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a b s t r a c t 

As a security extension to processor, ARM TrustZone has been widely adopted for various 

mobile and IoT devices. The protection is conducted by separating the system into two do- 

mains: the rich execution environment (REE) and the trusted execution environment (TEE). 

Although the TEE effectively isolates the critical resources based on hardware access control 

technologies, the communication channel between the REE and the TEE has been regarded 

as vulnerable and exploited by attackers to deliver malicious messages to the TEE, which un- 

dermines the entire TEE security. SeCReT (NDSS 15) introduced the first solution to protect 

the communication channel. Unfortunately, this method has several challenges associated 

with it, making it difficult to deploy the solution in production devices. This study illustrates 

such challenges in terms of performance and security. In addition, a design optimization of 

the initial version of SeCReT is proposed to mitigate these challenges and evaluated to high- 

light its effectiveness. 

© 2019 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Critical operations in computing systems, such as online
banking, have increased the need for a secure execution en-
vironment. As a response to this, the security community has
explored various techniques to provide a trusted execution
environment (TEE) to devices. The TEE can be classified as
a software- ( Payne et al., 2008; Seshadri et al., 2007; Sharif
et al., 2009 ) or hardware-based approach ( ARM, 2017; Johnson
et al., 2012; Kim et al., 2016; Moon et al., 2012; TPM, 2011 )
depending on how it is created. One of the hardware-based
TEE technologies, ARM TrustZone, has been deployed to a
number of mobile and embedded devices to provide the TEE.
ARM TrustZone is a security extension to the ARM processor
and isolates critical system components, such as memory
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and peripherals, in the TEE. As a result, an attacker in a
rich execution environment (REE) cannot directly access any
resources protected in the TEE. 

On a device equipped with a TrustZone-based TEE, the ap-
plication in the REE generally sends a message to the TEE to
invoke one of the TEE services. The message contains the re-
quired information to invoke the service, such as the task ID,
operation number, and parameters. It is delivered to the TEE
by invoking the kernel privileged instruction, the secure mon-
itor call (SMC), which is introduced as part of the TrustZone
technology. 

Unfortunately, this communication channel is vulnera-
ble because TrustZone is not designed with consideration
for message integrity protection and authentication. Conse-
quently, an attacker in the REE can abuse the communica-
tion channel to indirectly access the TEE resource and attack
B.B. Kang). 
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Fig. 1 – Isolation provided by ARM TrustZone. 

2

T
t  

n  

M
c
t
f
c

2

A
b
v  

i
i
T
n
t
(
a
v
g
q

2
T
k
C
o
c
i
S
t
p
t
R  

t
d
a

he TEE. More specifically, the attacker can arbitrarily send a 
rafted message to the TEE to analyze the internal workings,
xtract the secrets, and obtain full control over the TEE ( CVE- 
015-4421, 2017; CVE-2015-6639, 2017; CVE-2015-6647, 2017; 
VE-2016-0825, 2017; CVE-2016-2431, 2017; Sensepost, 2017 ). 

To address this problem, SeCReT ( Jang et al., 2015 ) proposed 

essage encryption for communication between the REE and 

he TEE. To this end, SeCReT provisioned a session key to 
he legitimate REE application when communication occurs.
o protect the key, it interposes the mode switches between 

he user and the kernel and removes the key from the mem- 
ry when the kernel mode enters. The key is rewritten to the 
emory only at the instant when the desired process uses it.
ashes for the static region of the application (code and data) 
re always checked before making the key accessible to pre- 
ent the attacker from modifying the code. A shadow stack 
s also maintained to mitigate the control-flow manipulation 

ttack. 
Despite the solid design for key protection, several chal- 

enges still need to be addressed. (C1) a copy of the key can be 
reated. Thus, part of the key can be leaked to attackers if the 
eveloper fails to ensure that the key is carefully used. (C2) the 
ode hash check conducted before the application accesses 
he key can incur a large performance overhead depending on 

he application size. (C3) multiple threads running in different 
PU modes cannot be supported with key protection because 
f the key protection mechanism that hides the key based on 

he mode switch. 
An optimization of the design is herein proposed to ad- 

ress the challenges and to make SeCReT more practical. The 
ey leakage problem (C1) is addressed by a register-only crypto 
peration and the removal of footage regarding used registers,
hich is executed by SeCReT. A crypto library based on a tiny 

ncryption algorithm (TEA) is created. SeCReT is coordinated 

ith a kernel integrity monitor, such as TZ-RKP ( Azab et al.,
017 ) hosted in the TEE, to solve C2. Specifically, the fact that 
he page table update is only allowed by the kernel integrity 

onitor is exploited to lock the memory pages after the first 
ash verification. This exempts the need for repetitive verifi- 
ations. For C3, the memory domain and the domain access 
ontrol register (DACR) that controls access permission to the 
omain on a per-core basis are adopted. This aspect is lever- 
ged to perform thread-based access control to the session 

ey. Security analysis and performance evaluation are also 
rovided to highlight the effectiveness of the proposed opti- 
ization. Specifically, in the performance of the session key 

rotection, the optimization outperforms the original SeCReT 

ethod by approximately a hundred times for the verification 

ith a 7 KB static region of application. 
The main contribution of this study can be summarized as 

ollows. First, a method to secure the communication channel 
o the TEE is proposed, which optimizes the-state-of-the-art 
or security and performance improvement. Second, the de- 
ign details that leverage the ARM system component and the 
ractical example implementation for the secure crypto oper- 
tion are provided. Third, the coordination of our solution with 

xisting security frameworks, such as Samsung’s TrustZone- 
ased integrity measurement architecture (TIMA) ( Azab et al.,
017 ), is explored and evaluated and can be a reference to en- 
ance TEE security on various mobile devices. 
. Background 

his work aims to secure a communication channel between 

he REE and the TEE that is built based on the TrustZone tech-
ology. Thus, the TrustZone technology is briefly introduced.
oreover, the memory domain and the DACR on the ARM ar- 

hitecture are explained as the core system features utilized 

o support channel protection. The kernel integrity monitor 
ounded on the TrustZone technology is also described, which 

ooperates with our system to optimize the performance. 

.1. ARM TrustZone 

s described in Fig. 1 , ARM TrustZone is an ARM processor- 
ased security extension designed to provide the TEE to de- 
ices. By orchestrating the TrustZone hardware components,
t enables system on chip (SoC) designers to divide the system 

nto two environments: the REE and the TEE. For example, the 
rustZone address space controller (TZASC) separates the dy- 
amic random access memory (DRAM) into the trusted and 

he rich environments. The TrustZone protection controller 
TZPC) enables security critical peripherals, such as keypad 

nd display, to be dynamically assigned to one of the two en- 
ironments. Once the SoC design is completed, secure OS is 
enerally deployed in the TEE to manage the TEE service re- 
uests from the REE. 

