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ABSTRACT
Higher privileged trust anchors such as thin hypervisors and Trust-
Zone have been adopted to protect mobile OSs. For instance, the
Samsung Knox security platform implements a kernel integrity
monitor based on a hardware-assisted virtualization technique for
64-bit devices. Although it protects the OS kernel integrity, the mon-
itoring platform itself can be a target of attackers if it encompasses
exploitable bugs. In this paper, we propose SelMon, a portable way
of self-protecting kernel integrity monitors without introducing
another higher privileged trust anchor. To this end, we first logi-
cally separate the regions of the integrity monitor into two parts:
privileged and non-privileged regions. Then, we ensure that only
the privileged region code can access the critical data objects that
can be exploited to compromise the monitor integrity (e.g., the
hypervisor page table). The non-critical operations in terms of pre-
serving the monitor integrity are conducted in the non-privileged
region. In addition to the privilege separation, we also illustrate
how to utilize the general hardware features, watchpoint and data
execution prevention (DEP), to ensure the robustness of the separa-
tion. In the evaluation, it was found that our approach imposes a
negligible overhead of 2% in the worst case with SPEC CPU2006.

CCS CONCEPTS
• Security and privacy → Mobile platform security; Trusted
computing; Virtualization and security.
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1 INTRODUCTION
Advancements in the mobile processor technology have led to
introducing various options for the development of security appli-
cations. Specifically, supporting privileged hardware features such
as hardware-assisted hypervisors and TrustZone enables building
trust anchor-based security facilities. For instance, the industry
and academia utilized TrustZone to protect the mobile OS kernel
integrity [2, 16, 30] on 32-bit mobile devices. On the 64-bit architec-
ture, the Samsung Knox platform leverages the hardware-assisted
hypervisor as a trust anchor to ensure kernel integrity [12]. Hun-
dreds of millions of manufactured mobile devices are running with
these security artifacts.

Unfortunately, researchers have demonstrated that the trust an-
chor itself is not free from attacks [3, 4, 12]. Regardless of whether
the hypervisor or TrustZone is used, the kernel integrity protec-
tion is conducted in a similar way in which the OS is deprivileged
and security critical operations of the OS (e.g., update of system
register and page table) are trapped, verified, and emulated by the
trust anchors. This delegation of OS kernel operations creates some
channels between the OS and the trust anchor for contiguous in-
teraction between them, which are abused by attackers to find and
exploit vulnerabilities of the trust anchors.

To address this problem,we propose a trust anchor self-protection
mechanism, called SelMon, which does not need another higher
privileged components for trust anchor protection. A thin hypervisor-
based kernel integrity monitor is enhanced with SelMon to show
the feasibility of our approach. The virtual separation of monitor
privilege and the exploitation of general hardware features lay
at the heart of SelMon. The monitor is logically separated into
privileged and non-privileged regions. The non-privileged region
performs non-critical and primary operations for monitoring the
OS kernel, such as updating kernel system registers. On the other
hand, the privileged region manages predefined critical operations
closely related to the monitor security. For example, page tables
can be abused to manipulate the monitor; thus, a page table update
is defined as one of the security-critical operations restrictively
conducted in the privileged region.

For proper protection, the privileged region should be neither
accessible nor executable while the non-privileged region is acti-
vated. For the non-accessibility enforcement, we utilize the hard-
ware debugging feature, watchpoint. Specifically, at the entry to
the non-privileged region, we enable watchpoint monitoring to the
entire privileged region so that any non-privileged code cannot
maliciously modify it. To prevent an arbitrary execution of the
privileged region code, we exploit the hardware support for data
execution prevention (DEP). In particular, we map the privileged
code to the writable pages and enable the DEP when a switch to
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the non-privileged region occurs. Owing to the non-accessibility
guaranteed by thewatchpoint configuration, this region remains im-
mutable during the non-privileged code execution. Finally, switches
between the regions should be managed in a deterministic way. To
this end, we designed entry gates to each region, which handle the
aforementioned configuration based on region switches.

Previous works such as SKEE [17] and the nested kernel [27]
have also introduced ways for partitioning regions with the same
privilege (i.e., intra-region privilege separation). The nested kernel
realizes the separation by using the write protect (WP) bit in CR0
register on x86. TheWP-bit is disabled onlywhen the privileged part
is executed so that it can update the write-protected objects. SKEE
utilizes the system registers for the virtualization configuration.
For example, on the 64-bit ARM architecture, the translation table
base register (TTBR) is updated with a new table that does not map
the privileged region when the non-privileged region is activated.
Unfortunately, those approaches are not effective for protecting
the privileged trust anchors running on a 64-bit ARM architecture.
The system-wide configuration that turns off the write-protection
(CR0.WP) is not supported on ARM. In addition, SKEE requires
a secondary paging support, which is not available in privileged
modes such as the hypervisor (EL2 in ARM terminology) and secure
kernel (TrustZone).

