However, this generalized design
still faces difficulties in that the privileged software included in the
TCB must be free from any vulnerabilities that software-based at-
tacks can exploit. In addition, the hardware security primitives and
the dedicated microarchitectural components included in the TCB
must be safe from hardware side-channel attacks across different
privileges.

Drawbacks of prior related works. Prior works [30, 31, 33] for
instruction tracing security monitoring hardware get the instruc-
tions executed by the monitored software and their corresponding
microarchitectural information to detect malicious actions or accel-
erate security features for applications running in privilege-based
systems. However, all the prior security monitoring hardware is
directly controlled by the privileged software (i.e., OS kernel), same
with the design of the security mechanism for the privilege-based
system, to support the software-programmability on security mon-
itoring rule utilized by the monitoring hardware. Also, some prior
works [30, 31] do not include the cache side-channel attacks in
their threat models. Hence, the prior works are also vulnerable to
existing attacks on the privileged software, and the prior works
cannot be utilized for protecting the TEE against OS-level attackers.

Moreover, due to their hardware implementation to support the
software-programmability on the security monitoring, some prior
works [30, 31] cannot monitor the software running on the main
core simultaneously, so it is difficult to detect attacks before at-
tacks are carried out. Also, another work [33] is unable to generate
comprehensive security monitoring rules by referring to various mi-
croarchitectural resources. To sum up, these design choices of prior
works for the instruction tracing security monitoring hardware
cannot leverage the benefits of security monitoring hardware at
the microarchitecture level, which can safely and efficiently detect
attacks across different privileges.

Interstellar. To efficiently protect the privilege-based systems
against existing attacks on privileged software, this paper presents
Interstellar, which is fully partitioned, parallelized, and simulta-
neously detecting instruction tracing security monitoring hard-
ware. Interstellar addresses the limitations of prior related works
[30, 31, 33] and leverages the benefits that security monitoring
hardware can achieve at the microarchitecture level.

In particular, 1○ Interstellar introduces a design of fully parti-
tioned security monitoring hardware, which is not accessible from
any software and is separated from the CPU’s main core and cache,
to safely detect and block the existing attacks on privileged software.
In addition, 2○ Interstellar monitors every fetched instruction from

software running on a CPU main core in parallel using multiple at-
tack detection rules. Interstellar utilizes Finite-state Machines (FSMs)
to efficiently implement multiple comprehensive attack detection
rules, which refer to the executed instructions and the various cor-
responding information at the microarchitecture level for the attack
detection. Lastly, 3○ Interstellar can simultaneously detect attacks
performed on the main core before the attacks are carried out (i.e.
before the instructions for the attacks are committed). Notably,
since Interstellar can be optimized at the microarchitecture level
when designed for each attack detection case, Interstellar can block
the detected attacks in a timely manner without stalling the main
core’s pipeline.

Furthermore, to enable bug-free simultaneous detection on In-
terstellar coupled with the pipeline core of the Rocket chip [15], we
address the following challenges. First, FSM of Interstellar must be
designed considering the instruction squashing situation resulting
from the branch misprediction or hardware interrupt before the
monitored instructions are committed. We address this problem
by introducing an instruction squashing handler for the correct
recovery of the FSM’s state from the invalidation situation. Second,
to avoid stalling the progress of the main core, Interstellar must
determine attack detection results by referring to microarchitec-
tural information within at most three CPU clock cycles between
the fetch stage and commit stage of the Rocket chip’s main core.
To solve this challenge, we optimize the design of the FSM to di-
rectly refer to the required microarchitectural information in each
pipeline stage for each attack detection use case. In addition, we
design the determination logic in the FSM to complete the detection
of the attack within one CPU clock cycle.

To evaluate Interstellar with three attack monitoring use-cases
implemented in parallel, we implement a prototype of Interstellar
in a RISC-V Rocket chip using Chisel [17], a hardware description
language. We evaluated the Interstellar-enabled Rocket chip on
the AMD Vertex 7 FPGA VC707 board [6] with TEE-enabled Linux
kernel and on AWS EC2 F1 utilizing Firesim [8] with RISC-V Linux
kernel. Also, we verify the functionalities of Interstellar and analyze
that Interstellar is safe from existing and possible threats. Our FPGA-
based evaluation demonstrates that the performance overhead of
Interstellar is negligible on average when executing three bench-
marks [9–11]. Meanwhile, the area overhead and relative power
consumption of Interstellar with all three attack detection rules
compared to the Rocket core are 21.72% and 34.10%, respectively.

Our contribution. In summary, these are our contributions:
• To protect privilege-based systems from existing attacks on privi-
leged software, we present Interstellar, a safe security monitoring
hardware that can be utilized for protecting OS kernel and TEE,
by introducing fully partitioned monitoring hardware.

• To achieve both the efficient parallel monitoring with multiple
attack detection rules and the simultaneous detection for block-
ing the attacks in a timely manner, Interstellar utilizes FSMs to
define and optimize each attack detection rule in hardware logic,
considering the behavior of pipelined Rocket core.

• We evaluate a prototype of Interstellar implemented in Rocket
chip with TEE-enabled Linux kernel and RISC-V Linux kernel
on two different FPGA boards by running three different bench-
marks, and the performance overhead of 50MHz Rocket core for
three different benchmarks is 0.102%, on average.

199

Interstellar: Fully Partitioned and Efficient Security Monitoring
Hardware Near a Processor Core for Protecting Systems against Attacks on Privileged Software CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

2 Background
2.1 Designs of the Systems Protected by

Privilege-based Mechanisms
There are the following well-known privilege mechanisms for the
security of systems: (1) a protection ring and (2) Trusted Execution
Environments (TEEs). In addition, various (3) custom TEEs have
been proposed to address security problems in existing TEEs.

Trusted Execution Environments and Protection Ring. A
protection ring is a representative privilege-based security mecha-
nism that hierarchically protects core functionalities of computer
systems from malicious software. To realize the protection ring in
computer systems, the CPU employs dedicated hardware compo-
nents, such as descriptor tables, dedicated registers, and privileged
instruction. By leveraging the hardware components designed for
the ring protection, the processor provides segment-level access
control and a call gate that facilitates the safe transfer of the pro-
gram execution between different privilege levels. Moreover, the
system protected by the protection ring employs privileged sys-
tem software to realize page-level protection. The system software
can utilize the protection ring’s hardware components and privi-
leged instructions to protect the code and data of the system and
applications in a fine-grained unit.

However, prior attacks [19, 23, 29, 44] can leak important data
in the privileged system software, although the systems are pro-
tected by the protection ring. The attacks bypass the privilege check
procedure of the protection ring by exploiting vulnerabilities in
the privileged software and in the microarchitectural design. More
importantly, the security threat to the privilege-based systems that
exploit vulnerabilities in the privileged system software is an ongo-
ing problem and can occur at any time, given the massive amount
and open-sourced privileged system software.

To make a secure execution environment isolated from the large
system protected only by the protection ring, CPU vendors (e.g.,
Intel and ARM) have proposed TEEs [2, 26, 48]. TEE provides an iso-
lated execution environment in systems, even in situations where
the privileged system software (e.g., Operating System (OS)) is
compromised by attackers. TEE utilizes a new hardware-driven
privilege-checking mechanism with additional privilege mode (e.g.,
Software Guard Extension (SGX) enclave mode) and dedicated hard-
ware components. Then, CPU vendors employ new small-sized
privileged software for the applications run in TEE, considering
small-privileged software and dedicated hardware components as
minimal Trusted Computing Base (TCB), as shown in Figure 1. Then,
the CPU vendors implement the security services of the TEE for
applications, such as the memory access control and the safe trans-
fer of the program execution between the normal and TEE modes,
by utilizing the privilege mechanism for TEE and the privileged
instructions for the software in TCB.

However, despite efforts to construct safe TEEs on the privilege-
based system, many prior studies [18, 21, 40–42, 46, 47] have demon-
strated that attacks to leak secrets in the TEEs from lower-privileged
software are feasible. Especially, most prior attacks on TEEs were
performed using similar attack methods that were also valid against
OS. In general, prior studies have used three methods in order to
leak secret data in the TEEs: (1) Privileged hardware resources abus-
ing attacks [46, 47], (2) Return-oriented Programming (ROP)-based

Application
(Ring 3)

Kernel, GuestOS
(Ring 0)

CPU
(Hardware resources for Ring -1,0,3)

SGX TEE
(Enclave mode)

Interstellar
(Fully partitioned and efficient security monitoring hardware)

SGX Runtime
(TCB of SGX)

SGX Hardware
(TCB of SGX)

Kernel, GuestOS
(Ring 0)

Hypervisor
(Ring -1)

Figure 1: Security design for the privilege-based system using
the protection ring and SGX, and the position of Interstellar.
Each arrow means permitted or prohibited access direction.

attacks [18, 40], and (3) Hardware side-channel attacks [21, 41, 42].
In Table 1, we categorize the previous studies for attacks on privi-
leged software according to the types and directions of the attacks.

Custom trusted execution environments. To address the
security problems in the TEEs, prior studies [24, 27, 34, 39, 52] have
proposed the design of a custom TEE by extending the existing
hardware components or security primitives and by again introduc-
ing new highest-privileged software that can utilize the extended
security hardware. Thus, these prior studies are still unable to guar-
antee the security of their design unless they can ensure that their
highest-privileged software is free of vulnerabilities.

First, Sanctum [27] minimally modified hardware and imple-
mented security monitoring software with the new highest ma-
chine privilege to protect SGX enclaves against the side-channel
attacks such as cache timing attacks [20] and memory access pat-
tern attacks [51] from lower-privileged software. For example, to
mitigate memory access pattern attacks on SGX enclaves, Sanctum
implemented a page-coloring-based cache partitioning scheme by
adding a new cache address shift hardware, modifying the existing
page table walker for each enclave, and introducing the machine-
privileged security monitoring software.

Next, Keystone [39] provides an open framework that enables
CPU architects and TEE programmers to create custom TEEs on
existing RISC-V systems. Also, Keystone realizes safer custom TEE,
which also can mitigate cache-side channel attacks, on the RISC-V
CPU by introducing machine-privileged security monitoring soft-
ware and utilizing RISC-V’s hardware primitives, such as Physical
Memory Protections (PMPs).

Subsequently, Penglai [34] proposes a scalable TEE on RISC-V,
overcoming scalability limitations of legacy TEEs, such as Intel
SGX [26], in terms of memory isolation and integrity protection.
Penglai addressed these limitations by implementing hardware
primitives, Guarded Page Table (GPT) and Mountable Merkle Tree
(MMT). Furthermore, Penglai introduced the Secure Monitor, a secu-
rity monitoring software that operates in the most privileged mode
and is responsible for the management of enclaves and protection
against the manipulation of hardware primitives.