.1.1. Communication channel between the REE and the TEE 

he client application (CA) in the REE first opens the TrustZone 
ernel driver to use the trusted application (TA) in the TEE. The 
A then places the arguments in the domain-shared mem- 
ry and asks the kernel driver to invoke the secure monitor 
all (SMC) instruction that is only executable with kernel priv- 
leges. The processor mode is switched to monitor once the 
MC is invoked, which is introduced as part of the TrustZone 
echnology. The code running in the monitor mode generally 
lays the role of a gatekeeper that saves and restores the con- 
ext of each domain whenever the switch occurs between the 
EE and the TEE. The code also invokes the TEE OS, which in
urn, dispatches the invoked TA by referring to the arguments 
elivered from the CA. The dispatched TA performs the oper- 
tion requested by the CA and returns any result through the 
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Fig. 2 – Communication channel between the REE and the TEE. 

Table 1 – Example of the security-sensitive instructions 
and the SMC. 

Instruction Size (byte) Description 

MCR p15, 0, < Rt > , c1, c0, 0 4 Write to a control 
register 

MCR p15, 0, < Rt > , c2, c0, 0 4 Write to a page-table 
base register 

SMC # < imm4 > 4 SMC with a 4-bit 
immediate value 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

domain-shared memory. This series of processes is defined as
a communication channel ( Fig. 2 ). 

2.2. TrustZone-based kernel integrity monitor 

The TrustZone-based TEE not only isolates critical services
(i.e., TAs), but also hosts the kernel integrity monitors ( Azab
et al., 2017; Ge et al., 2017 ) that aim to protect the static region
of the REE OS. The protection is achieved by de-privileging the
kernel. First, the kernel monitor configures the static regions,
including code and data, as read-only. The page tables are also
set to read-only, and update to the tables are verified and em-
ulated by the kernel monitor. Thus, an attacker cannot remap
the protected region by manipulating the page tables. Second,
the execution of the security critical operations that can be
abused to bypass the memory protection is prevented. To
this end, the monitor replaces all the privileged instructions
with SMC instructions to enforce the critical operations to be
emulated in the TEE. As a result, malicious behaviors, such
as disabling the memory management unit or manipulating
the translation table base register (TTBR), can be effectively
hampered. Note that the size of the instructions on the ARM
architecture is fixed to 4 or 2 bytes. Hence, the lookup and
replacement of such critical instructions are feasible ( Table 1 ).
Lastly, the return-to-user-like attacks are considered and
prevented. The integrity monitor sets the privileged execute
never (PXN) flag in every page table entry that maps the
user-level memory. Hence, even if the kernel vulnerability is
exploited by a malicious user application, the attacker cannot
execute his/her malicious payload, which contains critical
privileged instructions, with escalated kernel privilege. All
enforcements from the kernel integrity monitor guarantee
that the static region of the REE remains immutable. 

2.3. Memory domain and DACR 

The memory on a 32-bit ARM architecture can be defined as
one of the 16 memory domains by configuring the 4-bit do-
main flag in the page directory entry ( Fig. 3 ). The 32-bit do-
main access control register (DACR) is introduced to setup the
access permission of each domain. The DACR has sixteen 2-bit
access control flags, and each corresponds to one of the six-
teen domains. Each flag can setup the access permission of the
domain into (1) no access (0b00), (2) permission check against
page table setup (0b01), (3) N/A (0b10), and (4) no permission
check (0b11). The most important characteristic of the DACR
is that it is banked for each processor in the multicore envi-
ronment. Thus, it can be individually configured regardless of
the configuration of other cores. Moreover, the change in the
DACR value is instantly effective without the need to manage
the translation lookaside buffer (TLB) caches. 

3. Security problem of the TrustZone-based 

TEE 

Although TrustZone provides preeminent security protection,
which effectively isolates the critical resources from the REE
based on the hardware-based access control technology, sev-
eral technical limitations still exist and can be exploited by
attackers to undermine TEE security. For example, the cur-
rent design of TrustZone does not provide any mechanisms
to authenticate the message sender and protect the integrity
of the message from the REE, which makes the communica-
tion channel vulnerable ( Fig. 4 ). Specifically, as discussed in
Section 2.1 , the communication channel on the REE side can
be defined as invoking SMC instruction by placing the argu-
ments in the domain-shared memory. This channel is com-
pletely exposed to an attacker in the REE. Therefore, it can be
easily compromised by the attacker. The SMC instruction can
be arbitrarily invoked and the contents in the domain-shared
memory can be crafted by the attacker. 
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Fig. 3 – Memory domain and DACR. 

Fig. 4 – Insecure communication channel to the TEE. 
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. Attack model and assumptions 

.1. Trusted computing base 

ommercially available security facilities, such as secure boot 
 Arbaugh et al., 1997 ) and kernel integrity monitor ( Azab et al.,
017; Ge et al., 2017; Samsung Electronics Co., 2017 ), are as- 
umed to act as the baseline defense for a device. Hence, the 
ollowing conditions are satisfied. (1) The images loaded dur- 
ng the device booting procedure are properly verified and 

oaded intact. In other words, the REE and TEE components are 
oaded without being compromised by the attacker. (2) Dur- 
ng the runtime of the device, the static region of the REE OS 
s immutable under the protection provided by the kernel in- 
egrity monitor. Specifically, even if the attacker obtains ker- 
el privileges, he cannot manipulate the region. The protected 

egion includes critical kernel components, such as the code,
ata, page tables, and exception vector. In addition to the secu- 
ity conditions, the input-output memory management unit 
IOMMU) ( CSMMU, 2015 ) is assumed to be available and ap- 
ropriately configured in the device. Thus, the attacker cannot 
xecute a direct memory access (DMA) attack. 

.2. Attack model 

he attacker is assumed to have kernel privilege in the REE.
is/her aim is to compromise the TEE by maximizing the use 
f the kernel privilege. The TEE is separated and protected by 
ardware access control technology, such as TZASC. Hence,
he attacker cannot directly access the TEE even with the ker- 
el privileges. However, he/she can exploit this to attack the 
EE because the communication channel (as the route to the 
EE) is vulnerable, as discussed in Section 3 . For instance,
e/she is free to invoke SMC instructions, which is only ex- 
cutable with the kernel privilege. The attacker executes the 
nstruction with maliciously crafted input payloads to lead the 

isbehavior of the TEE. The internal behavior of the TEE can 

e inferred by analyzing the return message from the TEE. In 

ddition, the vulnerabilities of the TEE OS and the TA can be 
ound and exploited by the malicious message sent through 

he vulnerable communication channel. 
The vulnerable channel has been exploited to attack the 

EE in the literature. The communication between the digi- 
al right management (DRM) service in the TEE and the client 
pplication in the REE was snooped to analyze the behavior 
f secure OS ( Sensepost, 2017 ). Qualcomm Snapdragon de- 
ice was compromised in a way that the bootloader is un- 
ocked by sending a crafted message to TrustZone ( QUA, 2017 ).
oomerang attack ( Machiry et al., 2017 ) shows how to abuse 
he communication channel and the TEE to perform the con- 
used deputy attack that leads the TEE to compromise the OS 
ernel. 