We implemented SelMon on an ARM Juno development board
furnishing Cortex-A57 and Cortex-A53 multicore processors and
8GB DRAM. The thin hypervisor that conducts OS kernel integrity
protection is hardenedwith SelMon to show the feasibility of our ap-
proach. The hardware-supported DEP and one of four debug watch-
points are used to isolate the privileged from the non-privileged
region. SelMon degrades the hypervisor performance due to the
privilege separation of the hypervisor and the hardware feature con-
figuration operations that are conducted whenever region switches
occur. However, our Phoronix benchmark results, which measure
and compare the performance of Linux running on the original
and SelMon-hardened hypervisors, indicate that the performance
impact of SelMon is limited; a maximum overhead of 5% was ob-
served.

Our contribution can be summarized as follows:
• We introduce SelMon, which aims to protect the trust anchor
(privileged software) running on high-end mobile devices.
Our approach does not require higher privileged software
or hardware components other than the general hardware
features such as the watchpoint and DEP.

• SelMon is scalable. Because the watchpoint and DEP are sup-
ported in kernel mode, SelMon can be adapted to self-protect
the OSwhen the trust anchor is not available. In addition, any
other architecture that supports similar hardware features
can benefit from the approach of SelMon.

2 BACKGROUND AND RELATED WORK
2.1 ARM processor security state
The ARM security extension [6] enables dividing the processor
security state into secure and non-secure states. In the secure state,
the user, kernel, and monitor modes are available. In the non-secure
state, user, kernel, and hypervisor modes are supported. The se-
curity state is configured by using the non-secure (NS) flag in the

Table 1: Example configuration for watchpoint exception
generation in non-secure and secure states.

SSC PAC Security state Watchpoint for
01 10 Non-secure User
01 01 Non-secure Kernel
11 00 Non-secure Hypervisor
10 10 Secure User
10 01 Secure Kernel

Table 2: Control flag setting for debug exception routing.

Privilege level where debug exception is generated
User Kernel Hypervisor

Settings Privilege level that handles the exception
NS=1, TDE=0 Kernel Kernel Hypervisor*
NS=1, TDE=1 Hypervisor Hypervisor Hypervisor
NS=0, TDE=× Kernel Kernel N/A
* Breakpoint instruction exception only

secure configuration register (SCR_EL3). For example, if the NS flag
is set, the current security state is in non-secure. The configuration
is performed in the monitor mode, which is introduced to handle
the switches between the secure and non-secure states. In gen-
eral, this processor security state separation is leveraged together
with TrustZone technologies [7] that isolate critical memory re-
gion and peripherals, which enables to create the trusted execution
environment (TEE).

2.2 ARM hardware-assisted virtualization
From ARMv7 [1] onward, hardware-assisted virtualization is sup-
ported. The key features of the virtualization in terms of building
the security application can be classified into two: (1) secondary
paging [5, 8, 14] and (2) hypervisor trap. The secondary paging
essentially aims to translate the intermediate physical address (i.e.,
physical address in the view of the virtual machine) into a real
machine address. This feature is mainly used to isolate or protect a
certain memory region from other regions by crafting secondary
page tables. For example, the hypervisor-based kernel integrity
monitors [12, 36, 39] protect the kernel text region by setting the
read-only permission of the secondary pages that map the text.
The hypervisor trap configuration facilitates monitoring security-
critical operations that need to be verified or emulated by the hyper-
visor [40, 44]. The virtual memory configuration in the OS kernel
is a typical example operation that is trapped and verified by the
security hypervisor.

2.3 Hardware debugging support
In addition to debugging through the external hardware (e.g., JTAG
debugger), commercial processors such as ARM and x86 support
hardware debugging features that enable the privileged software
to trap and handle the debugging exceptions. For instance, by set-
ting a hardware breakpoint on a particular address, a breakpoint
exception can be generated when the instruction on the address
is executed. The exception is trapped by the privileged software
such as an OS kernel. On the other hand, the watchpoints can be
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used in a similar way to monitor the data access. Specifically, when
any data access (read or write) to a watchpoint-monitored region
occurs, a watchpoint exception is generated, and is trapped and
handled by the privileged software. In our work, we use the watch-
point to monitor access to the security-critical memory region. The
following properties of watchpoints are leveraged.

