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ABSTRACT
Modern advanced botnets may employ a decentralized peer-to-peer
overlay network to bootstrap and maintain their command andcon-
trol channels, making them more resilient to traditional mitigation
efforts such as server incapacitation. As an alternative strategy,
the malware defense community has been trying to identify the
bot-infected hosts and enumerate the IP addresses of the partic-
ipating nodes so that the list can be used by system administra-
tors to identify local infections, block spam emails sent from bots,
and configure firewalls to protect local users. Enumerating the in-
fected hosts, however, has presented challenges. One cannot iden-
tify infected hosts behind firewalls or NAT devices by employing
crawlers, a commonly used enumeration technique where recursive
get-peerlist lookup requests are sent newly discovered IP addresses
of infected hosts. As many bot-infected machines in homes orof-
fices are behind firewall or NAT devices, these crawler-basedenu-
meration methods would miss a large portions of botnet infections.
In this paper, we present the Passive P2P Monitor (PPM), which
can enumerate the infected hosts regardless whether or not they are
behind a firewall or NAT. As an empirical study, we examined the
Storm botnet and enumerated its infected hosts using the PPM. We
also improve our PPM design by incorporating a FireWall Checker
(FWC) to identify nodes behind a firewall. Our experiment with
the peer-to-peer Storm botnet shows that more than 40% of bots
that contact the PPM are behind firewall or NAT devices, implying
that crawler-based enumeration techniques would miss out asig-
nificant portion of the botnet population. Finally, we show that the
PPM’s coverage is based on a probability-based coverage model
that we derived from the empirical observation of the Storm botnet.
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1. INTRODUCTION
Botnets using a decentralized, peer-to-peer (P2P) communica-

tion architecture have become increasingly common in the arms
race between botmasters and security practitioners. Sincesuch P2P
botnets do not rely on a centralized command and control (C&C)
channel, they are more resistant to traditional mitigationstrategies
such as domain revocation, DNS redirection, and host-basedblock-
ing which focus on a single point of failure. This necessitates a
search for new remediation tactics applicable to decentralized P2P
botnets.

As there is no general technique for disabling a P2P network –
many P2P protocols are designed specifically to resist large-scale
denial of service attacks – a natural alternative is to focuson identi-
fying infected hosts by measuring the botnet. Enumerating victims
in a P2P botnet can protect some local networks, for example,via
spam blocking, firewall blocking, and identification and treatment
of local victims. In fact, several commercial entities offer listings
of the IPs of P2P bots to assist local network administrators.

Researching P2P botnets, like their centralized counterparts, first
requires the researcher to understand how the bot modifies the host
Operating System. This first, initial impression is achieved by run-
ning the bot in a “sandbox” environment, which could be some-
thing as simple as a baremetal (i.e., non-virtualized environment)
machine running a single guest operating system; then afterthe
initial infection has occurred, analysis can then be performed on
determining exactly what files were added, modified, or deleted, in
addition to which system calls were made.

Since this initial impression of the P2P bot provides a reasonable
understanding of only how it interacts with the host OS, a better
understanding of the network behavior by the bot, especially P2P
bots, is of much greater concern. Detailed protocol analysis can
be ascertained by studying captured network traffic on a network
proxy and this protocol analysis provides many clues as to how the
bot communicates with its peers and with the bot master, as well.

Once the method for how a bot communicates with its peers is
known, it is possible to build a crawler to examine the botnet. A
crawler works by initiating some sort of get-peerlists network trans-
actions by either sending look-up requests or get-peerlistprotocol
employed in the specific peer to peer network that the botnetsare
built upon. The crawler can then recursively send the same requests
to the newly discovered IP addresses of the infected hosts. How-
ever, the crawler method in general would not be able to enumerate
bots behind firewall or NAT. These bots cannot be accessed from



the connection initiated outside unless the firewall or NAT specif-
ically allows such connection. Since the crawler needs to initiate
the contact to the nodes, it cannot enumerate the infected hosts be-
hind firewall or behind the NAT configuration that essentially acts
as firewall. This limitation to crawling can be significant, as many
bot-infected machines can be behind a NAT or firewalls in both
homes and offices. Thus, crawler-based enumeration alone would
miss a large portion of botnet infections.

Therefore, we sought to find an enumeration method that can
identify the infected hosts regardless whether or not they are be-
hind a NAT or firewall devices. Here, we present the Passive P2P
Monitor (PPM) and the FireWall Checker (FWC).

Passive P2P Monitor (PPM) is a collection of a “routing only”
nodes that act as peer nodes in the P2P network, but are under the
control of a single user (i.e., defender). Like a crawler, inorder
to build the emulated node in PPM, we first need to acquire the
understanding of P2P protocol details used by the botnet as aC&C
channel or as a bootstrapping mechanism to join the C&C channel.
With the P2P protocol knowledge, we can then build the “routing
only” nodes on the P2P network,

Since most P2P protocols use regular nodes as overlay “routers”
for lookups or as intermediary hops for finding destination nodes,
a natural approach to monitor the activities on the P2P network
is to join the network as a large number of “routing only” nodes.
These nodes can run on a single machine, which can then record
the traffic they see and use it to look for bot’s location and observe
its P2P network interactions.

We further sought to answer a research question: how many bots
are behind firewall or NAT. PPM can enumerate both firewalled and
unfirewalled nodes, however it cannot distinguish which node is
behind firewall or not. To find out which node is behind firewall, we
designed and developed the FWC (FireWall Checker), which can
be used in conjunction with PPM or any kind of passive monitor
that receives the network transaction initiated by the infected host.