No method is currently available to authenticate the mes- 
age sender or protect the message delivered into the TEE.
ence, compromising the communication channel is an un- 
omplicated task to an attacker with kernel privileges. How- 
ver, the static region of the kernel is still immutable with the 
resence of the kernel integrity monitor, which is the founda- 
ion for building a defense mechanism for the communication 

hannel between the REE and the TEE. 

. The state-of-the-art study for securing 

ommunication channel 

.1. Overview 

s the first work developed to secure the communication 

hannel between the REE and the TEE, SeCReT proposes using 
 session key when the CA and TA communicate. To this end,
eCReT running in the monitor mode with the highest priv- 

lege in the system creates the session key, assigns it to the 
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Fig. 5 – Design of SeCReT. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pre-authorized CA, and performs access control to the key to
prevent it from being exposed to the attacker in the REE. The
key is guaranteed to be visible only when the pre-authorized
CA is running, and will be removed from the memory when
the kernel mode enters. 

Fig. 5 describes the overall design of SeCReT, which consists
of two components for the REE and the TEE. The main oper-
ation related to the session key management is performed in
the TEE. Specifically, the SeCReT code in the monitor mode
(i.e., SeCReT_M) creates, assigns, and revokes the session
key. It also maintains the list of pre-authorized CAs allowed
to invoke the TAs to use the key. SeCReT introduces a data
structure, called active process context (APC), to maintain the
important information relevant to the session key manage-
ment. The APC saves the translation table base register (TTBR)
as an identifier to lookup the key-assigned CA, the hashes of
the CA static region, and the value of the session key. 

On the other hand, in the REE, SeCReT trampolines (Se-
CReT_T) are inserted in the starting points of each user mode
exception handler to invoke SeCReT between the user and the
kernel mode switches. The trampoline performs a simple in-
vocation of the SMC instruction with arguments that present
information necessary to maintain the session key, such as
the process descriptor address and kernel stack address. In
addition to the exception handlers, the trampolines are also
inserted into some kernel codes that handle the creation and
termination of processes, which is required to notify the pre-
authorized CA events to SeCReT. Note that the trampolines are
inserted in the kernel static region protected by the kernel in-
tegrity monitor. Thus, the integrity of the trampolines is also
protected. 

5.2. Session key protection mechanism 

The session key protection requires the involvement of Se-
CReT early in the device boot sequence. During the secure boot
sequence, SeCReT calculates the hashes of the authorized CA
static region and stores them in the TEE. Note that the list
of the authorized CAs allowed to use the TEE services is pre-
defined and available during the boot sequence. During the
device runtime, the event of the pre-authorized CA execution
is notified to SeCReT, which leads SeCReT to create an APC
for this CA. When the CA asks for a session key assignment,
SeCReT creates a key and stores it in the APC. However, the
key is not immediately provisioned to the memory of the CA.
Instead, the permission of the memory page for provisioning
the key is configured as no-access, which is neither writable
nor readable. Because of this page permission, any CA at-
tempts to use the key incurs a page fault, which is notified to
SeCReT by the trampoline (SeCReT_T) at the starting point of
the data-abort exception handler. When SeCReT recognizes
this request for the session key, it calculates the hashes of
the present pages of the CA and verifies them against the
pre-calculated hashes obtained during the boot sequence. By
doing so, SeCReT validates the legitimacy of the current CA.
Provided that the current CA is determined as legitimate to
use the TEE services, SeCReT makes the key accessible when
the CA is rescheduled to run. In addition, SeCReT hides the
key whenever the mode enters to the untrusted kernel. 

6. Challenges with SeCReT 

In this section, the challenges associated with the current de-
sign of SeCReT that might make device manufacturers reluc-
tant to adopt SeCReT in production devices are discussed. 

6.1. Performance overhead for the session key protection 

SeCReT provides the session key to client applications in the
REE to secure the communication channel. Hence, proper pro-
tection of the key is critical to the success of the approach.
However, from the point of view of the attacker, one of the
easiest ways to obtain the key is to manipulate the application
code such that it leaks the key by itself. To prevent this, SeCReT
first checks the integrity of the code hash whenever the key is
provided to the process. This approach can lead to severe run-
time performance degradation if the code to be checked is too
large. The hash check is conducted in the TEE, which runs in
the secure mode of the processor. Thus, the tasks in the REE
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Fig. 6 – Domain and DACR configuration for the session key 

access control. 
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i.e., non-secure mode) might experience starvation if the user 
f the session key resides in the memory with a large amount 
f the present code to be checked. 

.2. Incompatibility with a multi-threaded application 

he current design of SeCReT does not support a multi- 
hreaded application because the key protection mechanism 

elies on the manipulation of the memory page shared be- 
ween different threads and, thus, cannot support different 
tatuses for each thread. More specifically, the key value in 

he memory page is flushed and restored depending on the 
tatus of the processor mode (flushed in the kernel mode and 

estored in the user mode). Hence, if different threads are run- 
ing in different processor modes, this situation cannot be 
roperly handled by SeCReT because the memory can exclu- 
ively present one of two cases: key provisioning or key hid- 
ng. For example, scheduling a new thread that accesses the 
ey might expose the key to the other threads running in the 
ernel mode on a different core. 

.3. Security issue with session key usage 

ven if the session key is protected by SeCReT, part of the key 
r the entire key can be exposed to the attackers while the key 

s used. In other words, the protection of the key can only be 
uaranteed when the key resides in the memory page initially 
llocated for the key provisioning. Unfortunately, without the 
areful usage of the developer, the key can be copied to the 
emory, such as the stack and heap, while the crypto oper- 

tion is being conducted. The copy can leak the key to the 
ttacker and undermine the security of SeCReT because the 
emory, other than that of the initial key assignment, is not 

rotected. 

. Mitigation and design optimization 

n this section, the design optimization of SeCReT to address 
he challenges discussed in Section 6 is proposed. 

.1. Coordination with the kernel integrity monitor 

n the original design of SeCReT, a hash verification is con- 
ucted right before the key is written to the memory page. All 
he present code pages are checked in this phase. This verifi- 
ation repeats when the key is used, which is the major rea- 
on for the performance degradation in the session key access 
ontrol. 

The code pages are configured as read-only for the kernel 
nd the user after the first hash verification to minimize the 
umber of verifications and reduce the overhead. Once the 
age table is configured for the read-only permission for the 
age, it should not be manipulated by an attacker. This can be 
uaranteed by coordinating SeCReT with the kernel integrity 
onitor. As discussed in Section 2.2 , the integrity monitor re- 

tricts the page table update in the REE, verifies, and emulates 
ny update to the page table in the TEE. Although this is es- 
entially designated to protect the static region of the kernel,
he mechanism is extended to protect the client application 

hat uses a session key. 
Although the verified code and data are protected by set- 

ing the page table, new memory pages can be loaded during 
he crypto operation process. To address this, the behavior of 
he kernel integrity monitor needs to be slightly updated such 

hat it can cooperate with SeCReT. The integrity monitor is al- 
ays invoked to handle this event because the new page load- 

ng requires a page table update. Instead of directly returning 
o the REE when the page table update is completed by the in-
egrity monitor, SeCReT can be invoked to additionally verify 
he newly loaded page against the pre-calculated hash. If the 
ew page is verified to be intact, its page table entry is then up-
ated once again to enforce the page to be read-only against 
he kernel. 