Lastly, ReZone [24] is a custom TEE designed to address the prob-
lem of ARM Trustzone’s environment, which is easy to take control
of the OS in the normal world, trusted application, and secure
monitor if the trusted OS inside the secure world is compromised.
ReZone introduces secure monitoring software with EL3 privilege
and utilizes Trustzone-agnostic hardware primitives available on

200

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA YongHo Song, Byeongsu Woo, Youngkwang Han, and Brent ByungHoon Kang

Types of Attacks Prior Attacks Exploited Vulnerabilities Attack Methods
Direction of

Attacks

Plundervolt [46]
Legitimate privileged dynamic voltage

scaling interfaces for privileged software

Abusing MSRs, which control the dynamic voltage scaling from software,

to inject faults into enclave by decreasing CPU voltage

OS software / BIOS ⇒

SGX enclaves (TEE)
Privileged hardware

components abusing

attacks
PMP

poisoning [47]

Rocket chip’s main core skips the instruction fetch

if an attacker injects a short glitch into the device’s clock

Corrupting PMPs, which control the memory access permissions,

by bypassing the fetch of PMP configuration instructions

Application ⇒

Rocket chip’s TEE

ROP is still

dangerous [23]

Common features of prior ROP defenses that can be circumvented

(Length-based classifiers or Monitoring a limited amount of history)

Bypassing prior defenses with mixing normal-length gadgets or

adding no-op instructions (i.e., Ad hoc approaches to disclosed defenses)

Application ⇒

Linux / Windows kernel
Code reuse or

Control flow

abusing attacks DarkROP [40]
Buffer overflow vulnerabilities in encrypted enclave

program and exception handling mechanism of SGX

Finding gadgets and associated exploits in an enclave

by using enclave exception handler and memcpy

OS + Host application

⇒ SGX enclaves

Foreshadow [21]
Speculative execution vulnerability to enclave’s data loaded in

L1 data cache in Intel x86 CPU, similar to Meltdown Attack [43]

Leaking plaintext secret of enclave prefetched on L1 data cache

with speculative execution and FLUSH+RELOAD cache covert channel

Application or Linux

kernel⇒ SGX enclaves
Hardware

side-channel

attacks
Branch

shadowing [41]

SGX doesn’t clear branch history in the shared hardware (BTB, BPU,

and LBR) when switching from enclave to non-enclave mode software

Obtaining control flow of an enclave by writing shadow code

that probes the history of the enclave’s branches

OS kernel ⇒

SGX enclaves

Table 1: Classification of some prior attacks on privileged software (MSRs: Model-Specific Registers, ROP: Return-Oriented
Programming, BTB: Branch Target Buffer, BPU: Branch Prediction Unit, LBR: Last Branch Record)

general commercial hardware platforms to divide the monolithic
TEE into multiple sandboxes to disarm the trusted OS’s privilege.

Security implications for privilege-based system design. In
general, the existing system design to enhance the security of
privilege-based systems introduce additional privileged instructions
and dedicated security hardware components (or primitives) within
the system that operate only with new (or highest) privilege. Then,
in order to isolate a new secure execution environment from the
unsafe system, the existing methods appoint new privileged software
that can take advantage of the security hardware features through the
new privileged instructions. The generalized system design has been
repeatedly applied when TEEs is introduced within the protection
ring and when creating safer custom TEE for the existing TEE.

Meanwhile, some prior attacks on OS kernel or TEE [18, 23, 40]
leak sensitive data by exploiting vulnerabilities in higher-privileged
(or trusted) software with control flow hijacking or code reuse meth-
ods. Other prior attacks [21, 42] exploit hardware vulnerabilities
resulting from interference in shared hardware or flaw in microar-
chitectural design by using side-channel attack methods. Thus,
unless the generalized design of the privilege-based systems can
thoroughly eliminate the vulnerabilities in the introduced higher-
privileged software or the interference in the microarchitecture
hardware shared by software across different privileges, prior at-
tack methods will continue to be exploited with some variations to
defeat the privilege-based systems.

2.2 Prior Works for Instruction Tracing Security
Monitoring Hardware

Priorworks for instruction tracing securitymonitoring hardware [30,
31, 33] add a new security monitoring co-processor connected with
the main core of Rocket chip [15] by minimally modifying the
main core’s microarchitecture. The security monitoring hardware
constantly traces both the program’s instructions executed on the
main core and the related microarchitectural states of the main core
during runtime to provide monitoring services for the system’s
security. Then, the security monitoring hardware provides the se-
curity service based on the software-programmed monitoring rules
that can be defined with the privileged instructions introduced for

software users. The comparison between the related works and
Interstellar are summarized in Table 2.

Prior related works. Nile [31] is the first to propose programm-
able monitoring hardware (i.e., a coprocessor) that can trace and uti-
lize all executed instructions and the related microarchitectural in-
formation to detect the occurrence of software user-defined events.
Existing hardware performance counters [28] can be used as a per-
formance analysis and debugging tool, but they have limitations
when used to monitor events such as security verification. To over-
come their limitations, Nile proposes hardware that can monitor
events using the architectural state of the CPU core per executed
instruction. Then, Nile provides interface functions, which include
privileged instructions that can control the monitoring hardware,
for software-level users to program the security events that they
want to monitor with the coprocessor. Nile programmed a shadow
stack [22] on its monitoring coprocessor for a use case to detect
ROP attacks.

Then, PHMon [30] improves Nile’s coprocessor to support not
only the simple comparison operation but also arithmetic or logical
operations to program other security use cases, such as accelerating
fuzzing or preventing the leakage of sensitive information stored
at a specific memory address. For evaluation, PHMon modifies
a RISC-V rocket chip to implement instruction tracing security
monitoring hardware on an FPGA board. PHMon demonstrates
that the monitoring hardware causes little performance overhead
and can perform security monitoring more efficiently than the
existing security monitoring software for the same purpose.

Lastly, ISA-grid [33] designs an instruction tracing security moni-
toring hardware that enables fine-grained monitoring for the access
violations to Control and Status Registers (CSRs), which store im-
portant data necessary for hardware management and security
services. ISA-grid provides new privileged instructions for software
developers to create domains that have their own privileges, called
domain ID, beyond the kernel privileges. The ISA-grid’s privileged
instructions are utilized to create decoupled domains with addi-
tional privileges and specify access-controlled CSRs within each
domain. By using privileged instructions, users can ensure that the
attacker cannot access sensitive data stored in other domains’ CSRs,

201

Interstellar: Fully Partitioned and Efficient Security Monitoring
Hardware Near a Processor Core for Protecting Systems against Attacks on Privileged Software CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Dedicated security

monitoring hardware

Various microarchitectural info.

can be utilized for monitoring

Trusted privileged software

is safe from OS-level attackers

Parallelized monitoring

with multiple security rules

Simultaneous

detection

Performance

overhead

Nile [31] ✓ ✗ ✗ ✗ ✗ Medium

PHMon [30] ✓ ✓ ✗ ✓ ✗ Medium

ISA-Grid [33] ✓ ✗ ✗ ✗ ✓ Low

Interstellar ✔ ✔ N/A ✔ ✔ Very Low

Table 2: Comparison table between the related works on instruction tracing security monitoring hardware and Interstellar

which are required for critical hardware management or related to
security services, even if an attacker gains kernel privileges.

Drawbacks of prior works. Nile [31] first proposed the con-
cept of a programmable security monitoring coprocessor. However,
despite presenting the shadow stack as its security use-case, Nile
allows both application-level and OS-level users to directly program
and control the monitoring coprocessor with custom instructions
through the interfaced functions of Nile, without any explanation
of the threat model. Moreover, even the application-level user can
disable the monitoring hardware through the interfaced function.
Therefore, Nile’s programming for the shadow stack on their moni-
toring coprocessor would be impractical in privilege-based systems.

Next, PHMon [30] clarifies its threat model assuming that PH-
Mon trusts OS kernel, unlike Nile. However, PHMon is still unable to
be utilized in a threat model where the attacker can take advantage
of the OS privilege in the privilege-based systems because PHMon
trusts the OS kernel to support software programmability for the
monitoring coprocessor and to manage the security monitoring
hardware at the OS level.

Moreover, PHmon has limitations in its security capability due
to its decoupled monitoring for non-blocking execution of the main
core; otherwise, it incurs significant performance overhead. The
reason is that PHMon designed the security monitoring coprocessor
to collect all the instructions and microarchitectural information
necessary for detecting security violations only at the commit stage
of the main core in the form of committed logs. In this design, if the
main core must stall to receive the security detection result from
PHMon every time after sending the committed log at the write-
back stage, it will affect the performance of the CPU main core (i.e.,
PHMon cannot support simultaneous detection). To address this
performance issue, PHMon decouples the security monitoring from
the execution of the main core in a non-blocking manner. In the
end, because of the decoupled monitoring, PHMon cannot block
the commit of malicious instructions on the main core until the
monitoring hardware detects the security violation by referring to
the committed logs that are sent at the main core’s commit stage.

In addition, PHMon’s security monitoring configuration would
be vulnerable to cache side-channel attacks because the user-progra-
mmed configurations necessary for PHMon’s security monitoring
are sent from the main memory via the CPU’s data cache to the
monitoring hardware. Furthermore, PHMon must compile the soft-
ware to be monitored by the coprocessor using the custom compiler
implemented by PHMon to collect signals that are included in the
commit log from the main core at each stage.

ISA-grid [33] aims to enable developers to decouple CSRs, which
contain important information necessary for OS’s security services,
from vulnerable OS kernel by creating domains with additional
unique privileges (i.e. domain ID) according to the types of CSR’s

data. However, although ISA-grid allows developers to isolate CSRs
from vulnerable OS through domain-0 software that manages the
entire domain to protect CSRs with the highest privilege, ISA-grid
does not present the threat model it assumes for domain-0 software.

Without the threat model, it is impossible to explain how the
domain-0 software is safe against attacks that exploit software vul-
nerabilities of privileged software to bypass the privilege check
mechanism, such as ROP attacks. While no threat model is pre-
sented, ISA-grid seems to assume that a supervisor-level developer
can create and control domains with gate instructions introduced
by ISA-grid via domain-0 software; thus, ISA-grid also cannot be
utilized in privilege-based systems where the TEEs exists because
TEE’s threat model does not trust supervisor-level software.

Lastly, ISA-grid only provides security monitoring capabilities
related to CSRs, making it difficult for developers to implement
comprehensive security use cases, such as detecting existing attack
methods on privileged software, such as control flow hijacking,
code reuse attacks, and cache side-channel attacks.

3 Threat Model and Assumption
This work focuses on safe detection and blocking of various attacks
on higher-privileged software in privilege-based systems. Attack-
ers can use the functionalities of low-privileged software to leak
secret data of higher-privileged software by exploiting vulnerabili-
ties in the higher-privileged software or in the microarchitecture
components shared across software with different privileges.

To safely detect attacks on higher-privileged software against the
given attacker’s capabilities, Interstellar trusts only the initial setup
procedure for higher-privileged software at boot time. We assume
that the boot process’s trustworthiness is ensured by secure boot
technology. For each attack scenario, after the initial setup at the
booting, Interstellar does not trust the lower-privileged software
that the attacker can take advantage of the privilege.

Hence, Interstellar can be used for monitoring the attacks on
the OS and TEE of the lower privileged software. In this work,
we utilize Interstellar to detect these attacks on privileged soft-
ware: unauthorized memory access to TEE, ROP attacks on TEE,
and microarchitectural timing side-channel attacks on the data of
higher-privileged software.