FWC utilizes the fact that the modern stateful firewall remem-
bers the connection details of an internally initiated communica-
tion such that replies coming from outside (remote) can be allowed
back to the initiator. This creates a state table containingthe trans-
port protocol, initiator IP address, initiator port number, remote IP
address, and remote port number. If the firewall acts as a NAT,it
will also remember the port allocated by the NAT for that connec-
tion.

When a remote bot-infected machine sends a message to our
enumerator (e.g., PPM), we can then send back two query packets
to that node: one from the sensor and one from another IP address
(i.e., FWC) that we control and monitor. If a reply is sent to both
hosts, then the infected host is fully open and not behind anysort of
stateful firewall. If a reply is only sent to the enumerator, then the
node is behind a firewall/NAT. If no reply is received, then the node
may be offline, or the IP could be spoofed in the original message.

As an empirical study, we used the PPM and FWC to enumerate
the infected hosts on the Storm botnet, measuring the portions of
nodes behind firewall or NAT. Our result shows that almost 40%
of bots that contact PPM are behind NAT or firewall, implying that
a botnet enumeration based on crawling mechanism alone would
miss out significant portion of the botnet population. When we
analyzed the difference between the enumerations results from the
PPM and a crawler, we also found an interesting fact that the P2P
bots that are found by the crawler but not found by the PPM have
a fairly short lifetime (e.g., close to 0 minute on average),while
the bots found by the PPM but not by the crawler had a lifetime of
19 minutes on average. This implies that the PPM would not be
able to enumerate a bot that does not sends a search message, while

the crawler can quickly enumerate a connected group of localized
peers who are connected through constant publicize messages that
Storm bots send out. However, such short-lived bot is in factnot a
member of the botnet yet, as without a search for a hash it cannot
join the C&C channel. Thus, the crawler does not find bots thatthe
PPM is able to.

After we analyzed the difference in enumeration data sets be-
tween a crawler and the PPM, we wanted to see if the PPM’s enu-
meration capability indeed covers the entire P2P bot network. To
show a complete coverage of the PPM, we first derived a PPM cov-
erage model based on probability theory, and then empirically con-
firm that with high probability the PPM will enumerate all thebots
who sent out search message at least one time to ak number of peer
nodes. Thek for the Storm bot we experimented with is 200.

2. PRELIMINARIES

2.1 Storm Botnet
The Storm botnet, which originated in January of 2007 [10], is

one of a few known P2P-based botnets, and has attracted a great
deal of attention for its architecture, variety of transmission meth-
ods, and size. Despite its unique architecture, the Storm botnet is
capable of engaging in malicious behavior typical of other botnets.
Since its discovery, it has been used for distributiing spamemails,
participating in “click” frauds, and launching distributed denial of
service attacks against a variety of targets, most commonlyspam
blacklisting services as well as anti-malware researchers[25].

Storm has employed two distinct peer-to-peer networks for use
as its Command and Control (C&C) channel. The first network,
used from January 2007 until October 2007, co-opted the Overnet.
Starting from October 2007, new Storm bots joined an “encrypted”
network that follows the same set of protocols as the earliernetwork
but encrypts packets at the application level using the Vigenère ci-
pher with a 320-bit key. Since the packets are encrypted, this net-
work no longer interacts with the original Overnet network.

Overnet Protocol: The Overnet protocol [19] like other widely-
used peer-to-peer protocols, such as BitTorrent [16], utilizes a Dis-
tributed Hash Table (DHT) interface for finding files. The DHT
interface allows a node to publish [key, value] bindings, wherekeys
are constrained to be elements ofID Space– 128 bits in size, while
valuesare arbitrary strings. Lookups are performed by computing
the cryptographic hash (MD4) of a keyword; this hash is boundto
the cryptographic hash of a file, which is in turn bound to a string
containing metadata about the file, including name, length,and the
IP addresses of peers that have the file.

Each peer in the Overnet is assigned an ID from theID Space.
Peers are then responsible for maintaining the binding values for
keys that are “close” to their ID. Each peer maintains a local“rout-
ing table” of the IP addresses and IDs of other peers. It is similar
to Kademlia [18] where each peer’s routing table containsk = 20
nodes whose IDs match the firsti bits of the peer’s ID, for each
i ∈ {0, 1, 2, . . . , log(n/k)}. A peer searches for a given keyκ us-
ing “iterative prefix matching:” starting from the routing table, the
peer repeatedly asks theα = 3 nodes it knows with IDs closest to
κ for their k nodes closest toκ, which are then added to the list of
known peers, until it finds a replica root. The distance between two
IDs is the 128-bit integer represented by their exclusive or(⊕). In
Overnet, like other DHTs, the nodes closest to the key, or “replica
roots” can be found with logarithmic efficiency. Nodes can join the
network by using a “bootstrapping list” – this can be either afile
consisting of hard-coded IP addresses and ports or a link to aweb-
site. Important message types for Overnet protocol are introduced



in Appendix A.

Storm’s Overnet Protocol: Storm bots connected to the Over-
net network used the same ID space, message types, and seman-
tics as the other clients, and earlier version of the Storm was con-
nected with Overnet, which has been used for old eDonkey clients.
However, after Storm started encrypting traffic using the Vigenère
cipher, it has been disconnected from Overnet, forming a sepa-
rate network. (We describe how we cracked the xor-key in Ap-
pendix B.) Storm makes use of its P2P network(s) to publish and
search for botnet-related information. Over the course of time, the
encoding of this information has undergone several revisions. For
example, in one revision, it was stored encrypted with RSA [9],
which the searching bots decrypted using a key hard-coded inthe
binary along with other information received in the search reply [25].