.2. Adoption of the DACR for the session key protection 

eCReT interposes between the mode switches to protect the 
ession key and removes the key from the memory when the 
ode enters the kernel. The key is restored in the memory 

t the instance it is used in the user mode. This memory and
age table manipulation-based access control to the key is ef- 
ective only when the process is running in a single thread.
hat is, as discussed in Section 6 , the key used by a multi-

hreaded process cannot be properly protected because the 
echanism that manipulates the memory cannot handle a 

ase where different threads run in different processor modes 
t the same time. As a result, the original design of SeCReT 

annot support a multi-threaded process. 
Accordingly, the DACR is leveraged in association with a 

age table configuration to resolve this problem. On the 32-bit 
RM architecture, 16 domains can be defined by configuring 

he domain flag in the first-level page table entry. By default,
inux assigns 0, 1, and 2 for the kernel, user, and device 
omains, respectively. The permission of each domain is con- 
gured by the DACR, which has 16 two-bit permission flags 
or each domain, as discussed in Section 2.3 . In our design 

ptimization for SeCReT, the domain for the session key is 
ewly assigned as “3” ( Fig. 6 ). This domain assignment is ful- 
lled when the memory page is initially allocated in response 
o the session key request. Note that unlike the original 
ersion of SeCReT that writes the key value to the memory on 

emand based on the occurrence of the access to the key, the 
ey value always resides in the memory page in our design 
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Fig. 7 – Original crypto library. 

Fig. 8 – PoC of the SeCReT crypto library. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

enhancement. The DACR that configures the access permis-
sion of each domain is utilized to perform access control to
the key. 

The access permission to the domain for the session key
assignment is initially set to no-access (NA). Processes access-
ing the key, which resides in the memory domain with NA
permission, cause a data-abort exception, which is one of the
exception types available in the 32-bit ARM architecture. The
occurrence of the data-abort branches the program counter
(PC) to the exception vector that defines the address of each
exception handler to be invoked. In this case, the handler for
the data-abort is invoked. SeCReT_M in the monitor mode is
invoked to handle access to the key because the starting point
of each exception handler is inserted with a SeCReT trampo-
line (SeCReT_T). 

The operation performed by SeCReT_M is similar to that of
the original version. SeCReT_M first checks if the invocation
originated from a legitimate kernel code (i.e., starting points
of the exception handlers) by referring to the link register (LR),
which is automatically set to the return address when the SMC
instruction (i.e., SeCRe_T) is executed. The type of exception,
which is the data-abort in this case, is also distinguished from
other exception types by checking the parameter passed to
SeCReT_M. This is required for SeCReT to perform the access
control to the key. The APC for the current client application,
which defines the session key address, is retrieved to check if
the data-abort address falls within the key location. Given that
the abort happens because of the key access, SeCReT sets the
specific flag (key_request_flag) that indicates this event. The
flag is referred to later on when the mode switches back to
the user mode to enable the client application to use the key. 

The remaining data-abort handling routine in the kernel
does not need to be executed because the data-abort caused
by the session key access is already handled by SeCReT. Thus,
the return_to_user is directly executed to resume the client
application. SeCReT_M is invoked again as SeCReT_T is in-
serted in the return to user. At this time, SeCReT checks if
the last entry to the kernel was caused by the key access by
checking the value of the key_request_flag. Once confirmed,
SeCReT enables the key to be accessible to the client applica-
tion before the mode switches to the user. This is conducted
by manipulating the DACR. SeCReT_M sets the access permis-
sion for the domain that contains the key from 0b00 (NA) to
0b01, which enforces the permission to follow the setting in
the page table. This way, the process can read the key by retry-
ing the instruction that failed because of the domain access
permission initially set to NA. 

The advantages of using the DACR over direct memory ma-
nipulation for the key protection can be summarized in two
ways. (1) A multi-threaded application can be supported for
the use of the SeCReT-provided session key because the DACR
is banked for each processor, thereby enabling the application
of different configurations to each thread running on different
processors. (2) The TLB and cache maintenance is not required
for the key protection. Any change on the DACR instantly takes
effect without performing cache operations, which is in con-
trary to the case of the REE memory being updated from the
TEE for the key access control (e.g., provisioning the session
key by SeCReT). 

7.3. Secure crypto library 

The session key should be used in a secure manner because
simple operations can create copies of the key, as discussed in
Section 6 . SeCReT crypto libraries that help developers safely
use the session key are developed based on a tiny encryption
algorithm (TEA) ( Wheeler and Needham, 1995 ). 

To protect the key, only general registers are enforced to be
used when the crypto computation is processed. Four regis-
ters of 4 bytes each are used because the key is 128-bit long.
Fig. 8 shows that a simple change (instrumentation) is re-
quired in the original library to prevent part of the key from
being copied out of the protected memory. This change in-
volves some performance degradation because the stack is not
used to cache a part of the key in the instrumented library in
contrary to the original library ( Fig. 7 ). Fig. 8 shows that the
instrumented library requires two more instructions to load
the key from the protected memory to the register. Therefore,
the computation using the SeCReT library requires at least
256 additional instructions (2 ∗4 key parts ∗32 loops) compared
to that in the original library in this example. A comparison
of the performance between the two libraries is provided in
Section 10.2.2 . 

The footprint of the key must also be clearly removed when
the mode enters the kernel mode. All the general registers
are masked when mode switching occurs because of asyn-
chronous exceptions, such as an interrupt. In contrast, some
registers need to be reserved for handling system calls, such
as system call number (R7) and parameters (R0-R6). Hence,
the rest of the registers are masked in this case. Note that
the cache for the session key does not need to be invalidated
because the key is protected by leveraging the DACR, thereby
eliminating the requirement for cache and TLB maintenance.

Our PoC library is built on TEA, which is quite simple.
Hence, it can be manually verified that part of the key is not
written to unprotected memory areas. That is, it can be readily
confirmed that part of the key contained in the register during
the computation is never written to the memory. However, a
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anual verification could not be conducted when more com- 
lex crypto algorithms are used. Therefore, instrumentation 

hat removes such unwanted memory writes or a runtime ver- 
fication that checks such cases must be further studied. This 
ask is set aside for our future work. 

. Implementation 

he original version of SeCReT was designed based on ARMv7,
hich specifies the 32-bit ARM architecture. It was developed 

n an Arndale board with a Cortex-A15 dual-core processor.
inux version 3.9.1 and Sierra TEE ( Sierraware, 2017 ) were de- 
loyed as the REE and TEE software stacks, respectively. The 
ame development environment was used in our optimization 

o properly evaluate the changes. 