Meanwhile, we assume that the CPU’s microarchitectural hard-
ware operates normally as designed (i.e., bug-free). In addition,
other than the vulnerabilities in the higher-privileged software in
each attack scenario, the code and data of the software are exe-
cuted correctly. For example, if Interstellar is utilized for detecting
the ROP attacks on TEE with OS privilege, both the application
code in TEE that is not manipulated by the attackers and the TEE’s
dedicated hardware work normally as implemented. Lastly, we as-
sume that Interstellar is safe from the physical thermal and power

202

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA YongHo Song, Byeongsu Woo, Youngkwang Han, and Brent ByungHoon Kang

side-channel attacks [36, 45] that utilize the external analysis in-
struments in a situation where physical access is possible.

4 Interstellar
We propose a fully partitioned, parallelized, and simultaneously
detecting security monitoring hardware (i.e., Interstellar) near a
processor core to protect systems against attacks on privileged
software.
4.1 Objectives of Interstellar
High security. To make secure instruction tracing security moni-
toring hardware, Interstellar defines attack detection rules using
fully partitioned hardware logic, which is not accessible with any
privileged instructions by the privileged software. In addition, to
partition Interstellar also from the CPU’s main core, Interstellar
filters the incoming fetched instructions from the main core using
an instruction hardware filter that works based on hardware logic-
defined attack detection rules. The instruction filter ensures that
only permitted information associated with monitored instructions
can be passed into fully partitioned Interstellar to prevent the in-
trusion of malicious instructions and data, as shown in Figure 2.
Lastly, Interstellar has its own separate SRAM scratchpads, so the
microarchitectural information required for Interstellar cannot be
inferred from the existing hardware-side channel attacks, such as
cache side-channel attacks.

Parallelized attack monitoring. To achieve parallelized moni-
toring for multiple attack detection rules for every incoming fetched
instruction, the attack detection rules of Interstellar are imple-
mented with multiple sets of hardware logic. Furthermore, each
attack detection rule is implemented efficiently with a simple Finite-
state Machine (FSM) to minimize the area overhead of Interstellar.
The monitored instruction and the required microarchitectural in-
formation are sent through the instruction filter to each FSM that
detects a target attack. Then, each FSM determines that the attacks
have been carried out with separated states in parallel by referring
to a set of the instructions and their associated information.

Simultaneous attack detection. To simultaneously detect a tar-
geted attack before the attack is committed on a main core without
stalling the main core, we optimize FSM for each attack detection
rule at the microarchitecture level, considering the referred microar-
chitectural information by each monitoring rule and the pipeline
structure of the main core.

In a high-level description, Interstellar receives fetched instruc-
tions of monitored software at the beginning of the decode stage of
the CPU’s main core. Then, Interstellar performs security monitor-
ing based on the attack detection rules while the monitored instruc-
tion is being executed on the main core. Thanks to the FSM-based
design, the security monitoring logic of Interstellar can determine
whether the monitored instructions are intended for malicious be-
havior before the instruction is committed in the write-back stage
of the main core by referring to the associated microarchitectural
information and trusted security configuration. Based on the result
of the attack detection, Interstellar can block attacks at the mi-
croarchitecture level in a timely and appropriate manner for each
use case. This is because, unlike prior studies [30, 33], Interstellar
does not program security monitoring rules in the software for
a security monitoring processor, which is generally designed for

Interstellar
(Instruction tracing security monitor)

Tile of RISC-V CPU
Pipelined main core

Instruction
fetch

Instruction
decode

Execution

Memory

Write back

Internal scratchpad memory
L1 SRAM Cache

1. Send fetched instructions
& associated information

Execution flow

5. Take action based on
the attack detection rules

if attacks are detected

Security monitoring logic
utilizing finite-state machine

Instruction filter for
monitoring the attack

near the CPU’s main core2. Pass only permitted
information

4. Retrieve additional
information if necessary
for security monitoring

Attack detection rules

3. Evaluate the info. with
the initial security

configuration

Figure 2: High-level microarchitecture design of Interstellar
near the main core and execution flow

software programmability. In the end, Interstellar can address the
limitations of the prior works that are unable to block the attack
before performed and hard to be optimized at the microarchitecture
level, which are explained in §2.2.
4.2 Design of Interstellar
Instruction filter. The instruction filter determines which instruc-
tions and associated information should be collected from every
fetched instruction on the main core to detect attacks, as described
in Figure 2. Since the instruction filter is designed with the same
Instruction Set Architecture (ISA) of the main core, the instruction
filter can decode the type and opcode of the instruction by referring
to the main core’s opcode table. The filtering list of the instruction
filter keeps changing depending on the attack detection rules de-
fined by FSMs inside the security monitoring logic. Specifically, if
the passed instruction and information transit the state of the FSM,
the filtering list inside the instruction filter may change. Interstel-
lar is operated near the CPU’s main core and receives the fetched
instructions from the main core using our communication protocol.
It is important to note that Interstellar does not inform the result
of the instruction filtering to the main core to prevent inferring the
attack detection rule from the filtering result.

Security monitoring logic. A security monitoring logic of
Interstellar detects malicious software’s actions that perform the
prior attacks on privileged software from the CPU’s main core based
on attack detection rules. The security monitoring logic consists
of multiple attack detection rules, and each attack detection rule is
defined with a separate FSM that runs in parallel.

The FSM-defined rule detects malicious software’s actions by
evaluating the fetched sequence of monitored instructions and
the main core’s microarchitectural information associated with
the monitored instructions. For attack detection, FSM has sets of
registers for storing both the trusted initial security configuration
and the microarchitectural information that is passed through the
instruction filter or is retrieved after the main core’s fetch stage, as
described in Figure 3. Additionally, the states of FSM have their own
register sets to preserve the necessary information of each state
even after the state transits, as shown in Figure 3. This is because

203

Interstellar: Fully Partitioned and Efficient Security Monitoring
Hardware Near a Processor Core for Protecting Systems against Attacks on Privileged Software CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

FSM needs to restore the previous state if the monitored instruction
simultaneously executed on the main core is squashed because of
a branch misprediction or a hardware interrupt. Notably, we also
implement an instruction squashing handler with FSM, which will
be explained in subsection 5.1, to restore the previous state when a
branch misprediction or interrupt occurs.

In addition, FSMs are responsible for updating the filtering list
in the instruction filter. Since Interstellar monitors the sequence
of fetched instructions to detect attacks, the filtering list in the
instruction filter must be updated depending on the state transition
in FSMs. Therefore, when a state transition occurs, the security
monitoring logic promptly notifies the instruction filter to update
the filtering list.

Internal scratchpad memory. Interstellar utilizes dedicated
internal scratchpad memory to repeatedly store the same set of
microarchitectural information for long-term monitoring that is
necessary for detecting a particular attack because the FSM can-
not support the long-term monitoring only with a set of registers.
For example, each FSM of Interstellar can utilize its own inter-
nal scratchpad memory like a stack for identical long-term attack
detection using a dedicated stack pointer. Interstellar stores the
required microarchitectural information stored in the state’s regis-
ter sets into the scratchpad memory if both conditions are met: ➀

the state has a self-loop for identical monitoring; ➁ the monitored
instruction is committed at the main core’s write-back stage, and
the associated microarchitectural information will be utilized later
for long-term monitoring.

More importantly, the internal scratchpad is only accessible by
the associated FSMusing the hard-wired address in each FSM so that
the software-level attacker cannot access the microarchitectural
information stored in the scratchpad memory of Interstellar and
also cannot leak the information stored in the scratchpad memory
by performing existing side-channel attacks on the shared data
cache. Also, we employ the scratchpad memory design for the
internal memory rather than the SRAM cache design attached to
the main core because the microarchitecture structure and the
communication method of the internal memory must be simple
and efficient to support simultaneous detection.

Communication protocol. Interstellar communicates with the
CPU’s main core with our communication protocol, which is de-
signed upon the ready/valid signal handshake protocol [4, 5] at the
microarchitecture level to accurately and efficiently receive and
retrieve the necessary information from the main core. As shown in
Figure 2, Interstellar mainly receives instruction and the associated
information from the instruction fetch stage. However, some re-
quired information can be retrieved after the fetch stage, such as a
branch misprediction flag, with Interstellar’s communication proto-
col. In addition, each step in Interstellar’s communication protocol
is completed in a single cycle to achieve simultaneous detection
without stalling the main core.

In addition, unlike prior work [30], Interstellar does not utilize a
Rocket Custom Coprocessor (RoCC) interface to communicate with
the main core for two reasons. First, Interstellar cannot achieve si-
multaneous detection by using the RoCC interface. This is because,
when using the RoCC interface, the commands for the coprocessor
are generated by the RoCC instruction committed on the main
core, which means that the coprocessor can receive the information

required for monitoring only after the main core’s commit stage.
Secondly, the RoCC interface is unnecessarily complicated for Inter-
stellar because Interstellar does not need the RoCC features, such
as communication with the L1 data cache and RoCC instruction
for software, and these features may even compromise the secu-
rity of Interstellar, which is designed against attacks on privileged
software.

4.3 Execution Flow of Interstellar
Initial setup. During the system’s boot process, Interstellar estab-
lishes the necessary initial security configurations for each attack
detection rule. Since the boot process of the system is trusted by
Interstellar, the initial security configuration information is trusted
security information that can be leveraged by attack detection rules
to detect attacks on privileged software. Initial security configu-
rations are categorized into two types: invariant configurations,
which are independent of the system and machine, and variant
configurations, which depend on the system and machine.

For the first type, initial security configurations are hard-wired
according to each attack detection rule and integrated into Interstel-
lar independently of the system’s boot process. However, for the
second type, Interstellar monitors the system’s boot process to ob-
tain and set necessary initial security configurations. For example,
although Interstellar requires the information of RISC-V PMP as the
initial security configuration to detect attacks, the PMP information
cannot be hard-wired in Interstellar because the protected physical
address boundaries vary for each machine. In this case, to obtain the
required initial configuration, Interstellar monitors specific instruc-
tions that are associated with the configuration during the boot
process, such as RISC-V’s CSRRW (Atomic Read and Write CSR)
instruction for setting PMP information. Then, the initial security
configurations are stored and kept only in the dedicated registers
of each attack detection rule inside of Interstellar, preventing the
initial configuration from being compromised by malicious access
after the boot process.

Instruction filtering. Once the initial setup for each monitor-
ing rule is done, Interstellar utilizes an instruction filter to filter
incoming instructions and the required microarchitectural informa-
tion. First, Interstellar identifies the monitored instructions among
the fetched instructions from the main core referring the current
filtering list and an opcode table in Interstellar. Then, Interstellar
filters the necessary information (e.g., program counter and mode
bit) associated with the monitored instruction based on the filtering
lists to determine whether the information is necessary for each at-
tack detection rule. If the newly fetched instruction is not one of the
monitored instructions, the instruction filter drops the transferred
instruction.

In addition, the communication protocol between Interstellar
and the main core always checks the availability of the information
transfer to each other using the ready/valid handshake protocol
before the actual information (i.e., data) is transferred. After the
instruction fetch stage of the main core, the fetched instruction and
the associated information are transferred to the instruction filter
of Interstellar when both ready/valid bits are set to 1.