Recent work by Stewart [24] revealed more detailed information
about the implementation of the botnet, including a hash genera-
tion algorithm [24]. As mentioned above, every node in the Storm
network is associated with a 128-bit ID. The hash generationalgo-
rithm produces32 hashes from the current date and32 hashes from
the (current date - 1900 years), which are (relatively) uniformly dis-
tributed over the 128-bit ID space. Nodes in the network use those
hashes to publish and search for information. For example, anode
will publish to one of the32 hashes a specially-crafted hash con-
taining its IP address and TCP port. Any node can search for that
hash and find that it has to connect to that IP address and TCP port
to download information (for example, the latest malware update).
Due to timezone differences, each Storm node also searches for the
previous day and next day hashes.

2.2 Enumerating Storm Bots
The peer-to-peer nature of the Storm botnet requires each node to

communicate with other nodes in order to search or publish infor-
mation, using multi-hop P2P routing protocol. There are different
ways in trying to enumerate the number of P2P bots in the Storm
network.

2.2.1 Bare-Metal Machines
A simple way to monitor a botnet is to run a bot by infecting a

machine (called a Bare-metal) and observe its traffic. Usually, it
is fairly easy to infect a real machine to become part of the Storm
network. The downside is that a physical machine is needed, which
costs both time and money. Other resource constraints include ob-
taining an IP address and configuring the internal network soas not
to take part in the malicious activities, by for example having the
external router block all SMTP traffic.

Virtual Machines (VM) emulate a real Operating System on a
physical machine. Several VMs can be run on one physical ma-
chine. Thus, the number of infected machines can be increased.
Moreover, the binary can be analyzed – the state of the virtual-
ized hardware, including the CPU registers and memory, can be
inspected. However, some malwares have been reported to detect
these VM environments [8]. With either bare-metal machinesor
virtual machines, it is very hard to enumerate the Storm network:
(i) only a few of the Storm nodes are controlled, and (ii) onlya
partial view of the network is obtained.

2.2.2 Crawler
One of the simplest but most well-known approach to enumerat-

ing any network is to crawl that network. The crawler starts from
some known starting point (for example controlled bare-metal ma-
chines). It then asks the first node for more nodes. This can be
done in the Storm network by sending an Overnet routing request.
Since Storm is based on the Overnet protocol, nodes in the network

need to route requests so that the searched ID (hash) can be found.
The crawler will then ask the newly found nodes for more nodes,
gradually building its list of known Storm nodes.

A crawler can be easily implemented and is lightweight and could
probably crawl the whole network within minutes. However, the
major problem with crawling is that nodes behind firewalls orNATs
cannot be contacted. Modern stateful firewalls remember thecon-
nection details of an internally initiated communication such that
replies coming from outside (remote) can be allowed back to the
initiator. This creates a state table containing the transport proto-
col, initiator IP address, initiator port number, remote IPaddress,
and remote port number. If the firewall acts as a NAT, it will also
remember the port allocated by the NAT for that connection.

Moreover, churn, dynamic IP addresses, packet loss, and stale
nodes returned by Storm bots can lead the crawler to finding only a
subset of all the nodes in the network. If a node is contacted by the
crawler and does not respond, the crawler cannot assume thatthis
node is part of the network.

2.2.3 Sybil Attack
Since we know the P2P protocol spoken by Storm nodes, any

process that speaks the P2P protocol can be joined to the network.
They only listen in to the network and reply to routing messages
and participate in the P2P network. This node could be imple-
mented in a very light-weight manner, which allows many nodes
to be run on a single physical machine, thus acting as a Sybil [5]
and passively monitoring the P2P network. Over time, these nodes
will become “popular” (so called, Eclipse attack [21]) since they
are always online and contribute to the P2P network. Thus, they
will attract more messages and more Storm nodes will know of
these nodes (even bootstrapping from them). The main downside
of this approach is its passive nature. It is also unable to determine
if a message received from an IP address is spoofed or if it is areal
IP address.

2.3 Related Work
Understanding the behavior of botnets themselves, in both cen-

tralized and decentralized forms, is critical to botnet node enu-
meration efforts. Rajab et al. presented in [20] a study of nearly
200 unique IRC botnets in an effort to methodically dissect botnet
behavior. Assessed is the prevalence of IRC botnet activity, sub-
species variety and quantity, and changes in a botnet over time. In
this attempt, they were quite successful. The taxonomy of botnet
structures offered by Dagon et al. in [4] further characterizes botnet
behavior and architectures, with the intent of classifyingbotnets in
dimensions which can correspond to mitigation strategies.While
our research is concerned exclusively with a peer-to-peer botnet
and incorporates different analysis techniques, e.g., in enumeration,
our efforts are complementary for overall botnet study.

Grizzard et al. outlined the history of bots, both maliciousand
non-malicious, and the emergence of peer-to-peer based botnets
in [10]. The key challenge in detecting the bot controller ina peer-
to-peer network is due to the dynamic and distributed designof the
architecture. A case study of a particular peer-to-peer bot, Pea-
comm, another name for the Storm bot, is also included to provide
the reader with an understanding of how peer-to-peer botnetstrate-
gies may be implemented in the real world.

The potential threat posed by bots using peer-to-peer protocols
for their command and control (C&C) was discussed in [3]. Cooke
et al. identified some of the foundational analysis techniques for
handling botnets including incapacitation of the botnet itself, mon-
itoring the C&C channels, and tracking the propagation and at-
tack mechanisms. This work highlights the underlying difficulties



in monitoring the channel(s) that may lead back to the bot con-
troller [3].

Critical to enumeration and mitigation research in peer-to-peer
botnets is binary analysis, including the system and network activ-
ity of malware. Stewart provided the first in-depth analysisof a
Storm binary in [25], which includes detailed information about its
hard-coded peer lists and the hash generation algorithm Storm em-
ploys. This research also provides information as to what the bot,
at the time of writing, was used for: distributed denial of service
attacks and email spamming. Stover et al., Florino, and Cibotario
also provided comprehensive binary analyses [26, 9] of the Storm
malware. Stover et al. also explored the Nugache botnet which also
employs a peer-to-peer architecture.