.1. Domain and DACR adoption 

he memory domain and the DACR are leveraged to per- 
orm access control to the key. The 32-bit ARM architecture 
as two translation table formats: short and long. In the 
hort-translation table format, the memory can be mapped 

s sections (16 MB or 1 MB) or pages (64 KB or 4 KB), while
n the long-translation table format, block (2 MB or 1 GB) or 
age (4 KB) is supported to map the memory. The domain can 

e defined by configuring the domain flag on the first-level 
hort-translation table descriptor also known as page direc- 
ory entry on Linux. The long format does not support the 
omain. The domain flag is only available for the descriptor 
hat points to the 1 MB section or page table, indicating that 
he minimum granularity of the domain is 1 MB. Thus, the 
 MB-aligned memory page is allocated for the protected 

ession key. In addition, “3” is assigned for the session key 
omain because domains 0, 1, and 2 are already used by Linux.

The access permission of each domain is controlled by the 
ACR, which is 32-bit long. Each 2 bit defines the permission 

f the corresponding domain (e.g., the least significant 2 bit 
efines the permission of domain “0”). The DACR is configured 

henever the mode switches to kernel and the data-abort 
aused by the legitimate access to the key occurs to perform 

he access control to the session key domain. On entry to 
he kernel, the value of the DACR is set as “0x55555515,”
ndicating that domain 3 is not accessible. The DACR value is 
estored to the default value “0x55555555,” which makes the 
ccess permission of all domains follow the page table entry 
onfiguration and ensures that the key is accessible to the 
egitimate application. 

The data fault address register (DFAR) containing the fault- 
ng address of the synchronous data-abort exception is read to 
erify the legitimacy of the access to the key. It is checked if the 
alue of the DFAR falls within the session key address stored 

n the ACL. Note that the data fault status register (DFSR) con- 
ains the domain field, but is deprecated from ARMv7. 

.2. Coordination with the kernel integrity monitor 

he kernel integrity monitor running in the TEE is utilized to 
ptimize the hash verification performance. The fact that any 
age table update is performed by the monitor in the TEE is 
articularly exploited. Moreover, the integrity of the client ap- 
lication is verified when the session key is accessed for the 
rst time. Then, the descriptor of a small page (4 KB) is config-
red such that the access permission of the application static 
ages is set as read-only for both the kernel and user modes.
ll bits (i.e., 0b111) of the permission flag in the descriptor 
re set. To handle the runtime loading of the new page, the 
ntegrity monitor invokes SeCReT to check and lock the new 

age. According to the proposed design, the invocation should 

ccur in the TEE. However, the invocation was managed to 
appen in the REE because the integrity monitor was not fully 

mplemented in our work. This is realized by inserting an SMC 

nstruction that invokes SeCReT right before the updated page 
able entry (PTE) is flushed from the cache (in set_pte_ext).
nce SeCReT is invoked, it first retrieves the translation ta- 
le base register (TTBR) of the current process and looks up 

he ACL with the TTBR as a key to check if the current process
s actually assigned with the session key. This check happens 
or every process and degrades the performance of the entire 
ystem. The performance overhead caused by this procedure 
s evaluated in Section 10.1.1 . 

. Security analysis 

n terms of the session key protection, the optimization pro- 
osed in this study should not degrade the security level of 
he original version of SeCReT. The key is provisioned in the 
EE, which is regarded as an unsafe area. Hence, various at- 
ack vectors must be considered. 

The attacker can try to snapshot the memory to find any 
ootprint of the key and extract it. The untrusted kernel can 

ry to dump the protected memory allocated for the key when 

he process that uses the key enters the kernel mode. This at- 
ack is prevented by managing the access permission of the 

emory domain specifically assigned for the session key pro- 
isioning. SeCReT interposes every mode switch to the kernel 
nd configures the DACR to enforce the permission of the key 
omain as “no access” from any privileged mode. Thus, any 
ttempt to access the key is blocked. 

The attacker can also try to manipulate the DACR to restore 
ccessibility to the key domain because he/she has kernel 
rivileges. However, this attack, which executes the privileged 

nstruction to manipulate the DACR, is also prevented by the 
ernel integrity monitor ( Azab et al., 2017; Ge et al., 2017 ).
pecifically, every privileged instruction in the REE OS is re- 
laced with SMC instructions that invoke the kernel integrity 
onitor, and security critical operations are emulated by the 

ntegrity monitor in the TEE. In addition to this, executing the 
rivileged instructions by loading a malicious kernel module 
r launching a return-to-user attack is also addressed by the 
ernel integrity monitor. 

In a multi-core system, the attacker would try to exploit 
nother core with the DACR set to the default value (i.e., ev- 
ry domain is set to accessible) because the DACR is banked 

or each core. To succeed in this attack, the attacker needs to 
anipulate the page table to create a new map to the session 

ey. Unfortunately, this trial is also hindered because page ta- 
le manipulation is only allowed in the TEE with the presence 
f the kernel integrity monitor. 
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Table 2 – LMBench latency microbenchmark results (in 

microseconds). 

Linux SeCReT SeCReT_Opt 

Null 0.27 1.06 (3.9 × ) 1.16 (4.2 × ) 
Open/Close 5.43 8.83 (1.6 × ) 8.64 (1.5 × ) 
Read 0.33 1.23 (3.7 × ) 1.47 (4.4 × ) 
Write 0.42 1.57 (3.7 × ) 1.78 (4.2 × ) 
Fork 147.78 174.66 (1.1 × ) 181.39 (1.2 × ) 
Fork/Exec 160.32 189.03 (1.1 × ) 196.11 (1.2 × ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The attacker would try to modify the application code
such that it exposes the key outside of the protected domain.
SeCReT hampers this attack by setting the static region of
the application to read-only after verifying the hashes of
the region. The time-of-check-to-time-of-use attack that
exploits the timing gap between the hash verification and
the locking of the page table must also be considered. The
malicious code running in the non-TEE mode can try to
modify the verified code before it is locked by configuring the
page table. However, this attack also essentially requires page
table manipulation, which is restricted by the kernel integrity
monitor. The libraries that use the key (e.g., crypto library)
need to be verified before it is loaded. In our implementation,
the instrumented crypto library is statically compiled such
that it can be verified together with the application code. 

Finally, the prevention of a control flow-based attack de-
pends on the coarse-grained control flow integrity provided
by the original version of SeCReT. As a limitation of this work,
any vulnerability that enables the attacker to gain control flow
of the application might expose the key. This issue will be ad-
dressed in a future work. 

10. Performance evaluation 

In this section, the performance variation enabled by the Se-
CReT design optimization is measured and evaluated. The mi-
cro and application benchmarks are executed on the native,
SeCReT-enabled, and optimized SeCReT-enabled Linux OSs to
evaluate the OS performance. The application performance
that benefits from the protection provided by SeCReT is also
measured by running a test program that performs crypto op-
erations. 