Security monitoring. The microarchitectural information per-
mitted by the instruction filter is transmitted to each FSM that
requires the information to detect the attacks. The FSM stores the

204

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA YongHo Song, Byeongsu Woo, Youngkwang Han, and Brent ByungHoon Kang

Interstellar
Internal dedicated

scratchpad memory
Security Monitoring LogicInstruction

Filter
A list of

currently
monitored

instructions
and

Opcode table

A list of
permitted

information
associated

with monitored
instructions

Internal scratchpad
memory for FSM of

use-case 1

Fetched
instructions &
the associated

information

①

③

Permitted information B

Permitted information A

Rocket
core

Instruction
fetch
stage Internal scratchpad

memory for FSM of
use-case 2 (If necessary)

Attack detection rule for use-case 1

Register files

Finite-State Machine (FSM)
②

State1

Permitted
information

Initial
security config.

Step 1

State2

Register files Register files

Step 2 Step 3

Attack-
detected

state
State 0

(Initial state)

Rule defined with FSM for use-case 2
Rule defined with FSM for use-case 3

Rollback

Figure 3: Detailed design of Interstellar. ➀: The instruction filter passes only the required information associated with the
monitored instruction to each FSM. ➁: FSM evaluates the passed information and transits to the next state. ➂: For long-term
and repeated attack detection rules, permitted information can be stored in a dedicated internal scratchpad memory.

required information in the register files of each state that is asso-
ciated with the monitored instruction. If the required information
cannot be determined in the main core’s fetch stage, each state of
the FSM brings the necessary information (e.g., physical memory
address) from the main core’s stages where the information is de-
termined (e.g., the memory stage) through the instruction filter.
Then, each state utilizes the required information associated with
the monitored instruction and the initial security configuration to
detect malicious actions, and the state transition of FSM is made
based on the detection result. Notably, the FSM processes internal
register updates and state transitions within a single CPU clock
cycle to achieve simultaneous detection. Also, if the state transi-
tion occurs, the FSM requests an update to the filtering list of the
instruction filter, which is associated with the subsequent state.

Specifically, the state transitions within FSM work in the fol-
lowing order to detect malicious actions. Initially, to know which
transition condition is met, the FSM evaluates the required infor-
mation associated with the monitored instruction and the trusted
initial security configuration generated during the boot. Depending
on the evaluation result, the FSM can move to the next state, or it
can stay in the current state for the next identical evaluation. In
the case of staying in the current state, FSM stores the previous
required information of the state into the FSM’s internal scratchpad
memory and then stores the new required information in the state’s
registers. In addition, when the monitored instruction is squashed
on the main core due to branch misprediction or interrupts, FSM
rolls back to the state in which the associated monitored instruc-
tion is squashed. The state rollback is accomplished by restoring
the value of the previous registers that must be maintained for
correct monitoring within a single CPU clock cycle. Lastly, if FSM
reaches the attack-detected state through repeated state transitions
and state restorations, Interstellar responds to the main core in a
different way based on each attack detection rule.

Responding to the attack detection. Interstellar can take
proper actions to the main core based on the attack detection result
before the malicious instructions are committed on the main core.
This is because a state of FSMfinishes evaluating the detection result
simultaneously, while the malicious instructions, which are utilized

to perform attacks, are still on the main core.Whenmalicious action
conditions are met in the attack-detected state, Interstellar typically
takes one of two types of actions: (1) invalidating the monitored
instruction that performs the malicious action, or (2) halting the
CPU pipeline.

The first action is taken if Interstellar can neutralize the attack
only by invalidating the malicious instruction, and subsequent
system execution on the main core can run without problems. For
example, invalid memory access is performed with a single load or
store instruction that accesses an unauthorized physical address, so
that Interstellar can simply neutralize the attack by invalidating the
problematic load or store instruction. The second action is taken if
the subsequent system execution on the main core cannot be run
normally after Interstellar invalidates the malicious instruction. In
this case, the systems must be rebooted by the users. For example,
if Interstellar invalidates a branch instruction against ROP attacks,
then the system on the main core cannot be executed in normal
flow.
4.4 Security Analysis for Possible Attacks
Attackers assumed in our threat model may bypass or disturb Inter-
stellar’s monitoring by learning the behavior of the attack detection
rule defined with FSM. The attackers may learn the monitoring
behavior of FSM by (1) directly accessing or (2) indirectly inferring
the instruction filtering lists, the required information, and the
initial security configuration in Interstellar.

First, privileged attackers cannot directly access the required
information that is only accessible by FSMs at the microarchitec-
ture level to monitor attacks. The reason is that, unlike the prior
works [30, 33], Interstellar does not provide any privileged software
interfaces, such as ISAs and interface functions, for privileged users
to control the critical information of Interstellar. In addition, since
the hardware components of Interstellar are also partitioned from
the existing hardware components of the CPU, the attackers can-
not access Interstellar’s critical information utilized for detecting
attacks with the existing ISAs and interface functions.

More importantly, the indirect attacker may infer how FSMmon-
itor the attack by observing changes in the main core’s microar-
chitecture to bypass Interstellar’s monitoring, but the attackers are

205

Interstellar: Fully Partitioned and Efficient Security Monitoring
Hardware Near a Processor Core for Protecting Systems against Attacks on Privileged Software CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

infeasible to infer critical information, such as monitored instruc-
tions, to the best of our knowledge. First, the attacker cannot infer
the attack detection rule by intentionally sending instructions to
Interstellar and snooping their filtering results because Interstellar
does not change any main core’s microarchitecture according to
the instruction filtering results at all. Secondly, attackers cannot
infer whether Interstellar evaluates the fetched instruction to detect
attacks by measuring the latency of the instruction until it is com-
mitted on the main core, similar to existing timing channel attacks.
This is because Interstellar simultaneously completes evaluating
the monitored instruction before the instruction is committed on
the main core, and because of this, the monitoring behavior of
Interstellar does not delay the commit of instruction on the main
core, as shown in Figure 5.
5 Implementation and Use Cases
In this section, we explain how to implement Interstellar’s FSMs,
which define attack detection rules, considering the pipelined in-
order Rocket core. Then, we present three use cases, which In-
terstellar detect and block various attacks on higher-privileged
software, such as OS or TEE, by referring to existing detection
methods [22, 37, 46, 50] or proposing concise detection methods
achievable by Interstellar.
5.1 FSM Implementation
Attack detection rule. The attack detection rule is defined in the
form of FSM with a sequence of states. The states have register
sets that store the required microarchitectural information and the
initial security configuration. In addition, the states have computa-
tional logic circuits that evaluate the state transition condition with
the information in the registers. Importantly, the state’s computa-
tional logic circuits must be implemented so that the state transition
condition can be evaluated within a single CPU clock cycle, so as
not to disrupt the Rocket core’s pipeline. The reason is that Interstel-
lar receives the fetched instruction and required information every
cycle from the Rocket core’s pipeline, and Interstellar is designed
to be tightly coupled with the Rocket core to block attacks in a
timely manner. In addition, each FSM has an initial state and be-
gins the attack detection from the initial state after configuring the
initial security information during the system’s booting. The initial
setup process for FSM can be implemented by setting a constant
value in the state for the invariant configuration or obtaining the
configuration value by monitoring specific instructions during the
booting process for the variant configuration, as explained in the
initial setup paragraph of subsection 4.3.

Instruction squashing handler. The attack detection rule of
Interstellar receives the information associated with the monitored
instructions from the Rocket core’s pipeline. However, some fetched
instructions monitored by FSM are squashed before committing
on the Rocket core because of branch misprediction or interrupts.
As a result, some previous registers’ information utilized for de-
tecting attacks must be preserved before the monitored instruction
is committed to the main core. To handle instruction squashing
issues, we implement an instruction squashing handler with FSM.
The instruction squashing handler functions as an archive. The
handler preserves the previous registers’ values of the modified
state upon receiving new information associated with the moni-
tored instruction. It also retrieves information related to instruction

squashing, such as interrupt flags, from the Rocket core to know
whether the squashing occurs. If instruction squashing occurs, the
instruction squashing handler restores the preserved FSM’s state
and internal register values. Conversely, if the instruction is com-
mitted successfully, the handler discards the preserved information.
Meanwhile, Interstellar has a time window for handling instruction
squashing issues. The shortest time interval between instruction
squashing and receiving new information is a single CPU clock
cycle. In this situation, if the time taken for handling the instruction
squashing exceeds one CPU clock cycle, it is difficult to perform
instruction monitoring without stalling the Rocket core pipeline.
Fortunately, once instruction squashing occurs, it invalidates all
instructions after the instruction that causes the squashing. This
implies that squashing handling can be done by rolling back to the
state that monitors the squashed instruction, without performing
complex inverse operations on the state and registers. Since state
and register rollbacks are accomplished by simply copying values
from archived registers, instruction squashing handling is feasible
in a single CPU clock cycle.

5.2 Use Cases
Monitoring unauthorized memory accesses. Prior unautho-
rized memory access attacks [21, 46, 47] bypass the memory access
control for TEE by exploiting various vulnerabilities to leak data of
the TEE from lower-privileged software. To demonstrate Interstel-
lar’s use case, we focus on detecting and blocking such unauthorized
access attack scenario [47] that bypasses the memory access con-
trol of the TEE on the Rocket chip among the prior attacks. The
reason is that other attacks are performed by exploiting particular
vulnerabilities in the vendor’s CPU, whereas the PMP attack is per-
formed on the Rocket chip, where Interstellar is implemented. The
attacks on the Rocket chip’s TEE intervene in updating the PMP
unit, which provides a memory protection mechanism for TEE, in
order to access the memory region of the TEE from the attacker’s
application. The attacks make the systems skip CSR-related instruc-
tions, which are required to update PMP entries based on the initial
security configuration, by injecting faults during runtime.

Interstellar can simultaneously detect and block such PMP poi-
soning attack for unauthorized access to TEE on the Rocket chip as
follows. To get the initial memory protection information for TEE,
Interstellar retrieves the physical address boundaries and permis-
sions from the main core’s PMP registers by monitoring CSRRW
instruction (Atomic read/write CSR), which is used to set the PMP
registers, during the system’s booting. The information extracted
from PMP is stored in the initial security configuration registers
of FSM inside of Interstellar during the booting process. Since the
isolated physical memory boundaries for TEE management are
not modified after the booting period like security monitor of Key-
stone [39] and Intel SGX’s PRM [26], Interstellar only trusts the
initial PMP entries stored in the FSM’s initial security configuration
registers to detect attacks on TEE. After the initial configuration of
Interstellar, Interstellar monitors the load/store type instructions. If
a load/store instruction is received, Interstellar retrieves the target
physical address from the main core’s memory stage and evalu-
ates it with the PMP information stored in the Interstellar. Notably,
since the evaluation with multiple PMP entries can progress within
a single CPU clock cycle using multiple comparison logic of the

206

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA YongHo Song, Byeongsu Woo, Youngkwang Han, and Brent ByungHoon Kang

u u

u

Register files for
each step’s state

Internal
scratchpad

memory

Finite-state Machine

Next PC after call

Next PC after a
call instruction

Next PC after call
: misprediction or interrupt happens

Next PC
after a

call inst.

CPU
main
core

Write-
back
stage

Call instruction
(Initial state)

Nested Call & Return
(Validating state)

Instruction
squashing

handler for
Rocket core

Nested Call & Return
(Intermediate state)

Instruction
squashing handler

Instruction
squashing handler

of
nested

calls

Next PC
after a

call inst.

of
nested

calls

Call Ret.