Watchpoint exception generation. We can set the watch-
point exception to be generated in a certain processor mode by
configuring watchpoint control flags. For example, as can be ob-
served in Table 1, we can generate the exception in hypervisor
mode by setting the security state control (SSC) and the privileged
access control (PAC) flags in the debug watchpoint control register
(DBGWCR) to 0b11 and 0b00, respectively. Depending on the SSC
value, the watchpoint exception can be generated in the TEE (se-
cure state) as well; setting the SSC value to 0b10 enables generating
the exceptions in user mode or kernel mode in the TEE.

Watchpoint exception routing.As presented in Table 2, when
the processor mode is in a non-secure state, the watchpoint excep-
tion can be handled by the kernel or hypervisor, depending on the
trap debug exception (TDE) flag in the monitor debug configuration
register (MDCR_EL2). For example, a TDE flag should be set to trap
the watchpoint exception in the hypervisor mode. On the other
hand, when the processor is in the TEE (secure state, i.e., NS=0),
the exception is always trapped and handled by the kernel mode
(secure OS).

Watchpoint configuration requirement. On the ARM 64-bit
architecture (ARMv8), the maximum size of watchpoint monitoring
is 2 GB. The size must be aligned to a power of 2. We can configure
the monitoring size by using the mask flag in DBGWCR. Moreover,
the monitoring start address should be aligned to the monitoring
size. For example, if the monitoring size is 4 KB, the starting ad-
dress of the monitoring should be aligned to 4 KB. The starting
address can be configured in the debug watchpoint value register
(DBGWVR).

In addition to the size and address configuration, several control
flags need to be set to activate the watchpoint monitoring. First,
the enable flag in DBGWCR needs to be set. Second, the kernel
debug enable (KDE) flag should be set to generate the watchpoint
exception in the same mode that handles the exception. For in-
stance, for the self-management of the watchpoint exception in the
hypervisor mode, the KDE and TDE flags should be set. Finally, the
debug exception mask flag (D) in the process state (PSTATE) must
be cleared. This flag is automatically set when any exception occurs,
disabling the debug exception generation.

2.4 Kernel integrity monitor
Trust anchors such as TrustZone and hypervisor have been used
to implement kernel integrity monitors. TZ-RKP [16] and Sprobes
[30] locate the integrity monitor in the TrustZone-based TEE on 32-
bit devices. In state-of-the-art mobile devices, which are based on
the 64-bit ARM architecture, the hardware-assisted virtualization
technique is also leveraged to enable monitoring. Samsung utilizes
a thin hypervisor to protect the kernel text and data [12].

Meanwhile, regardless of where the integrity monitor is de-
ployed, the monitors commonly enforce the following security
properties. First, the page tables are not allowed to be updated by

the kernel; only the integrity monitor can emulate the update after
security verification. This ensures memory protection. Second, the
kernel cannot configure security critical system registers. Similar to
the memory protection, critical system registers are updated only
by the monitor. This hinders maliciously reconfiguring the system
settings (e.g., disabling the memory management unit (MMU) or
remapping a page table). The monitor is synchronously invoked
whenever such update needs to be fulfilled. To this end, original
kernel operations for the update are replaced with a trust anchor
invocation such as a hypercall.

2.5 Privilege separation
Various approaches have been explored to separate the privilege
of software and to safely execute critical operations. SKEE [17]
and Hilps [21] utilize memory translation-related features to create
an isolated execution environment in the OS kernel. The system-
wide memory WP was leveraged by the nested kernel [27], Nexen
[41], and HyperSafe [43] to isolate critical operations of the OS
and hypervisor. Those approaches enable intra-region privilege
separation but are limitedly adoptable to the trust anchor protection
on the ARM architecture as explained in Section 2.5.

On the other hand, an additional layer for monitoring the critical
operations is also introduced. Xen’s paravirtualization [18] verifies
and emulates the OS kernel’s critical operations such as page table
update. The Secure Virtual Architecture (SVA) [26] provides virtual
instruction-based abstraction layer to monitor the OS behavior.
KCoFI [24] and Virtual Ghost [25] adopt SVA to protect the control
flow of OSs and to shield applications. Apparition [28] enhances
Virtual Ghost to protect the shielded applications from side-channel
attacks by malicious OSs. HypSec [34] redesigns a monolithic hy-
pervisor (e.g., KVM) to isolate a small trusted corevisor from a large
untrusted hostvisor. The isolation is enforced by using secondary
paging and running the compartments (corevisor and hostvisor) in
different privileged CPU modes, i.e., the hypervisor and kernel, re-
spectively. We propose a different approach that effectively isolates
security artifacts without adopting an additional trusted layer and
thus provide a further option when the layer is not available.