10.1. REE OS 

SeCReT interposes every mode switch between the user and
the kernel when it is enabled, regardless of the current process
using the session key. Hence, it imposes some performance
overhead to the entire system. This overhead is measured by
running LMBench and Phoronix test suites. 

10.1.1. LMBench 

As a microbenchmark suite, LMBench provides a collection of
test programs that can evaluate the performance of OS sys-
tem operations. As can be seen in Table 2 , six test cases, in-
cluding pure context switch (null), read/write, and fork were
run on three different test environments: Linux, SeCReT, and
optimized SeCReT (SeCRe_Opt). SeCReT essentially imposes
some overhead to the system, which is a maximum of 3.9
for the context switch, because of the interposition between
the mode switches. This overhead decreased to approximately
10% for the fork and exec as the latency increased. However,
SeCReT_Opt slightly induces more overhead than SeCReT be-
cause of utilizing the kernel integrity monitor in handling
page fault. That is, whenever a new page is loaded, SeCReT
is invoked to check if the current process was assigned with a
session key and performs the integrity check for the new page
(given that it falls within the static region of the application).
The system calls with a low latency (e.g., null, read, and write)
imposed a high overhead (approximately 4 × ), but the result
revealed the tendency of the overhead being reduced to 1.2 ×
for the fork and fork/exec similar to the test with SeCReT. Note
that SeCReT_Opt was temporally invoked from the REE OS,
which imposed an additional world switch overhead, because
the kernel integrity monitor was not fully implemented in our
prototype. Hence, in a real situation where SeCReT_Opt and
the integrity monitor cooperate in the TEE, the overall over-
head is expected to be reduced because of the exemption of
the world switch. 

10.1.2. Phoronix test suite 
A Phoronix test suite was run as an application benchmark.
It provides comprehensive benchmark testing applications to
evaluate the performance of various system features such as
graphics, processor and disk. For example, nginx is an apache
benchmark that measures the CPU throughput of concurrent
and huge web requests. Among the applications, 10 processor-
bound test cases were chosen because SeCReT does not inter-
act with peripherals. Fig. 9 describes the results of the test runs
with 10 applications, indicating the overhead of SeCReT and
SeCReT_Opt normalized to Linux. In most cases, the overhead
was less than 10% for both SeCReT and SeCReT_Opt. The com-
parison of SeCReT and SeCReT_Opt did not show any clear
superiority in the performance of SeCReT over SeCReT_Opt
despite the fact that the additional logic for the coordina-
tion with the kernel integrity monitor was deployed in Se-
CReT_Opt. The reason for this can be explained as follows: this
benchmark aims to measure the system overhead introduced
by optimizing SeCReT, not the overhead of a protected appli-
cation. Hence, the additional overhead imposed by the coor-
dination between the SeCReT and the integrity monitor was
limited. As illustrated in Section 7.1 , the latency was caused
by the world switch between the REE and the TEE whenever
a new page is mapped. It was quite small compared to the
overall runtime of each benchmark application. Hence, most
overhead was obscured. This result highlights that the SeCReT
enhancement imposes a negligible overhead to the system. 

10.2. Client application 

In this section, the performance of an application that benefits
from the SeCReT-provided session key protection is evaluated.
The performance of SeCReT_Opt is specifically compared with
the original SeCReT and analyzed to show how much perfor-
mance gain or loss is achieved by the design change. 
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Fig. 9 – Performance comparison between SeCReT and SeCReT_Opt with 10 test cases (normalized to Linux). 

Table 3 – Comparison of the crypto library performance 
with the logics shown in Figs. 7 (original) and 8 (instru- 
mented). 

Loop count Original ( μs) Instrumented ( μs) Overhead 

1 3.7 4.1 1.108 ×
2 7.3 7.6 1.041 ×
4 11.1 11.5 1.036 ×
8 15.1 15.7 1.039 ×
16 19.5 20.1 1.030 ×
32 24.7 25.5 1.032 ×
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Fig. 10 – Pseudocode for measuring the key access control 
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0.2.1. DACR configuration vs. memory manipulation 

 multi-threaded application support requires changing the 
ey access control mechanism. In the original version, the 
ey is protected by directly manipulating the memory on ev- 
ry mode switch, which requires removing the key value in 

he memory, cache flushing, page table entry update, and TLB 

ushing. However, the mechanism was optimized to use the 
ACR and the memory domain to support the multi-threaded 

pplication. Hence, access control to the key was performed by 
anipulating the DACR between the mode switches. The per- 

ormance was compared by measuring the cycle count of each 

ase. A small cycle count difference (two or three cycle counts) 
as observed between SeCReT and SeCReT_Opt, which was 
egligible. 

0.2.2. Secure crypto operation 

able 3 describes the performance of the original ( Fig. 7 ) and 

nstrumented ( Fig. 8 ) crypto libraries. The performance of the 
ooping part consisting of 32 rounds of loops was measured.
ccordingly, 10% overhead was imposed for the first round of 

he loop because the instrumented library had twice as many 
ore memory operations than the original version. However,

his overhead significantly decreased from the second round 

ecause of the impact of cache that removed the need for 
MUs memory read. Consequently, as an overall overhead, it 
as reduced to 3% to complete the loop. 

0.2.3. Key access control overhead 
inally, the impact of SeCReT (and SeCReT_Opt) on the client 
pplications running in three different environments was 
valuated: Linux, SeCReT without key protection, and SeCReT 

ith key protection. SeCReT without key protection denotes 
he case, where SeCReT is enabled, but the current applica- 
ion does not use the protected key. 

The client application parses an input payload, encrypts it 
ith TEA, and prints the ciphertext ( Fig. 10 ). The payload size

aries from 128 bytes to 8 KB. The 4 byte key is used for the
ncryption. Linux and SeCReT without key protection do not 
se the protected key. Hence, a random value was assigned as 
 key. For the key protection, the key is provisioned by SeCReT 

n the TEE. 
Table 4 enumerates the result indicating the latency 

f running the CA in each environment and presents the 
verheads normalized to the baseline (Linux). The column 

ithout key protection indicates the performance of appli- 
ation that uses a random value as a key. Because the key 
s not protected by SeCReT, the performance of application 

s only affected by the system overhead imposed because of 
nabling SeCReT. In this case, the performance deteriorated 

ith SeCReT_Opt because of SeCReTs cooperation with the 
ernel integrity monitor, which invokes SeCReT whenever 
emand paging happens. Consequently, 24% of maximum 

verhead was observed with SeCReT_Opt whereas SeCReT 

mposed 18% of overhead when the minimum payload size 
as used. As discussed in Section 8 , the invocation requires 

he world switch between the REE and the TEE in the current 
mplementation, and the latency of which is approximately 
 μs. However, the implementation following our design 
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Table 4 – Performance of client applications, the session keys of which are protected by the original and optimized versions 
of SeCReT (in microseconds). 