Call

Additional
call before

commit

Previous
Call state

Nested
Call state

IF (next PC ==
Ret. address)

IF (next PC ==
Ret. address)

Call & Ret.

: inst. commit

Legend
: inst. fetch state recovery

IF (next PC !=
Ret. address)

data/result
transfer

:

Figure 4: The FSM of Interstellar defining the shadow stack

FSM, the result of the evaluation can be responded to the main
core before the load/store instruction is committed without stalling
the main core’s pipeline. If the evaluation results in unauthorized
access, Interstellar will send an invalid memory access flag to the
main core. The invalid memory access flag immediately squashes
the unauthorized physical address’s data loaded in the L1 data
cache and invalidates the causing load/store instruction before it
is committed on the main core. The cache invalidation is manda-
tory for preventing further unauthorized data leakage via cache
side-channel attacks.

Monitoring ROP attacks. ROP attacks are representative at-
tacks [18, 23, 40] that exploit memory safety vulnerabilities in the
software to leak secret data from privileged software. The ROP
attacks hijack the control flow of the privileged software by ma-
nipulating the return address in the function call stack for the priv-
ileged software. Among various defense mechanisms [22, 25, 49]
against the ROP attacks, we implement the shadow stack [22] in the
FSM of the Interstellar to detect and block the ROP attacks on TEE.
The shadow stack ensures that the program does not escape the
original control flow. The shadow stack records the return address
in a secure shadow stack when the call instruction is executed and
then compares the recorded address with the actual return address
when the return instruction is executed. In particular, unlike PH-
Mon’s shadow stack [30] that must trust the OS kernel to detect the
ROP attacks, Interstellar’s shadow stack can be utilized to safely
detect the ROP attacks on TEE from malicious OS kernel, such as
Dark-ROP [40].

Interstellar’s shadow stack mechanism is implemented with the
FSM and internal scratchpad memory, as shown in Figure 4. To
detect ROP attacks, FSM starts with the initial Call state, which
monitors a call instruction among the instructions fetched from the
main core. When the call instruction is fetched, the expected return
address (e.g., the next Program Counter (PC) of call inst.) passed
through the instruction filter is loaded in Interstellar’s internal reg-
ister. Then, FSM transitions to the Call & Return state by updating
the filtering list to monitor the return and call instructions. Also,
Interstellar stores the expected return address loaded in the previ-
ous state’s register to the internal scratchpad memory after the call

instruction is committed, and Interstellar sets the stack pointer to
retrieve the expected return address later. When a call instruction is
fetched in an intermediate Call & Return state, the expected return
address is loaded in the internal register as before without state
transition. If a return instruction is fetched, FSM transits to the
Validating Call & Return state. In the Validating state, both call and
return instructions are passed through the instruction filter in the
same way as in the intermediate state, but Interstellar validates
whether the control flow is hijacked or not at the same time. To
detect the ROP attack, Interstellar pops the expected return address
from the shadow stack of the scratchpad memory and compares the
expected return address with the actual return address that can be
manipulated by the ROP attacker. If the expected return address and
the actual return address are the same, the state transits back to the
intermediate Call & Return state. If they are different, Interstellar
sends the ROP attack flag to the main core to halt the execution of
the ROP attack.

Notably, the instructions fetched on themain core can be squashed
for various reasons, so the execution flow information sent to In-
terstellar and the actual execution flow of the main core may not
match unless the instruction squashing is handled. To correctly
detect the ROP attack, the instruction squashing handler must be
applied to the state that is repeatedly utilized to monitor the same
behaviors. The reason is that the expected return address loaded in
the state’s register can be overwritten by the new expected return
address of the next Call instruction before the instruction squashing
is determined in the main core. Moreover, the instruction squashing
handler is also mandatory for pushing the expected return address
into the internal scratchpad memory without being overwritten by
the next expected return address when the instruction is success-
fully committed. As shown in Figure 4, the instruction squashing
handler of Interstellar is enough with two additional states to back
up the expected return address for the correct attack detection,
considering the structure of Rocket core’s pipeline.

Monitoringmicroarchitecture timing side-channel attacks.
So far, some works have proposed remote microarchitectural

side-channel attacks [14, 35, 38], which exploit vulnerabilities in
microarchitectural components on the RISC-V CPU (e.g., a shared
cache or a branch predictor) and in target privileged software (e.g.,
OS kernel). We focus on the fact that most remote microarchi-
tectural side-channel attacks must repeatedly measure the timing
value related to the single behavior of the shared microarchitectural
hardware in a short duration. This is because the measured time
value has the noise from the uncontrollable hardware behaviors
with the attacker’s software. On the other hand, benign real-world
applications and system software do not measure the precise timing
values with such frequency. Especially, according to recent work
to detect cache timing channel attacks [37, 50], they detect various
cache timing attack methods with near 0% false positive rate and
very high accuracy only using the threshold value of the frequency
of time measurement that they discovered empirically.

To detect cache side-channel attacks on the RISC-V proces-
sor based on the core features of remote microarchitectural side-
channel attacks, Interstellar monitors the RDCYCLE instruction of
RISC-V (acting as the RDTSC instruction of x86), which the attacks
utilized to measure the execution time of the microarchitectural
hardware’s behavior in a clock cycle unit with high accuracy. Also,

207

Interstellar: Fully Partitioned and Efficient Security Monitoring
Hardware Near a Processor Core for Protecting Systems against Attacks on Privileged Software CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

we define in FSM that the cache timing channel attack is detected
if the time measurement period utilizing the RDCYCLE instruction
is within threshold cycles [37]. The FSM for detecting cache side-
channel attacks transits to the next state when the first RDCYCLE
instruction is sent from the instruction filter. At the same time,
FSM counts the clock cycle with the clock signal input synchro-
nized with the CPU clock. If the next RDCYCLE instruction is sent
from the instruction filter within the threshold cycle, FSM increases
the violation counter. If the violation counter increases above the
threshold, Interstellar determines that the attack is detected. Then,
Interstellar sends a kill signal to invalidate all subsequently fetched
RDCYCLE instructions before the instruction is committed on the
main core.
6 Evaluation
6.1 Experimental Setup
We implemented Interstellar on a Rocket Chip [15] using the Chisel
3 [17]. Table 3 shows the experimental parameters for Interstellar
and Rocket chip. We used Firesim [8] on the AWS EC2 F1 Xilinx Ul-
traScale+ VU9P and AMD Vertex 7 FPGA VC707 Evaluation Kit [6]
to evaluate the performance overhead of Interstellar-enabled Rocket
chip. Firesim uses the Linux kernel v6.2.0 and the VC707 board uses
the Linux kernel v4.15.0 equipped with the TEE functionality of
Keystone. LMbench [9], twelve applications from MiBench [10],
and seven applications from SPECint2006 [11] are utilized to evalu-
ate performance overhead. In addition, we used the values provided
by Xilinx Vivado [7] to measure the hardware cost: power and area.
Lastly, Interstellar is synced with Rocket core’s clock speed and
includes all the FSMs for three use cases.
6.2 Functionality Validation
In this subsection, we validate the functionalities of Interstellar for
each use case, described in subsection 5.2.

Physical Memory Protection.We reproduced the attack sce-
nario where an attacker manipulates PMP entries and leaks secrets
from an unauthorized physical address, similar to the prior unau-
thorized memory access attack [47]. To reproduce this scenario,
we modified the Rocket core’s PMP value that defines the TEE’s
physical address boundary, incurring the inconsistency between In-
terstellar’s PMP information and Rocket core’s PMP. This inconsis-
tency problem also occurs in the situation where the prior attacker
injects a fault in the PMP setting of the Rocket core by exploit-
ing its target vulnerability. Then, we used the devmem function of
Busybox [12] with OS privilege to access the unauthorized memory
address, where the PMP originally protects. In the baseline Rocket
core case, the unauthorized memory access attack on TEE [39] was
successfully performed, although the target memory is under the
PMP protection. On the other hand, in the Interstellar-enabled case,
when unauthorized access to the originally PMP-protected memory
occurred, Interstellar neutralized the unauthorized access attack.

ROP attacks in TEE. We used the attack scenario explained
by DarkROP [40] to validate the shadow stack of Interstellar. We
used Keystone [39] for TEE to reproduce the attack scenario against
TEE on the RISC-V CPU. There is a function in the TEE part of the
payload, which has strcpy() function causing a buffer overflow.
The enclave code of the application lets an attacker manipulate the
function’s return address and hijack the control flow. For the Rocket
core without Interstellar, the attacker successfully manipulated the

0 20 40 60 80 100
0

200

400

600
LOAD

0 20 40 60 80 100
0

50

100

STORE

0 20 40 60 80 100
2

3

4

CALL

0 20 40 60 80 100
0

100

200

300

RETURN

0 20 40 60 80 100
2
3
4

RDCYCLE

Sequence # of each instruction

Re
qu

ire
d

cy
cle

s
un

til
 co

m
m

itm
en

t

w/ Interstellar
w/o Interstellar

Figure 5: Required Rocket chip’s clock cycles for each instruc-
tion until its commitment. Data was collected by running
a RISC-V proxy kernel (LOAD, STORE, CALL, RETURN) or
executing a simple application (RDCYCLE) on the Rocket
chip emulator with and without Interstellar.

Pipeline 5-stage, in-order

L1 I-cache, D-cache 16KB, 4-way set-associative

L2 cache 512KB, 8-way set-associative, single bank

Interstellar’s Block RAM 36KB, 576 64-bit-sized entries

Frequency (MHz) 50, 100 on VC707 board, 100 on Firesim

Table 3: Parameters for Interstellar and Rocket chip

return address of the vulnerable function and executed his target
payload. However, in the Interstellar-enabled Rocket core case, the
shadow stack of Interstellar detected the attack and prevented the
application from jumping to the forged return address.

Timing side-channel attacks. To validate the functionality of
the timing attack monitor, we reproduced the Flush+Reload attack
on the RISC-V CPU [35], which is a timing side-channel attack on
the first-level cache. Interstellar increments the violation counter
if the time interval between RDCYCLE instructions is within 100
cycles referring to the prior timing side-channel attacks on the
first-level cache [35]. Also, if the violation counter exceeds 300,
Interstellar considers the frequent execution of the RDCYCLE in-
struction as a timing side-channel attack. The attacker successfully
cached and read the target information by measuring the memory
access time when Interstellar is not employed. However, when the
attacker tried to get the value by measuring the memory access
time on the Interstellar-enabled CPU, the timing attack monitor of
Interstellar identified the repeated memory access time measuring
pattern and neutralized the following timing attack.

6.3 Performance Evaluation
We conducted performance evaluations to check the overhead in-
duced by Interstellar. Then, we compare the performance of Inter-
stellar with the performance of related works, PHMon [30] and
ISA-grid [33]. Figure 6 shows the normalized execution time of
SPECint2006, MiBench, and LMbench to the baseline Rocket core.