Historically, the Storm malware authors have continuouslychanged
the operations of the botnet in attempts to thwart intrusionand
manipulation by outside entities. Following several evolutionary
changes to Storm’s architecture and behavior, Stewart presented a
briefing on the Storm protocols and intricacies of its encryption us-
age [24]. The architectural hierarchy of the botnet within Storm’s
Overnet-based network was discussed, which gave insight into the
botnet’s use of tiers and Nginx proxies to create five different levels
of functionality. Storm nodes lowest in the hierarchy, subnodes, are
relegated to spamming and DDoS attack tasks. Supernodes, next in
the hierarchy, are used as reverse HTTP proxies and DNS fast-flux
name servers. A tier of Nginx servers known as subcontrollers are
employed to obscure a single master Nginx proxy, which is in turn
used to conceal the node on the top-tier of the hierarchy, a mas-
ter Apache C&C server. This insightful presentation principally
covered the current architecture of Storm rather than the complete
enumeration of its nodes, which is our focus in our research.

Efforts to detect Storm traffic in networks have also been per-
formed. BotHunter [12] is a host-based IDS Storm detection frame-
work. BotHunter correlates conversation dialogues between inter-
nal nodes and external IPs with consistent known Storm behav-
ior in an effort to detect local assets infected with Storm. BotH-
unter is effective for local system administrators and users in find-
ing these bots within their monitored infrastructure. BotMiner, by
Gu et al. [11] also is designed to identify botnet activity inIRC,
HTTP-based, and peer-to-peer botnets in a locally monitored net-
work. BotSniffer [13], by Gu et al., is also a botnet traffic detection
framework, but only for HTTP-based and IRC botnets. These de-
tection frameworks are designed to locally identify botnetactivity,
rather than enumerate external nodes, as in our work.

Beyond local network and system behavioral analysis of Storm
malware and localized IDS-based tool design, Storm node enumer-
ation, which this paper elucidates, is an additional avenueof re-
search pursued by several individuals. Enright presented an explo-
ration of the Storm botnet using a Storm network crawler in [6].
This work was later expanded, where Kanich et. al discussed the
Storm botnet in an exploration of accuracy assessments in bot-
net measurement with their implementation of a Storm network
crawler known as Stormdrain [15, 7]. Particular focus is placed
on parsing nebulous traffic from a variety of sources from actual,
legitimate Storm traffic, based on the ability of encountered nodes
to correctly speak the Storm botnet protocol.

An enumeration attempt was also performed by Holz et al. in [14],
where a delineation of the network and system behavior of Storm
binaries was offered, as well as tracking methodologies formea-
surement, and mitigation strategies for these types of peer-to-peer
botnets. The authors’ work involved estimating the number of com-
promised nodes within Storm with a crawler that repeatedly per-
formed route-requests as well as delineating two methods todisrupt
Storm command and control functions. These disruption methods

employed the use of the Sybil attack as well as a pollution attack to
mitigate the botnet. The ability of our PPM and FWC tools to enu-
merate and differentiate nodes that are behind a firewall or aNAT-
network allows us to enumerate the network more completely.

3. ARCHITECTURE
Crawling has been a major tool for enumerating nodes in a P2P

network [23, 27] and the Storm botnet [15, 14]. However, it has
a fundamental limitation: Nodes behind a firewall or a NAT can-
not be reached. To resolve this issue, we focus on designing a
monitoring system, called Passive P2P Monitor (PPM), similar to
a Sybil [5] attacker. A node in PPM speaks Storm’s Overnet pro-
tocol and participate in the network routing protocol. However, it
does not send any malicious traffic – it only listens in to the Storm
network and acts as if it is a legitimate bot by routing messages.

As mentioned in Section 2.1, the Storm botnet uses a modified
Overnet protocol, which is a variation of Kademlia protocol[18].
Since open-source implementation of Overnet protocol is not avail-
able, we modified the aMule [2] P2P client to implement a PPM
node, which communicates with Storm Botnet. GUI and file-sharing
features of aMule were disabled, which allows the PPM node touse
very little memory and processing power. After the switch toan en-
crypted network, the PPM node was further changed to be able to
talk to the encrypted Storm network. The PPM does respond cor-
rectly to all routing requests.

Expected Problems and Fixes: PPM is passive by nature as op-
posed to a crawler, which will actively seek new nodes. The prob-
lem with the passive nature of PPM is that it cannot identify anew
node, if Storm botnet does not send messages to it. It will just reply
to requests from other nodes and regularly send self-find-requests
to maintain its routing table. The PPM may have only a small view
of the whole network – it will know only of those nodes in its rout-
ing table and those nodes that contacted it. To remedy this prob-
lem, many PPM nodes can be run in parallel (therefore, becoming a
Sybil node), each bootstrapping off of a different node in the Storm
network. This ensures a more global view of the botnet. More-
over, PPM is run for a long time so that it will be more widely
known (similar to Eclipse attack [21]) – (i) stay in other nodes’
routing tables longer, and (ii) in responding to routing requests,
nodes are more likely to return contacts that have been long-lived,
hence more likely to return PPM as one of the contacts. Thus PPM
acts as an extension to the Sybil attack. Enumeration of the size of
the Storm network could be feasible and PPM could detect nodes
behind a firewall/NAT box, potentially providing a better estimate
than a crawler, as we will see in Section 4.