Payload Linux Without key protection With key protection 

size (bytes) (baseline) SeCReT SeCReT_Opt SeCReT SeCReT_Opt 

128 1324.9 1572 (1.18 × ) 1648.9 (1.24 × ) 238418.1 (179.95 × ) 6539.2 (4.15 × ) 
256 1543.1 1776.6 (1.15 × ) 1860 (1.20 × ) 258818.8 (167.72 × ) 6786.4 (3.81 × ) 
512 1962.1 2189.2 (1.11 × ) 2274.9 (1.15 × ) 299918.7 (152.85 × ) 7135.4 (3.25 × ) 
1024 2800.9 3049 (1.08 × ) 3246.6 (1.15 × ) 385818.4 (137.74 × ) 8021.1 (2.63 × ) 
2048 4537.1 4738.6 (1.04 × ) 4907.5 (1.08 × ) 576018.4 (126.95 × ) 10025.8 (2.11 × ) 
4096 676005.5 676804.7 (1.00 × ) 677293.9 (1.00 × ) 67823220.2 (100.32 × ) 681223.9 (1.00 × ) 
8192 1685473.9 1686312.1 (1.00 × ) 1686863.3 (1.00 × ) 168672421.9 (100.07 × ) 1723824.4 (1.02 × ) 

Table 5 – Performance of client applications with various 
size of static region (in microseconds). 

CA size (KB) 

7 11 15 19 

SeCReT 238418.1 369522.7 489621.2 637571.1 
SeCReT_Opt 6539.2 8654.2 10791.3 13192.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

proposal is expected not to add the world switch overhead
because the page table update will be conducted by the kernel
integrity monitor that also resides in the TEE. 

The test with key protection demonstrates the perfor-
mance of application that uses a SeCReT-protected key. In
this case, SeCReT_Opt significantly outperformed SeCReT
because of the optimization on the hash check. In SeCReT, the
hash check for the CA happens whenever the key is accessed.
In our test, the size of the static region that needed to be
checked was 7 KB, and approximately 2200 μs was required
to measure the 4 KB memory page. Hence, the latency pro-
portionally increased to the number of access to the key. The
maximum overhead (179 times) was observed with the 128
byte payload, and the overhead reduced down to 100 × with
the largest payload having an 8 KB length. However, compared
to SeCReT, the overhead significantly reduced with our opti-
mization. The overhead was 4 × with the 128 byte payload and
reduced down to 2% with the 8 KB payload. Note that the hash
check latency dominated the most overhead, and the impact
of the DACR adoption and crypto library instrumentation was
negligible in the CA performance evaluation. 

The impact of size of CA on the performance of access
control to the key is also evaluated. The experiment runs
applications that encrypt 128 bytes of payload with a SeCReT-
protected key. Several dummy pages, the size of which varies
from 4 to 12 KB, are added to the CA to emulate the CA size
increase. The effectiveness of our optimization is noticeable
as can be seen in Table 5 . The latency of SeCReT surges up
when the CA size increases because the hashes of all the
static regions of CA are repeatedly checked before the key is
provisioned to the CA. By contrast, only a limited increase in
the latency was observed with SeCReT_Opt. Hash validation
overhead was added only once for the initial page loading,
thanks to the optimization. The checked region is locked by
the integrity monitor to prevent any modification. As a result,
approximately 2200 μs of latency was added to the overall
runtime of CA when a new dummy page is loaded. 
11. Discussion 

11.1. Instrumentation for secure computation 

As an example of achieving a secure key usage, a crypto li-
brary built based on the TEA was instrumented. Because of
the simplicity of the algorithm, the library was manually in-
strumented such that it only used the general registers for the
crypto operation. The library code that saves part of the ses-
sion key in the stack ( Fig. 8 ) was manually removed. It was con-
firmed that the compiled binary does not contain any memory
operation that leaks part of the key from the protected mem-
ory. However, this manual instrumentation would not work for
more complicated crypto algorithms because modifying the
source code and verifying the binary might require a signifi-
cant engineering effort. As a result, a compiler extension that
ensures the crypto library performs a register-only operation
with the protected key will be developed in our future work. In
addition, an LLVM pass ( Writing an llvm pass, 2017 ) that con-
ducts an alias analysis for the annotated key, tracks the user of
the key, and removes any instruction that stores part of the key
in the unprotected memory will be created. This pass will en-
sure that part of the key is always directly loaded from the pro-
tected memory into the general register whenever it is used. 

11.2. Key protection granularity 

The original version of SeCReT protected the key based on
a granularity of 4 KB, which is a small page size on the
32-bit ARM architecture. In our optimization, the adoption
of the memory domain and the DACR for the multi-threaded
application support increased the protection granularity. The
domain was defined by configuring the first-level translation
table descriptor (i.e., page directory entry) that maps the
memory based on 1 MB granularity. Hence, the size of the
protected memory also became 1 MB. This increase in the
protection size led to the waste of a large portion of the
memory because the key storage occupied only a few bytes
(e.g., a 4 byte key was used for our secure crypto library). 

The waste can be reduced by utilizing the protected mem-
ory as a secure buffer that contains the message to the TEE.
The part of the application code responsible for message
creation can be located in the protected memory as well. This
approach might require a further design change because not
only the code, but also the stack and heap, need to be lo-
cated in the protected memory. In contrast, the adoption of a
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ne-grained memory protection technique can be considered.
igilare ( Moon et al., 2012 ) and KI-MON ( Lee et al., 2017 ) show

hat the byte granularity memory protection is possible with 

he external monitoring technology, which can be leveraged 

o protect the session key. Coordinating SeCReT with external 
onitoring techniques will be addressed in our future work. 

1.3. Compatibility with ARMv8 

he SeCReT prototype was built on ARMv7, which specifies 
he 32-bit ARM architecture. However, ARMv8 that supports 
oth 32-bit and 64-bit ARM instruction sets is different from 

RMv7 in some aspects, including exception handling. ARMv8 
implifies the exception handling mechanism in a way that it 
onsolidates various exception modes in ARMv7 (e.g., IRQ and 

ata abort) and introduces the exception level (EL) as a unified 

PU mode (e.g., EL0 for user and EL1 for kernel modes). Any ex- 
eption that occurs in EL0 is caught by the exception vector in 

L1, which dispatches exception handlers for the correspond- 
ng exceptions by referring to the exception syndrome regis- 
er. Therefore, applying SeCReT to the 64-bit system requires 
ome engineering effort in terms of adding the trampoline 
ode to the proper location in a 64-bit exception vector and 

andlers. In addition to the change on the exception handling,
ome control registers are deprecated in the 64-bit architec- 
ure. For instance, the DACR, which has been leveraged herein 

o support the multi-threaded application, is no longer sup- 
orted in the 64-bit mode. Hence, supporting the multi-thread 

n the 64-bit system requires the exploration of an alternative 
eature for the DACR. This topic is left for our future work. 