In the SPECint2006 and MiBench cases, even PHMon shows
low overhead in the benchmarks (up to 3.4% and 5.1%), Interstel-
lar shows much lower overheads in the benchmark (up to 0.68%

208

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA YongHo Song, Byeongsu Woo, Youngkwang Han, and Brent ByungHoon Kang

100.09

100.11

100.44

99.99

100.03

99.94

99.95

100.08

100.04

99.88

100.19

100.08

100.0

100.02

100.68

100.13

99.96

99.97

99.64

99.96

99.42

100.02

99.92

99.84

100.3

103.4

101.1

101.1

102.6

101.2

102.7

101.77

bzip2 gcc gobmk hmmer h264ref astar xalancbmk GeometricMean
0

50
100

99.99

100.03

100.0

100.04

100.12

100.0

100.01

100.01

99.99

100.0

100.0

100.0

100.02

99.86

100.02

100.04

99.97

99.94

99.98

99.99

100.01

100.0

99.87

100.0

100.0

99.97

100.0

98.18

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

99.85

100.5

100.6

101.5

100.2

101.8

100.0

100.1

100.8

100.9

100.4

105.1

100.1

100.99

adpcm (enc) basicmath bitcount blowfish (enc) dijkstra FFT gsm (enc) jpeg (enc) qsort sha stringsearch susan GeometricMean
0

50
100

99.74

97.09

100.31

100.66

99.44

100.75

101.73

100.37

105.48

102.06

100.0

100.66

100.0

102.67

100.83

100.09

102.27

100.09

101.38

100.95

Null I/O Stat Open/Close Fork proc Geometric
Mean

0
50

100 99.78

99.99

100.0

100.0

100.0

100.0

100.0

100.02

99.97

100.14

100.14

99.96

100.0

100.0

100.0

100.0

100.0

100.03

99.51

98.53

99.95

100.0

100.02

99.98

100.0

100.0

99.75

103.8

102.04

100.7

100.11

100.36

100.36

100.11

100.0

100.93

Pipe AF UNIX File
reread

Mmap
reread

Bcopy
(libc)

Bcopy
(hand)

Mem read Mem write Geometric
Mean

0
50

100

Interstellar 50MHz
Interstellar 100MHz
Interstellar 100MHz on Firesim
PHMon 25MHz
ISA Grid 100MHzSPECint2006

MiBench

Processor, Processes Local communication latencies

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e
(%

)

Figure 6: The normalized execution time of SPECint2006, MiBench, and LMbench. Processor, Processes and Local communication
latencies are part of the LMbench results. Each execution time is normalized with the execution time on the baseline Rocket
core, and 100% means the execution time on the Interstellar-enabled CPU is the same as that on the baseline CPU.

and 0.12%). Interstellar can show such extremely low overhead
because Interstellar does not require any pipeline stall during the
monitoring and attack detection process. This is possible because
Interstellar can optimize each attack detection rule at the hardware
logic level and determine whether the monitored instruction meets
the attack condition before the instruction is committed on Rocket
core. Figure 5 presents that Interstellar does not stall the execution
of Rocket core’s pipeline. Moreover, the results demonstrate that
Interstellar is robust to plausible instruction timing channel attacks,
discussed in subsection 4.4. Furthermore, the monitoring speed of
Interstellar is not slowed down due to the main memory access,
because Interstellar utilizes internal scratchpad memory, whose
access latency is one CPU clock cycle, instead of the main memory.
Thus, Interstellar shows better performance than PHMon in the
SPECint2006 and Mibench.

In the LMbench case, most workloads show that Interstellar in-
duces negligible overheads, up to 2.67%. Specifically, Interstellar
shows much lower overheads of up to 0.13% when running on
the experimental environment same as the ISA-Grid (VC707 board,
100MHz). Both the Interstellar and the ISA-Grid show such negligi-
ble overheads because both minimize the use of main memory and
receive the monitored instructions at the Rocket core’s frontend.
However, the performance of Interstellar is slightly better in the
same experimental environment. The reason is that ISA-Grid still re-
quires main memory accesses to update the domain privilege cache,
although ISA-Grid employs a domain privilege cache to reduce the
main memory access.

6.4 Hardware Cost Analysis
We analyzed the hardware cost of Interstellar to explore how much
additional power consumption and area overhead is induced. The
power and area overheads of Interstellar presented in Figure 7 are
obtained with all the FSMs for three use cases implemented in paral-
lel. Figure 7 also shows the area overhead and power consumption
of the Interstellar’s each use case. The values are given by compar-
ing the values of the Interstellar-enabled core and those of baseline
Rocket core on the VC707 board.

Power. The additional power consumption induced by Interstel-
lar is up to 34.10% compared to the baseline Rocket core. The total
power overhead of Interstellar is almost the same as the sum of the
power overhead of each use case because the Interstellar’s FSMs for

Unauthorized
memory access

Timing attack Shadow stack
128 entries
(1 BRAM)

Shadow stack
512 entries
(1 BRAM)

Shadow stack
1024 entries
(2 BRAMs)

Interstellar

(1 BRAM)

0

5

10

15

20

25

30

35

0

5

10

15

20

25

30

35

Area overhead Power consumption (50MHz) Power consumption (100MHz)

Ar
ea

 o
ve

rh
ea

d
(%

)

Re
la

tiv
e

po
w

er
 c

on
su

m
pt

io
n

(%
)

Figure 7: The relative hardware cost of Interstellar to Rocket
core on VC707 board. Interstellar includes unauthorized
memory access, timing attack, and 128-entries shadow stack.

use cases are executed in parallel. Also, the relative total power con-
sumption of Interstellar decreases as the Rocket chip’s clock speed
increases (34.10% on the 50MHz core and 20.95% on the 100MHz
core). This is because the increase in the power consumption of
the baseline Rocket core is higher than that of the Interstellar as
the Rocket chip’s clock speed increases. The timing attack monitor,
which has the simplest implementation among monitors, has the
lowest power consumption, while the shadow stack has the highest
power consumption because Block RAM (BRAM) is additionally
used as the scratchpad memory for the shadow stack.

We also measured the shadow stack’s power consumption for
different numbers of entries to learn the effect of the shadow stack
size. As the number of entries increases, the power consumption
increases to 25.02% when the shadow stack has 1024 entries. As a
BRAM can handle up to 576 shadow stack entries, two BRAMs are
used when the shadow stack has 1024 entries. Thus, the increase in
power overhead between the cases of 512 entries and 1024 entries
is larger than the increase between the case of 128 entries and 512
entries because the number of BRAMs is changed.

Area. Area overhead represents the relative number of the Look
Up Tables (LUTs) used by Interstellar compared to Rocket core on
VC707 board, which are utilized for implementing registers and
logic in Interstellar. The area overhead of Interstellar, where all
three use cases are implemented together, is 21.72%. To analyze
the area overheads associated with each use case, we also imple-
mented each use case’s FSM separately to measure the individual
area overhead. As a result, for each Interstellar’s use case, the tim-
ing attack monitor shows the lowest area overhead (3.69%) due to
its simplicity. In addition, the memory access monitor has a slightly
higher overhead (9.30%) than the default shadow stack (8.56%). This

209

Interstellar: Fully Partitioned and Efficient Security Monitoring
Hardware Near a Processor Core for Protecting Systems against Attacks on Privileged Software CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

is because Interstellar processes several physical address bound-
aries in parallel to monitor memory accesses in a single CPU clock
cycle. The number of registers and logic LUTs used in the physical
address-checking process increases proportionally to the number
of physical address boundaries. Currently, Interstellar uses eight
physical address boundaries, increasing the register and logic LUTs
by a factor of 8.

Meanwhile, the Interstellar’s shadow stack implements its in-
ternal scratchpad memory using BRAM, resulting in faster access
speeds. Increasing the number of shadow stack entries can also
increase the number of BRAMs based on the default BRAM size.
Interestingly, Figure 7 shows that the number of LUTs does not
increase proportionately to the number of stack entries. This is
because neither the FSM nor the instruction filtering rule changes
as the stack entry increases. Hence, the memory access monitor
shows an area overhead higher than that of the shadow stack.

The prototype of Interstellar demonstrates an area overhead
ranging from 3.69% to 9.30%, compared to 11% for PHMon [30] de-
tecting a single attack. When detecting three attacks, the overhead
for Interstellar increases to 21.72%, whereas 16% for PHMon with
three matching units (MU). These hardware cost results for Inter-
stellar are derived from the fact that Interstellar operates all attack
detection rules in parallel and each rule utilizing its own registers
and logic units, resulting in varying hardware costs for each attack
detection rule, as illustrated in Figure 7. In contrast, PHMon incurs
a consistent hardware cost for each matching unit, as its hardware
design remains consistent regardless of the programmed use cases.

Although implementing defenses for additional use cases in-
evitably incurs additional hardware costs, Interstellar could mean-
ingfully reduce overall complexity and costs by consolidating simi-
lar use cases, thereby enhancing scalability and efficiency. Currently,
FSMs are separately designed to address distinct use cases. How-
ever, when multiple monitoring rules share comparable hardware
logic units and operational contexts, the design of each FSM within
Interstellar could be effectively merged into a single FSM with a
modest quantity of additional hardware costs.

7 Discussion and Related works
In this section, we address some of the undiscussed aspects of
Interstellar and compare Interstellar with additional related works.

7.1 Generality of Interstellar in terms of Other
Microarchitecture’s Features

Out-of-order execution. The FSMs of Interstellar were imple-
mented on the Rocket core’s in-order pipeline, whereas many com-
mercial CPU cores have been designed with Out-of-Order (OoO)
execution pipelines. Interstellar is subjected to some modifications
for different microarchitectures of the core’s pipeline, but we antic-
ipate that Interstellar can support the OoO cores while ensuring
simultaneous detection. This is because OoO pipelines still fetch
instructions in order, and the commits of instructions are also done
with the fetched order through reorder buffers. (i.e., OoO only oc-
curs in the pipeline’s execution stage). To achieve simultaneous
detection, the part of the FSM that references hardware signals
between the execution and commit stage of the core requires mod-
ification to allow the necessary data to be retrieved out-of-order
from the main core in a timely manner.

Additionally, because of the additional hardware that supports
OoO execution, OoO cores may require more cycles between the
fetch and commit stages compared to the in-order cores. Interstellar
can leverage the additional cycles to realize more complicated attack
detection rules by utilizing the FSMs without harming the core’s
performance while achieving simultaneous detection.

Compatability on other ISAs. Interstellar is designed for the
Rocket chip based on the RISC-V ISA, but Interstellar can also be
utilized for other ISAs, such as x86_64 and ARM ISA. To support
other ISAs, we need to modify Interstellar’s instruction filter by
referring to the opcode table and the register types of other ISAs. In
addition, Interstellar is compatible with CISC ISAs as well as RISC
ISAs while supporting simultaneous detection, even though the
decoding of CISC ISAs is relatively time-consuming compared to
RISC ISAs. This is because the Interstellar’s instruction filter can be
designed to decode CISC’s instructions in a simultaneous manner
during the main core’s decode stage.