Another problem with PPM is its lack of source address spoofing
detection. It does not check if a request received is from a real IP
address or from a spoofed IP address. Spoofing can be used to “poi-
son” the network or by other researchers monitoring the Storm net-
work. PPM is hence modified to include ahandshakemechanism.
After receiving a request from a node in the network, the PPM will
reply to that node as before. In addition to that reply message, the
PPM will send a request to that node, expecting a response. Ifthe
node responds, then the IP address is real, not spoofed. However, if
the node does not respond, it does not necessarily mean the IPad-
dress is spoofed: (i) The node could have gone offline or changed
its IP address due to DHCP, or (ii) the request packet from thePPM
was lost in transmission, (iii) the IP address is in fact spoofed, or
(iv) the bot (or the node who sends messages to the PPM) has a
special protocol, which prevents it from replying to arbitrary mes-
sages. For example, a crawler does not have to reply to eitherthe
PPM or FWC.



Distinguishing Firewalled Nodes: The final modification to the
PPM design is to add a firewall checker (FWC), which is used to de-
termine if a Storm node is firewalled. As mentioned in Section2.2,
firewalls and NATs will allow packets through only if the machine
behind the firewall initiated (sent a message) the connection to the
machine outside of the firewall. If a node is firewalled, it will reply
to the PPM request since it originally sent a request to PPM (fire-
walls do not speak specific application-level protocols andwill let
any packets through) but not to the FWC request. Again, this is
not fool-proof for the same reasons as the PPM, that is, if a node
did not reply to FWC, it does not necessarily mean that the node is
firewalled. Since both the PPM and FWC are run for an extended
time, if a node never replies to FWC, then it is highly likely that the
node belongs to case (i), (iii) or (iv) described above. Notethat for
all these cases, it will not reply to crawler as well. In otherwords,
FWC tries to emulate the behavior of the crawler, which sendsmes-
sages to arbitrary node. The PPM and the FWC have to be run on
separate IP addresses but on the same LAN so that the PPM request
and the FWC request will be sent at almost the same time. This pre-
vents the Storm node from receiving the PPM request, replying to
it, going offline, and then receiving the FWC request, which does
not get replied since the Storm node is now offline.

Implementation Details: Both PPM and FWC each keep track of
all request packets sent. After not receiving a response for15 sec-
onds, that packet will be deleted and marked as timed-out. The
number of responses received and requests timed-out for each IP
address is collected. Since FWC will be sending requests to nodes
in the Storm network, unfirewalled nodes will learn of FWC and
might pass this information along to other nodes. Thus, FWC might
also become popular. This needs to be avoided because if FWC be-
comes popular, then it will receive messages from firewallednodes
(from our observation of the Storm network, a node sends a request
to every node in its routing table every10 seconds). A firewalled
node might respond to a FWC request if the node recently sent
FWC a message – the firewall will let the FWC request through).
This leads to an undercount of firewalled nodes. FWC is hence
modified to drop all request messages not coming from PPM IP
addresses. Also, PPM messages to FWC are in a special format,
which is unlikely to be replicated by outside nodes – the message
type and format is not the same as the Storm network.

PPM

BOT

FWC

1
2
?

2'

?
2"

Figure 1: Final Design of the PPM

Figure 1 shows the components of the final PPM architecture:

1. A Storm node in the bot network sends a request to one of our
PPM

2. PPM replies to the request and sends another request to that
Storm node

2’. At the same time, PPM also sends a message to FWC telling it
to send a similar request to that Storm node

2”. Upon receiving this message, FWC sends a request to the same
Storm node (same request that PPM sent to that Storm node).

If the Storm node replies to 2’, the IP address is not spoofed.If the
Storm node replies to 2”, it is not behind a firewall or a NAT.

4. ANALYTICAL AND EXPERIMENTAL RE-
SULTS

4.1 Experimental Settings
Using 5 computers not behind a firewall, we deployed infected

nodes, PPM nodes, the FWC, and a P2P network crawler. On two
machines, we deployed 256 PPM nodes, which lies on the same
LAN as a third machine running the FWC. The results of this paper
are based on data collected from 20 days (Aug 25 to Sep 18 2008)
of the PPMs and FWC, combined with 10 days (Sep 8 to Sep 18
2008) crawler, which ran on the fourth machine. We also deployed
16 virtual machines (referred to as VMBOTs) on the fifth computer
and infected each of them with Storm. As mentioned in Section2.2,
running a bot on a Virtual Machine is similar to running it on abare-
metal machine with the added benefit that multiple bots can berun
on one physical machine instead of multiple physical machines.
We made sure that the behavior of the bot running on a VM and
running on a bare-metal machine are similar, so as to make sure
that the bot did not detect the VM and started behaving abnormally.
The reason to run a bot within a VM is to obtain some ground truth
about the normal behavior of the botnet if its behavior changed due
to an update. We want to stress that both PPM, FWC, and crawler
speak only UDP and do not participate in any illegal activities of
the Storm botnet. Moreover, we set up our VM bot such that all
spam and other illicit traffic was blocked.

4.2 PPM vs Crawler
We compare the coverage of the crawler and the PPM and ana-

lyze how well the crawler can accurately enumerate all the Storm
nodes in the network. First, we try to determine how many Storm
nodes are firewalled, since as explained in Section 3, crawling can-
not find firewalled nodes. Figure 2 shows the CDF of the fraction
of responses of every node. The fraction of responses for each IP
address is calculated as

Number of Responses

Number of Responses+ Number of Timeouts

PPM: On average, each node in the network will respond to more
than60% of the PPM requests. The time-outs can be attributed to
packet loss and churn. A response to PPM means that the node is
part of the Storm network. We do not distinguish if some of theIP
addresses fall within the same subnet, for example, controlled by an
ISP or BGP router. About6% of the IP addresses never respond to
any requests sent from the PPM. We believe the number of requests
that were not responded to is due to a combination of the following
factors:

• Spoofed IP addresses: There is no ground truth as to whether
an IP address is spoofed, but some of those nodes could be
spoofed – either by researchers or rival botnet operators.