2. Related work 

2.1. Secure I/O channel 

 line of studies on x86 introduced methods to build a trusted 

ath between the application and devices and protect the in- 
eraction between the user and the I/O devices. McCune et al.
 Perrig and Reiter, 2009 ) built a secure channel between the en- 
rypting input device and the application that runs in the se- 
ure execution environment created by Flicker ( McCune et al.,
008 ). A software security token ( Brasser et al., 2012 ) and a
ecure transaction confirmation architecture ( Filyanov et al.,
011 ), both of which enable the user to securely communicate 
ith I/O devices, were built based on Flicker and the trusted 

latform module (TPM) ( TPM, 2011 ). As a hypervisor-based ap- 
roach, Zhou et al. (2012) showed how to create a general and 

uman-verifiable trusted path between the arbitrary applica- 
ion and devices. The wimpy kernel ( Zhou et al., 2014 ) built 
ased on XMHF ( Vasudevan et al., 2013 ) was introduced to 
rovide on-demand isolated I/O channels. The hypervisor was 

everaged to secure SGX I/O as well. As the first work, SGXIO 

 Weiser and Werner, 2017 ) coordinates a small hypervisor with 

n SGX-provided security property (e.g., attestation) to create 
 trusted path between the SGX enclave and the I/O devices. 

Meanwhile, the TrustZone technology on the ARM essen- 
ially provides a secure I/O to the TEE services. TZPC ( ARM,
017 ) enables the peripherals (e.g., keypad and display) to be 
ynamically assigned as the TEE resources. Hence, additional 
ecurity facilities are not required in the TEE to build a secure 
hannel between the TEE service and devices. However, secur- 
ng the channel between the REE and the TEE is still important 
n terms of the TEE service protection necessary for the trust- 
orthiness of the secure I/O. As a result, SeCReT ( Jang et al.,

015 ) can also be regarded as part of works that build a trusted
ath between a user and devices. 

2.2. Kernel integrity monitor 

s a baseline system security, many works studied effi- 
ient and safe ways to monitor the kernel integrity. Many 
pproaches host the monitor outside of the OS to protect 
he monitoring framework from attackers. As a hypervisor- 
ased approach, Secvisor ( Seshadri et al., 2007 ) implemented 

 tiny hypervisor that leverages hardware-assisted virtualiza- 
ion technology to protect the kernel from privileged attackers 
e.g., rootkit). Lares ( Payne et al., 2008 ) introduces active mon- 
toring that places hooks and trampolines in the monitored 

M to conduct the security verification in the security VM. SIM 

 Sharif et al., 2009 ) places not only the hooks, but also the se-
urity agent inside the monitored VM to reduce the overhead 

ncurred by switching VMs. HookSafe ( Wang et al., 2009 ) re- 
ocates and protects the hooks based on page granularity to 
fficiently protect the implanted hooks. 

A hardware-based approach was also explored to secure 
he kernel. HyperSentry ( Azab et al., 2010 ) and HyperCheck 
dopt the system management mode to monitor the kernel in 

 secure and isolated manner. Copilot ( Petroni Jr et al., 2004 )
napshots the system memory from a PCI card, which pro- 
ides the isolated monitoring environment. Vigilare ( Moon 

t al., 2012 ) and KI-Mon ( Lee et al., 2017 ) propose snoop-based
ystem monitoring that can prevent a transient attack by de- 
igning external security hardware. TrustZone also enables 
ernel integrity monitoring to be securely conducted. TZ-RKP 
 Azab et al., 2017 ) and Sprobes ( Ge et al., 2017 ) introduce a
rustZone-based kernel integrity monitor that de-privileges 
he kernel to enforce critical operations, such as page table 
pdate, to be always verified and emulated by the monitor.
eCReT benefits from the kernel integrity monitoring, in that 
art of SeCReT components, such as the trampoline, is pro- 
ected as a part of the monitored objects. By cooperating with 

he integrity monitor, the performance improvement of the 
ession key protection has been shown in our work. 

2.3. TrustZone-based TEE 

he TEE built based on the TrustZone technology has been 

dopted to protect critical services in mobile devices. Liu et al.
2012) implemented a trusted global positioning system (GPS) 
n the TrustZone-based TEE to protect the sensor service and 

ata. Adattester ( Li et al., 2015 ) and TrustUI ( Li et al., 2014 )
everage TrustZone to secure ad-related operations and crit- 
cal user interface (UI), respectively. TrustOTP ( Sun et al., 2015 ) 
lso isolates the software-based OTP token in the mobile de- 
ice TEE to achieve flexibility and security. TrustZone is used 

ot only to provide an isolated execution environment, but 
lso to build security-related systems. TZ-RKP ( Azab et al.,
017 ) and Sprobes ( Ge et al., 2017 ) host the kernel integrity
onitor by taking advantage of the highest privilege accorded 



c o m p u t e r s  &  s e c u r i t y  8 3  ( 2 0 1 9 )  7 9 – 9 2  91 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to TrustZone. TrustDump ( Sun et al., 2014 ) uses TrustZone
to securely acquire system information needed for malware
analysis. Ninja ( Ning and Zhang, 2017 ) achieves stealthy appli-
cation tracing and debugging by leveraging TrustZone-based
TEE. TrustShadow ( Guan et al., 2017 ) enables an unmodified
application to be protected from the malicious OS by lever-
aging TrustZone. Brasser et al. (2016) proposed a TrustZone-
based mechanism that can remotely regulate the behavior
of smart devices in the restricted space. Moreover, C-FLAT
( Abera et al., 2016 ) leverages TrustZone to realize the runtime
control-flow verification. In addition to the utilization of Trust-
Zone, ways to improve its usability and openness were also ex-
plored. TLR ( Santos et al., 2014 ) ports a.NET framework in the
TEE to improve the development productivity of trusted ser-
vices. PrivateZone ( Jang et al., 2018 ) and vTZ ( Hua et al., 2017 )
virtualize the TrustZone for its security and accessibility im-
provement. Finally, the vulnerability of TrustZone and its ex-
ploitation are studied. A BOOMERANG attack ( Machiry et al.,
2017 ) abuses the semantic gap and communication channel
between the REE and the TEE to execute a confused deputy
attack, which leads the TEE to attack the REE OS. As a possible
defense mechanism for such an attack, SeCReT ( Jang et al.,
2015 ) proposes message encryption to prevent the attackers
from abusing the vulnerable communication channel. 

13. Conclusion 

In spite of the execution environment separation and isolation
technology, TrustZone-based TEE suffers from a vulnerable
communication channel that is abused by attackers to deliver
a maliciously crafted message to the TEE, which can under-
mine the entire TEE security. To address this problem, SeCReT
introduces a communication channel protection mechanism
that enables a legitimate REE application to use a session key
when it communicates with the TEE. To make the technique
more practical, a design optimization of the original version
of SeCReT is proposed. It was shown that the optimization
can reduce the performance overhead, minimize the key
leakage, and support a multi-threaded application. 
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