Impacts of faster and advanced cores. All components of
Interstellar, including the instruction filter and FSMs, are synchro-
nized with the CPU core’s clock signal. Since the identical CPU
clock signal is shared by the CPU core’s pipeline and Interstellar,
the attack detection process of Interstellar operates at exactly the
same speed as the core’s pipeline. Given that Interstellar and the
core’s pipeline operate at the same speed, even if the core’s process-
ing speed increases due to a higher clock frequency, Interstellar
will still be able to fetch instructions and identify attacks within
the specified time window of three cycles. Consequently, simul-
taneous detection remains feasible without pipeline stalls, even
on advanced cores with higher frequencies. Besides, the advanced
cores with a higher clock speed tend to utilize more hardware units
to spread out many complex tasks over multiple clock cycles, but
Interstellar’s FSMs are not necessarily as complex as the pipelines
on faster cores. This is because Interstellar only needs to retrieve
the information needed for security checks without maintaining
the entire states of the complex pipelines.

7.2 Practicality of Interstellar
Area overhead of Interstellar. The prototype of Interstellar was
implemented on a Rocket chip, and the area overhead was mea-
sured relative to the Rocket core’s area. Instead of Rocket core, if
Interstellar is designed for advanced CPU cores, Interstellar’s area
overhead would translate into a relatively smaller overhead. This is
because while the hardware components of an advanced CPU core
are much larger compared to the simple 5-stage in-order Rocket
core, the hardware components of Interstellar’s FSM do not neces-
sarily increase as much as the complex hardware components for
supporting the advanced CPU core’s capabilities.

According to the recent work [32] comparing the areas of Rocket
core with other advanced cores, the ten-stage BOOM [3], which
supports OoO execution and uses the same RISC-V ISA, has a 4.1
times larger area than the Rocket core when measured through
ASIC. This increase in area is due to the presence of more pipeline
stages compared to the five-stage in-order Rocket core. Also, sup-
port on the OoO execution results in a more complex structure and
requires significantly more hardware components. Besides, similar
to ARM’s big.LITTLE architecture [1], Interstellar can be applied
selectively to a CPU’s particular secure core group.

210

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA YongHo Song, Byeongsu Woo, Youngkwang Han, and Brent ByungHoon Kang

Practical challenges in implementing FSMs. Once Interstel-
lar’s FSMs are implemented as logic circuits, users only can utilize
the attack detection rules that are predefined in FSMs. Nonetheless,
to allow CPU owners minimal composability, we can consider intro-
ducing CPU-specific instructions to change the detection rules in
BIOS setup between the attack detection rules that are implemented
on each FSM. Besides, the FSM-based design, while effective, may
introduce complexity in the implementation and debugging process,
particularly for large-scale systems with numerous attack detec-
tion rules. Implementing and verifying FSMs for all possible attack
vectors in a large-scale deployment could be labor-intensive and
error-prone. To reduce such manual efforts and decrease the likeli-
hood of errors, we can consider the automated tools for generating
FSMs based on high-level attack descriptions.

7.3 Related Works and Potential Use Cases
Notary. Notary [16] is a separate hardware security module that
operates independently of software control. Notary is designed
to securely execute security-sensitive applications without data
or execution information leakage in multi-user environments by
utilizing a deterministic start. Similar to Interstellar, Notary imple-
ments separate hardware security modules and is able to defend
against information leakage through cache side-channel attacks.
However, Interstellar and Notary differ in their goals and methods.
Interstellar assumes all software can potentially perform attacks,
while Notary focuses on inter-agent attacks. In addition, Inter-
stellar reads instruction information to detect and defend against
attacks, whereas Notary uses strong isolation and deterministic
starts. These differences stem from Interstellar’s focus on active de-
fense through instructionmonitoring, compared to Notary’s passive
defense through memory isolation and secure storage provision.

AMD PSP. The AMD Platform Security Processor (PSP) [13] is an
isolated security co-processor within the Systems-on-Chip operat-
ing independently from the main processor’s core, and it supports
security features, such as hardware-validated boot and crypto ac-
celeration. Moreover, PSP monitors the main processor’s events to
check whether the main processor is operating within the defined
limits. Although both PSP and Interstellar seem to be similar be-
cause they are security modules operating in a hardware-isolated
manner, their methodology for enhancing the system’s security is
different. While PSP focuses on isolating and providing security
functionalities and checking the main processor’s hardware status,
Interstellar focuses on monitoring and timely blocking malicious
actions performed on nearby main cores on a per-instruction basis.

Benefits of Interstellar and potential use cases. The high-
level benefit of Interstellar compared to other methods such as
setting the L-bit in PMP register is a better balance between secu-
rity and flexibility: 1) the instruction-tracing hardware monitor’s
realms that are completely inaccessible from potentially vulnerable
software and 2) timely and appropriate responses to various attack
detection cases. Although setting the L-bit may achieve protection
by locking the PMP entries from modification, the L-bit cannot be
withdrawn unless resetting the system. Furthermore, it is difficult to
use the L-bit for common attack prevention cases, such as privilege-
basedmemory access control, because setting the L-bit enforces that
PMP policy is applied uniformly to all the software regardless of its
privilege. However, Interstellar can safely protect PMP entries from

tampering attacks by storing the entries in its internal registers
while retaining PMP’s privilege-based protection functionalities. In
addition, Interstellar can properly respond to the unauthorized data
access via the PMP tampering by invalidating the data cache that
might load the unauthorized data, preventing potential information
leakage that exploits cache side-channel attacks.

Regarding a potential use case related to commercial CPUs, In-
terstellar could be utilized to detect the Model-specific Registers
(MSRs)-abusing attacks [46] in Table 1, which injects fault into SGX
enclave by manipulating the MSR that is utilized to adjust volt-
age and frequency of Intel CPU to restore crypto keys stored in
the enclave. Interstellar can trace WRMSR privileged instruction,
which is used to write values in certain addresses of MSR. Also,
Interstellar can retrieve values stored in the EAX:EDX registers
after the RDMSR or WRMSR instruction is fetched. As suggested
in countermeasures of the attacks, the CPU’s safe voltage levels
can be defined after the chip testing, and Interstellar can use the
predefined voltage levels to detect whether the abnormal voltage-
frequency pair is written to the 0x150 MSR. During the booting
process, Interstellar initializes the predefined safe voltage range in
the FSM’s initial security configuration registers. Then, Interstellar
detects the attacks by comparing the safe voltage values with the
values in the EAX:EDX registers when WRMSR instruction is sent
to Interstellar. If the attack is detected, Interstellar can squash the
instruction before the commit by sending a signal to the main core.

8 Conclusion
We presented the design and implementation of Interstellar, fully
partitioned security monitoring logic from both the CPU’s main
core and privileged software. In addition, by introducing the FSM-
based design, Interstellar can block instructions that carry out at-
tacks in a timely manner without stalling the main core. We evalu-
ated a prototype of Interstellar, including three defense use cases
against the attacks on the privileged software, on the two differ-
ent FPGA boards equipped with TEE-enabled and default Linux,
respectively. Our evaluation shows that Interstellar’s design ef-
fectively protects the system against the three attacks from the
lower-privileged software that leak data by exploiting vulnerabili-
ties in the higher-privileged software or shared hardware.

Acknowledgements
This research was fully supported by CySecuLab and partially
supported by the NRF of Korea (NRF-2020R1A2C2101134), CSP,
KEP, and KAIST-NYU project. This research was also partially
supported by IITP under MSIT of Korea (RS-2024-00425503 and
RS-2024-00440780).

References
[1] 2013. big.LITTLE Technology: Making very high performance available in a

mobile envelope without sacrificing energy efficiency. https://armkeil.blob.c
ore.windows.net/developer/Files/pdf/white-paper/big-little-technology-the-
future-of-mobile.pdf. Published: 2013.

[2] 2020 Jan. AMD SEV-SNP: Strengthening VM Isolation with Integrity Protection
and More. https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthenin
g-vm-isolation-with-integrity-protection-and-more.pdf.

[3] 2020 Jun. RISCV-BOOMDocumentation. https://docs.boom-core.org/_/downloa
ds/en/stable/pdf/. Accessed: 2023-08-11.

[4] 2022 Jul. Chipyard Documentation. https://chipyard.readthedocs.io/_/download
s/en/1.7.1/pdf/. Accessed: 2023-08-11.

[5] 2022 Oct. Learn the architecture - An introduction to AMBA AXI. https://develo
per.arm.com/documentation/102202/0300/Channel-transfers-and-transactions.

211

https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/big-little-technology-the-future-of-mobile.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/big-little-technology-the-future-of-mobile.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/big-little-technology-the-future-of-mobile.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://docs.boom-core.org/_/downloads/en/stable/pdf/
https://docs.boom-core.org/_/downloads/en/stable/pdf/
https://chipyard.readthedocs.io/_/downloads/en/1.7.1/pdf/
https://chipyard.readthedocs.io/_/downloads/en/1.7.1/pdf/
https://developer.arm.com/documentation/102202/0300/Channel-transfers-and-transactions
https://developer.arm.com/documentation/102202/0300/Channel-transfers-and-transactions

Interstellar: Fully Partitioned and Efficient Security Monitoring
Hardware Near a Processor Core for Protecting Systems against Attacks on Privileged Software CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

[6] 2023 Nov. AMD Virtex 7 FPGA VC707 Evaluation Kit. https://www.xilinx.com/p
roducts/boards-and-kits/ek-v7-vc707-g.html/#information.

[7] 2023 Nov. AMD Vivado - Vivado Design Suite. https://www.xilinx.com/product
s/design-tools/vivado.html.

[8] 2023 Nov. Fast and Effortless FPGA-accelerated Hardware Simulation with
On-Prem and Cloud Flexibility. https://fires.im/. Accessed: 2023-11-27.

[9] 2023 Nov. LMbench - Tools for Performance Analysis. https://lmbench.sourcefo
rge.net/. Accessed: 2023-11-27.

[10] 2023 Nov. MiBench Version 1.0. https://vhosts.eecs.umich.edu/mibench/.
[11] 2023 Nov. SPEC CPU 2006. https://www.spec.org/cpu2006/.
[12] 2024 Jan. Busybox. https://busybox.net/. Accessed: 2024-01-09.
[13] Advanced Micro Devices, Inc. 2016. BIOS and Kernel Developer’s Guide (BKDG)

for AMD Family 16h Models 30h-3Fh Processors. https://www.amd.com/content/
dam/amd/en/documents/archived-tech-docs/programmer-references/52740_1
6h_Models_30h-3Fh_BKDG.pdf Revision: 3.06.

[14] Mahya Morid Ahmadi, Faiq Khalid, and Muhammad Shafique. 2021. Side-channel
attacks on RISC-V processors: Current progress, challenges, and opportunities.
arXiv preprint arXiv:2106.08877 (2021).

[15] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Bian-
colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraele-
vitz, et al. 2016. The rocket chip generator. EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2016-17 4 (2016), 6–2.

[16] Anish Athalye, Adam Belay, M Frans Kaashoek, Robert Morris, and Nickolai
Zeldovich. 2019. Notary: A device for secure transaction approval. In Proceedings
of the 27th ACM Symposium on Operating Systems Principles. 97–113.

[17] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R Avižienis, J. Wawrzynek,
and K. Asanović. 2012. Chisel: Constructing hardware in a Scala embedded
language. In DAC Design Automation Conference 2012. 1212–1221.

[18] Andrea Biondo, Mauro Conti, Lucas Davi, Tommaso Frassetto, and Ahmad-Reza
Sadeghi. 2018. The Guard’s Dilemma: Efficient Code-Reuse Attacks Against Intel
SGX. In 27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD,
USA, August 15-17, 2018. USENIX Association, 1213–1227.