• Packet loss: All messages are over UDP, which uses no packet
retransmission or packet acknowledgment.
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Figure 2: CDF of fraction of responses per IP address for both
PPM and FWC

• Overloaded bot: Each of our PPM nodes receives about100
messages per second (not counting the extra messages gen-
erated due to the handshake mechanism). A bot will receive
the same order of magnitude of messages and if it is running
on an older machine, it could be overloaded with messages
and not be able to respond to all requests.

• Application state: Each bot could be keeping track of some
state such as IP addresses a message has been sent to in the
past time period. Since half of the PPM nodes uses the same
IP address, a response might be sent to one PPM node but
not the other.

• Other researchers: For example, another researcher’s crawler
will most likely not respond to PPM (or FWC) requests. We
believe that there are a fairly large number of crawlers on the
Storm network.

We do not try to differentiate if a failure to reply to a packetmeans
that the IP address is spoofed or for any of the reasons mentioned
above, since one of the goals of PPM is to find the nodes in the
network.

FWC: About 46% of the nodes never respond to FWC – this does
not mean that46% of the nodes are firewalled. Nodes’ failure to
reply to packets can be due to any of the reasons, or a combination
of reasons, mentioned above. This result implies that more than
40% of the nodes in the Storm cannot be discovered by a crawler.
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Figure 3: Number of IP addresses found by crawler and PPM
per day

Coverage:We next compare the coverage of PPM and the crawler
for each day. Coverage indicates the number of Storm nodes found.
Figure 3 shows the number of IP addresses discovered by both the
crawler and the PPM for each day that PPM has been running. The
lack of data for the crawler for the first10 days is due to start-
ing PPM before the crawler. As can be seen from the figure, even
if the crawler was started earlier, it would not have improved the
crawler’s coverage of the Storm network since it contacts a constant
amount of Storm nodes every day. Note that the figure indicates the
total number of IP addresses found per day. It does not differentiate
if the same IP addresses were also found the previous day.

PPM’s coverage is consistently higher than the crawler’s. This is
due to a number of reasons – the major one being that the crawler
is not able to find and enumerate most of the Storm nodes due to
firewalled bots.
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Figure 4: Percentage of IP addresses found by crawler that
were also found by PPM per day

Although PPM can find more nodes than the crawler, it could be
the case that they are finding different nodes. Figure 4 showsthe
percentage of IP addresses that the crawler found which the PPM
also found, for each day of running both the crawler and the PPM.
This shows that most of the nodes found by the crawler were also
found by the PPM. However a lot of nodes (up to30% on some
days) are seen by the crawler but never sent a message to our PPM
nodes. The percentage of nodes found by the crawler that were
also found by PPM over the whole time period (8 days) is87%.
Since this would imply that PPM did not receive a message froma
large portion (13%) of the network, we looked at the crawler logs
to determine when each of those nodes were found and how long
they responded to the crawler’s requests. We found that those IP
addresses that crawler found but PPM did not find (call those nodes
C) had alifetime of 19 minutes. Those IP addresses that were
found by both the crawler and the PPM (call those nodesI) had
a lifetime of 100 minutes in the crawler logs. A lifetime of100
minutes means that the node keeps responding to the crawler for
100 minutes, then stopped responding to the crawler. This can be
due to (i) the Storm worm being removed from that node, or (ii)the
node went offline.

Figure 5 shows the CDF of the lifetimes of the nodes for both
casesC (Crawler− PPM) andI (Crawler& PPM). Note that the
graph does not go all the way to a CDF of1 because there are
a few nodes that are long-lived and the graph will be unreadable.
80% of C nodes have a maximum lifetime of10 minutes, while
80% of the I nodes’ lifetime are50 minutes. The nodes which
have a short lifetime are not found by PPM. This is expected as
the crawler actively seeks new nodes, whereas the PPM passively
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Figure 6: Number of contacts a bot sends a message to and the number of those contacts which are our PPM nodes for (a)Search,
(b) GetSearchResult, and (c)Publish message types
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Figure 7: Number of contacts a bot sends a message to and the number of those contacts which are a certain bot for (a)Search, (b)
GetSearchResult, and (c)Publish message types
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Figure 5: CDF of the lifetimes of nodes that (i) were found by
the crawler but not by PPM and (ii) found by both the crawler
and the PPM

wait to receive messages from other nodes, and thus wait to become
popular and be in many nodes’ routing tables. Although the PPM
misses those nodes, they do not come back online afterwards.Thus
the crawler is not finding nodes that the PPM can find.

4.3 Coverage of PPM
The previous section showed that crawling is not a good method

for enumerating all the P2P bots in the Storm network. This sec-
tion examines in more details the coverage of the Storm network
obtained by PPM. We also analyze how good the enumeration pro-
vided by PPM is and how likely is it true.

Modelling Coverage of PPM:First of all, we determine the likeli-
hood that at least one of our PPM nodes will be sent a message by
a Storm bot. Our analysis is based on thebins and ballsproblem.
We will describe the problem and then see how it relates to PPM
receiving a message.

In the bins and ballsproblem, let’s first assume that you have
n bins and1 ball and you have to throw the ball into one of the
bins. The probability that each bin will get the ball is1

n
, assuming

that each bin is equally likely to receive the ball. The probability
of a bin not receiving a ball is thus1 − 1

n
. If k balls are thrown

instead of just1 ball, the probability of a bin not receiving a ball is
(1 − 1

n
)k. Finally, the probability of a bin receiving at least1 ball

is 1 − (1 − 1

n
)k.

The same model can be used to determine the likelihood of PPM
receiving at least1 message from a bot. However, simply changing
the variables do not work because in Kademlia-style P2P networks,
all the nodes do not have an equal probability of receiving a mes-
sage. Some nodes have a higher probability of receiving a message
than others. For example, since our PPM is online for a long pe-
riod of time, it will be on many nodes’ routing table and will be
popular and the probability of PPM receiving a message is higher
than a Storm bot that only comes online for15 minutes per day –
enough time for the user to check his/her email. The model used
can be thought of as abiased bins and ballsproblem. Going back
to the basicbins and ballsproblem, some bins are “larger” and
have a higher probability of receiving a ball than other bins. As we
will see later, different nodes in the Storm network have a differ-
ent probability of receiving a message (see Figures 6 and 7).The
probability of PPM receiving a message from a bot is calculated as
L = 1 − (1 − p)k, wherep is the probability of PPM receiving
a message from a bot for a particular hash, andk is the number

of nodes a bot sends a message with that hash to (see Section 2.1
for the Storm hash generation algorithm). Next, we experimentally
determine the value ofp and show whatL is for varying values of
k.

Probability of PPM receiving a random message:To obtain the
probability p of PPM receiving a message from a Storm bot, we
analyzed the VMBOT data. We looked at only the following3
message request types (an outline of the other Overnet message
types is given in Appendix A) –

• Searchis a message used in routing to find the replica roots

• GetSearchResultis a message sent to possible replica roots
to get the actual result (binding information)

• Publishis a message meant to publish binding information
The other two request message types areConnectwhich is to boot-
strap to the Storm network, andPublicizewhich is a “keep-alive”
message sent every10 seconds. TheConnectmessages are used
only for new nodes to bootstrap to the network and are not con-
sidered since they apply only to new nodes or old nodes that want
to rejoin the network, and might include a bias for nodes thatcon-
stantly churn out and in the network. ThePublicizerequests are
not considered since those are sent only to nodes in the routing
table. This will include a bias towards nodes that are long-lived
(such as PPM). The three message typesSearch, GetSearchResult,
andPublishare sent more uniformly as shown in Figure 8. Each
node is equally likely, regardless of nodeID, to receive aSearch,
GetSearchResult, andPublishrequest. We looked at20 target IDs
for GetSearchResultandPublish, represented by the20 blue points
on the graph. The red points indicate the nodes that are contacted
for that target ID. The x-axis represents the first8 bits of the ID (in
decimal) of the nodes contacted. For each target ID, the nodes con-
tacted are uniformly distributed across the ID space. As expected,
more nodes are contacted closer to the target ID since those nodes
are potentially the “replica roots”.

Figure 6 shows the number of nodes that each of the16 VM-
BOTs sends a request to and the number of our PPM nodes which
are among those nodes, for the three message types describedabove.
For example, Figure 6 (a) shows the number of contacted nodes
for Searchrequests from each of the VMBOTs. Point[1000, 22]
on the graph means that aSearchrequest with hashH was sent to
1000 nodes and22 of those1000 nodes were our PPM nodes. Each
point represents a request for a different hash. The line of best fit
is also shown and is drawn using thepolyfit algorithm from mat-
lab [17]. The algorithm works by solving the least square problem
to draw the line of best fit. ForSearchrequests, the probabilityp
(slope of the line of best fit) of PPM receiving a message from a
Storm bot is2.3%; for GetSearchResultrequests, the probability is
3.3%; and forPublishrequests, the probability is3%. The first line
of Table 1 shows the result for PPM.

Search GetSearchResult Publish
PPM 2.3% 3.3% 3%
Bot 0.95% 0.9% 1.0%

Table 1: Probability of receiving a message for each of the3
message types for PPM and a random Storm node

We also varied the number of PPM nodes to determine the effect
on the coverage. Figure 9 shows the result for the three message
types. It shows that increasing the number of PPM nodes results
in a linear increase in the probability of PPM seeing a message
from a bot. From the graph, we can obtain the probabilityp of
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Figure 8: Distribution of Storm node IDs for search and publish

PPM receiving a message with some hash from a bot to be3% with
256 PPM nodes. Although it might be tempting to keep increasing
the number of PPM nodes to see if the probability keeps increasing
linearly, we show that even withp = 3%, the probabilityL of PPM
being sent a message from any bot is close to100%.
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Figure 9: Probability of PPM receiving a message from a Storm
node for varying number of PPM nodes

Figure 10 shows the plot of1− (1−p)k with varyingk, wherek
is the number of nodes that a bot sends at least one message with a
daily hash to. Thus, our PPM will receive a message from one bot
with very high likelihood (87%) if k is greater than100 contacted
nodes. Ifk = 200, the probability goes up to98%. Looking at
both Figures 6 and 7, each bot sends the same hash (for either of
the three message types) to at least200 nodes, suggesting that PPM
can find most of the nodes in the Storm network. We also want to
emphasize that running256 PPM nodes is not hard – each PPM
nodes uses a few MB of memory and very little bandwidth and
CPU usage.

Probability of a set of bots receiving a random message:We
next compare the probability of PPM receiving a message froma
bot with the probability that a bot will receive a message from an-
other bot for each hash. Since we do not control256 real bots,
we randomly picked256 “long-lived” IP addresses in the VMBOT
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Figure 10: Plot of the probability of 256 PPM nodes receiving
a message from all the Storm bots for varyingk, wherek is the
number of nodes contacted by a Storm bot

data set, that is, IP addresses that appear every day. Figure7 shows
the three graphs, along with the line of best fit. The slopes ofeach
graph is less than the slope for the graphs from Figure 6 for each
message type. The probability of256 PPM nodes seeing a mes-
sage from a Storm bot is higher than the probability of256 bots
seeing a message from the same Storm bot. This doesnot indi-
cate that deploying256 PPM nodes provides a better coverage of
the network than deploying256 bare-metal (or VM) bots. This is
because all the PPM nodes have been online for weeks, which is
longer than the average Storm bot. PPM is thus more likely to be
in other nodes’ routing table and more likely to be returned in re-
sponses when nodes try to learn of other nodes in the network.The
second line from Table 1 shows the probability for each message
type for the probabilityp of other bots receiving a message from a
Storm bot.