[19] Tyler Bletsch, Xuxian Jiang, Vince W Freeh, and Zhenkai Liang. 2011. Jump-
oriented programming: a new class of code-reuse attack. In Proceedings of the 6th
ACM symposium on information, computer and communications security. 30–40.

[20] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. 2017. Software grand exposure: SGX cache
attacks are practical. In 11th USENIX Workshop on Offensive Technologies.

[21] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient
Out-of-Order Execution. In 27th USENIX Security Symposium, USENIX Security
2018, Baltimore, MD, USA, August 15-17, 2018. USENIX Association, 991–1008.

[22] Nathan Burow, Xinping Zhang, and Mathias Payer. 2019. SoK: Shining light on
shadow stacks. In 2019 IEEE Symposium on Security and Privacy. 985–999.

[23] Nicholas Carlini and David Wagner. 2014. ROP is still dangerous: Breaking
modern defenses. In 23rd USENIX Security Symposium (SEC’ 14). 385–399.

[24] David Cerdeira, José Martins, Nuno Santos, and Sandro Pinto. 2022. ReZone:
Disarming TrustZone with TEE Privilege Reduction. In 31st USENIX Security
Symposium, USENIX Security 2022. USENIX Association, 2261–2279.

[25] Yueqiang Cheng, Zongwei Zhou, Miao Yu, Xuhua Ding, and Robert H. Deng.
2014. ROPecker: A Generic and Practical Approach For Defending Against ROP
Attacks. In 21st Annual Network and Distributed System Security Symposium,
NDSS 2014, San Diego, California, USA, February 23-26, 2014. The Internet Society.

[26] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptol.
ePrint Arch. (2016), 86. http://eprint.iacr.org/2016/086

[27] Victor Costan, Ilia A. Lebedev, and Srinivas Devadas. 2016. Sanctum: Minimal
Hardware Extensions for Strong Software Isolation. In 25th USENIX Security
Symposium, USENIX Security 16. USENIX Association, 857–874.

[28] Sanjeev Das, JanWerner, Manos Antonakakis, Michalis Polychronakis, and Fabian
Monrose. 2019. SoK: The Challenges, Pitfalls, and Perils of Using Hardware
Performance Counters for Security. In 2019 IEEE Symposium on Security and
Privacy (SP). 20–38. https://doi.org/10.1109/SP.2019.00021

[29] Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian Monrose. 2014.
Stitching the Gadgets: On the Ineffectiveness of Coarse-Grained Control-Flow
Integrity Protection. In 23rd USENIX Security Symposium (SEC’ 14). 401–416.

[30] Leila Delshadtehrani, Sadullah Canakci, Boyou Zhou, Schuyler Eldridge, Ajay
Joshi, and Manuel Egele. 2020. PHMon: A programmable hardware monitor and
its security use cases. In Proceedings of the 29th USENIX Conference on Security
Symposium. 807–824.

[31] Leila Delshadtehrani, Schuyler Eldridge, Sadullah Canakci, Manuel Egele, and
Ajay Joshi. 2017. Nile: A programmable monitoring coprocessor. IEEE Computer
Architecture Letters 17, 1 (2017), 92–95.

[32] Alexander Dörflinger, Mark Albers, Benedikt Kleinbeck, Yejun Guan, Harald
Michalik, Raphael Klink, Christopher Blochwitz, Anouar Nechi, and Mladen
Berekovic. 2021. A comparative survey of open-source application-class RISC-V

processor implementations. In Proceedings of the 18th ACM international confer-
ence on computing frontiers. 12–20.

[33] Shulin Fan, Zhichao Hua, Yubin Xia, Haibo Chen, and Binyu Zang. 2023. ISA-Grid:
Architecture of Fine-Grained Privilege Control for Instructions and Registers. In
Proceedings of the 50th Annual International Symposium on Computer Architecture
(ISCA ’23). Association for Computing Machinery, Article 15, 15 pages.

[34] Erhu Feng, Xu Lu, Dong Du, Bicheng Yang, Xueqiang Jiang, Yubin Xia, Binyu
Zang, andHaibo Chen. 2021. Scalablememory protection in the PENGLAI enclave.
In 15th USENIX Symposium on Operating Systems Design and Implementation
(OSDI’ 21). 275–294.

[35] Lukas Gerlach, Daniel Weber, Ruiyi Zhang, and Michael Schwarz. 2023. A
Security RISC: Microarchitectural Attacks on Hardware RISC-V CPUs. In 44th
IEEE Symposium on Security and Privacy.

[36] Mohammad A. Islam, Shaolei Ren, and Adam Wierman. 2017. Exploiting a Ther-
mal Side Channel for Power Attacks in Multi-Tenant Data Centers. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’17). Association for Computing Machinery, 1079–1094.

[37] Arsalan Javeed, Cemal Yilmaz, and Erkay Savas. 2021. Detector+: An approach
for detecting, isolating, and preventing timing attacks. Computers & Security 110
(2021), 102454.

[38] Anh-Tien Le, Trong-Thuc Hoang, Ba-Anh Dao, Akira Tsukamoto, Kuniyasu
Suzaki, and Cong-Kha Pham. 2023. A cross-process Spectre attack via cache on
RISC-V processor with trusted execution environment. Comput. Electr. Eng. 105
(2023), 108546. https://doi.org/10.1016/J.COMPELECENG.2022.108546

[39] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanovic, and Dawn
Song. 2020. Keystone: an open framework for architecting trusted execution
environments. In EuroSys ’20: Fifteenth EuroSys Conference 2020, Heraklion, Greece,
April 27-30, 2020. ACM, 38:1–38:16.

[40] Jae-Hyuk Lee, Jin Soo Jang, Yeongjin Jang, Nohyun Kwak, Yeseul Choi, Changho
Choi, Taesoo Kim,Marcus Peinado, and Brent ByungHoon Kang. 2017. Hacking in
Darkness: Return-oriented Programming against Secure Enclaves. In 26th USENIX
Security Symposium, USENIX Security 2017, Vancouver, BC, Canada, August 16-18,
2017. USENIX Association, 523–539.

[41] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus
Peinado. 2017. Inferring Fine-grained Control Flow Inside SGX Enclaves with
Branch Shadowing. In 26th USENIX Security Symposium, USENIX Security 2017,
Vancouver, BC, Canada, August 16-18, 2017. USENIX Association, 557–574.

[42] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan
Mangard. 2016. ARMageddon: Cache Attacks on Mobile Devices. In 25th USENIX
Security Symposium, USENIX Security 16. USENIX Association, 549–564.

[43] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from
User Space. In Proceedings of the 27th USENIX Conference on Security Symposium
(SEC’18). USENIX Association, 973–990.

[44] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. 2015. Last-
Level Cache Side-Channel Attacks are Practical. In 2015 IEEE Symposium on
Security and Privacy, SP 2015. IEEE Computer Society, 605–622.

[45] Daniel Molka, Daniel Hackenberg, Robert Schöne, and Matthias S Müller. 2010.
Characterizing the energy consumption of data transfers and arithmetic opera-
tions on x86- 64 processors. In International conference on green computing. IEEE,
123–133.

[46] Kit Murdock, David F. Oswald, Flavio D. Garcia, Jo Van Bulck, Daniel Gruss,
and Frank Piessens. 2020. Plundervolt: Software-based Fault Injection Attacks
against Intel SGX. In 2020 IEEE Symposium on Security and Privacy, SP 2020, San
Francisco, CA, USA, May 18-21, 2020. IEEE, 1466–1482.

[47] Shoei Nashimoto, Daisuke Suzuki, Rei Ueno, and Naofumi Homma. 2020. By-
passing Isolated Execution on RISC-V with Fault Injection. IACR Cryptol. ePrint
Arch. (2020), 1193. https://eprint.iacr.org/2020/1193

[48] Bernard Ngabonziza, Daniel Martin, Anna Bailey, Haehyun Cho, and Sarah
Martin. 2016. TrustZone Explained: Architectural Features and Use Cases. In
2016 IEEE 2nd International Conference on Collaboration and Internet Computing
(CIC). 445–451. https://doi.org/10.1109/CIC.2016.065

[49] Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis. 2013. Trans-
parent ROP Exploit Mitigation Using Indirect Branch Tracing. In Proceedings of
the 22th USENIX Security Symposium, Washington, DC, USA, August 14-16, 2013.
USENIX Association, 447–462.

[50] Musa Sadik Unal, Arsalan Javeed, Cemal Yilmaz, and Erkay Savas. 2022. Hy-
perdetector: Detecting, isolating, and mitigating timing attacks in virtualized
environments. In International Conference on Cryptology and Network Security.
Springer, 188–199.

[51] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-channel
attacks: Deterministic side channels for untrusted operating systems. In 2015
IEEE Symposium on Security and Privacy. IEEE, 640–656.

[52] Yiming Zhang, Yuxin Hu, Zhenyu Ning, Fengwei Zhang, Xiapu Luo, Haoyang
Huang, Shoumeng Yan, and Zhengyu He. 2023. SHELTER: Extending Arm
CCA with Isolation in User Space. In 32nd USENIX Security Symposium, USENIX
Security 2023. USENIX Association.

212

https://www.xilinx.com/products/boards-and-kits/ek-v7-vc707-g.html/#information
https://www.xilinx.com/products/boards-and-kits/ek-v7-vc707-g.html/#information
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://fires.im/
https://lmbench.sourceforge.net/
https://lmbench.sourceforge.net/
https://vhosts.eecs.umich.edu/mibench/
https://www.spec.org/cpu2006/
https://busybox.net/
https://www.amd.com/content/dam/amd/en/documents/archived-tech-docs/programmer-references/52740_16h_Models_30h-3Fh_BKDG.pdf
https://www.amd.com/content/dam/amd/en/documents/archived-tech-docs/programmer-references/52740_16h_Models_30h-3Fh_BKDG.pdf
https://www.amd.com/content/dam/amd/en/documents/archived-tech-docs/programmer-references/52740_16h_Models_30h-3Fh_BKDG.pdf
http://eprint.iacr.org/2016/086
https://doi.org/10.1109/SP.2019.00021
https://doi.org/10.1016/J.COMPELECENG.2022.108546
https://eprint.iacr.org/2020/1193
https://doi.org/10.1109/CIC.2016.065

	Abstract
	1 Introduction
	2 Background
	2.1 Designs of the Systems Protected by Privilege-based Mechanisms
	2.2 Prior Works for Instruction Tracing Security Monitoring Hardware

	3 Threat Model and Assumption
	4 Interstellar
	4.1 Objectives of Interstellar
	4.2 Design of Interstellar
	4.3 Execution Flow of Interstellar
	4.4 Security Analysis for Possible Attacks

	5 Implementation and Use Cases
	5.1 fsm Implementation
	5.2 Use Cases

	6 Evaluation
	6.1 Experimental Setup
	6.2 Functionality Validation
	6.3 Performance Evaluation
	6.4 Hardware Cost Analysis

	7 Discussion and Related works
	7.1 Generality of Interstellar in terms of Other Microarchitecture's Features
	7.2 Practicality of Interstellar
	7.3 Related Works and Potential Use Cases

	8 Conclusion
	References