4.4 Dynamic IP Block Aliasing
In the previous section, we have shown that we can enumerate

the entire Storm network with high probability. However, care has
to be taken not to overcount the number of Storm nodes in the net-
work. Some of the different IP addresses could actually be related
and represent the same Storm bot, due to dynamic IP block alias-
ing and DHCP changes. Thus, counting the total number of IP



addresses as the total number of bots in Storm is a gross overesti-
mate.

SORBS [22] (Spam and Open-Relay Blocking System) is a sys-
tem which contains a blacklist of spamming IP addresses. It also
contains a list of dynamic IP addresses. The IP addresses inside the
SORBS dynamic user and host list are usually manually added and
could be missing a lot of dynamic IP addresses. Moreover, some
of the IP addresses could not be dynamic anymore. We believe that
although the SORBS data is probably an underestimate of the total
number of dynamic IP addresses, it still reliably can tell uswhether
an IP address is dynamic or not.

Figure 11 shows the total number of IP addresses found by PPM
and the number of IP addresses from that total which are dynamic
according to SORBS. About20% of the IP addresses are dynamic.
However, it is very hard to tell which IP addresses are from the
same bot. For example, two dynamic IP addresses in a
16 subnet might be the same node, but could be from two different
smaller ISPs which are customers of the same bigger ISP.

Figure12 shows the number of IP addresses found by PPM daily.
The number of dynamic IP addresses is also shown.25 − 30% of
the total number of IP addresses found per day are dynamic. This
shows that just counting the number of IP addresses is an overes-
timate in trying to enumerate any network and the dynamic IP ad-
dresses consist of a good percentage of the total number and should
be considered.
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of PPM nodes for7 days
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Figure 12: Number of IP addresses found daily by PPM and
the number which are dynamic according to SORBS

Although SORBS gives only a rough estimate of the total num-
ber of dynamic IP addresses, we explored other methods of deter-
mining whether an IP address is dynamic. UDMAP [28] is such a
method. It looks at application-level server logs and patterns of IP
addresses. The IP addresses are then classified as either dynamic or
not and can change over time. It found over100 million dynamic IP
addresses in the world. However, UDMAP is not publicly available
at the moment.

4.5 Recent Development
More recently, PPM was left running for more than 90 days (Aug

24 to Nov 30 2008). The number of IP addresses found by PPM
is shown in Figure 13. The sharp drop at Day 21 (September 20,
2008) is related to the shutdown of the Intercage ISP [1] which was
believed to host the subcontrollers of the Storm network. Since that
time, the number of IP addresses found by PPM has been contin-
uously decreasing. We believe that Storm is not dead yet but can
easily bounce back to its better days.
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Figure 13: The number of IP addresses found by PPM per day

5. CONCLUSION
In this paper, we presented PPM as an enumeration method for

the Storm peer-to-peer botnet and analyzed the differencesin enu-
meration results from the PPM and a crawler. As expected, the
PPM instances were able to enumerate significantly more nodes
than the crawler as it cannot enumerate nodes behind firewalls.
Further, some of the nodes which the PPM could not find (but the
crawler does) have a shorter life-time. We also used the biased bins
and balls problem to model and analyze the PPM coverage. The
result indicates that when a bot sends a sufficient number (approx-
imately 200) of P2P messages, the PPM can detect it with high
probability. We also verified that most of the nodes detectedby the
PPM are either researchers or actual bots.
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APPENDIX

A. OVERNET MESSAGE TYPES
The Overnet message types are outlined below
• Connect: To bootstrap/join the network.
• ConnectReply: A bootstrap peer will return back to the new

node a list of other peers so that the new node can start to
build its routing table.

• Publicize: Hello message to say that you are still alive.
• PublicizeAck: Reply to the Hello message.
• Search: To find a certain ID or to maintain its routing table

(basically a peer will send a Search message looking for itself,
then it will know of other peers that are really close to itself
in the DHT).

• SearchNext: The reply to a Search message – includes ID, IP,
and port of other peers.

• GetSearchResult: The node closest to the target ID is found,
thus get the results of that search from that ID.

• SearchResult: Reply to the SearchInfo.
• SearchEnd: Nothing has been found.
• Publish: Publish a [ID, IP] binding or for example in a file-

sharing application, publish a metadata saying that you have
a particular file.

• PublishAck: Response to the Publish message.



B. CRACKING XOR KEY
To crack the XOR encryption, we set forth the following initial

hypotheses:
1. There exists a single 40 byte XOR keyk used for encryption

on an overlay network
2. The keyk XORs the entire UDP payloadu delivered onto the

overlay network
3. The keyk does not modifyu such thatu ! = ((u ⊕ k) ⊕ k).
All three of these properties were verified during our decryption

efforts. First, we collected known plaintext fields, such aseDon-
key protocol identifiers (e.g., 0xe3), eDonkey Message Types (e.g.,
0x11), IP addresses, and ports. Comparing these known plaintexts
and corresponding ciphertexts, we could easily find 20 bytesof
the totalk keyspace. The rest of the key bytes were determined
by solving linear equations obtained from related ciphertexts (e.g.,
“Search” and “Search Reply”). Finally, using this encryption key,
we have been able to run our PPM and Crawler on the encrypted
Storm overlay network.