2.6 Mobile device security
Various hardware features have been leveraged to implement se-
curity applications for mobile devices. To prevent a cold boot at-
tack, Sentry [23] stores sensitive data and code in an ARM SoC
instead of DRAM. ARMlock [47] utilizes the memory domain and
domain access control register (DACR) to enable hardware-based
fault isolation. Norax [20] enables the execute only memory (XOM)
benefitting from its hardware support from ARMv8. As a security
extension to ARM processors, TrustZone [7] was broadly explored
to enhance the device security. For example, TLR [37] and ObCs [33]
use TrustZone to provide a TEE to 3rd party developers. TrustOTP
[42] protects one-time password tokens by using TrustZone. Ko-
modo [29], TrustShadow [31], and CaSE [46] shield a part of the
application based on the isolation provided by TrustZone. Finally,
vTZ [32] virtualizes TrustZone to provide a TEE to individual virtual
machines.
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Figure 1: Nested Kernel, SKEE, and Hilps aim to isolate the critical region without using a higher-privileged trust anchor. In
each approach, architecture specific features such as CR0.WP, TTBR, and TCR_EL1, respectively, are leveraged to realize the
goal.

3 ATTACK MODEL
We assume the presence of a trust anchor that monitors kernel
integrity and is built as a thin hypervisor. The monitor protects
the OS kernel as described in Section 2.4. That is, the OS kernel is
deprived of the authority of performing security-critical operations
such as page table and system register updates. Instead, the monitor
is in charge of verification and emulation of such operations.

However, as shown by Google researchers [12], the monitor (hy-
pervisor) itself can be compromised by an attacker. In particular,
the monitor itself could encompass vulnerabilities that accord the
attacker with the ability for arbitrary memory access and control
flow hijacking. With the escalated privilege, the attacker might
attempt to manipulate the monitor to perpetuate the attack. To this
end, critical hypervisor components such as page tables and sys-
tem configuration registers will be abused. Our approach, SelMon,
aims to harden the hypervisor in such a way that the integrity of
hypervisor’s critical components is protected even in the presence
of vulnerabilities. More specific analysis and classification of the
security-critical components and the design of SelMon are provided
in Section 5.

4 MOTIVATION
As illustrated in Section 3, the integrity monitor itself could be vul-
nerable. As a primary step for enhancing the monitoring platform
security, we propose SelMon, which aims to self-protect the trust
anchors running in hypervisor and secure (and non-secure) kernel
modes. The key technique of SelMon is realizing the privilege sep-
aration of the software that otherwise runs monolithically in the
same privilege. Notably, benefiting from the hardware watchpoint
and DEP support, SelMon does not depend on higher privileged
hardware and software components.

Previous self-protection approaches. Before introducing Sel-
Mon, we analyze the existing approaches, namely the nested kernel
[27], SKEE [17], and Hilps [21], that separate the software privilege
without depending on the higher privileged components. Then, we
illustrate why these approaches are not sufficient for protecting the
trust anchors (privileged softwares) on modern ARM architectures.

The three approaches first separate the system into two compart-
ments, i.e., privileged and non-privileged regions, based on whether
it performs security-critical operations such as page table update. In

addition, to protect the privileged region, they design specific gate
code that handles the entry to and exit from the privileged region.
The gates particularly manage the system configuration, which
dominates the robustness of the proposed approaches. Hence, we
analyze the feasibility of each approach by verifying if the gate
design is generally applicable to protect the privileged software on
ARM.

1 entry:

2 ......

3 mov %cr0,%rax //Get current CR0 value

4 and ~CR0_WP,%rax //Clear WP bit in copy

5 mov %rax,%cr0 //Write back to CR0

6 cli // Disable interrupts

7 ......

Listing 1: Part of the gate code for the entry to the nested
kernel, which configures the WP bit in CR0.

4.1 Nested kernel
To protect critical kernel objects such as page tables, the nested
kernel enforces the read-only permission for all objects. Then, to
enable the privileged part to update the objects, the nested kernel
utilizes the WP bit in CR0, which turns off the system-wide read-
only setting. As can be seen in lines 3-5 in Listing 1, it disables
the write protection at the entry to the privileged region (and vice
versa at the exit from the privileged region). Unfortunately, the ARM
architecture does not provide such a control bit configurability (i.e.,
WP). The page table attributes always take effect as long as the
MMU is enabled.

1 ......

2 msr DAIFset,0x3 //Mask all interrupts

3 mrs x0,ttbr1_el1 //Read existing TTBR1 value

4 str x0,[sp, #-8]! //Save existing TTBR1 value

5 msr ttbr1_el1,xzr // Load Zero to TTBR1

6 isb
7 tlbi vmalle1 // Invalidate the TLB

8 isb
9 ......

Listing 2: Part of SKEE gate code that configures the TTBR
value by using the zero register (xzr).
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4.2 SKEE
Due to the lack of WP configuration support on ARM, SKEE uses
a different approach. It prepares two different page tables for the
privileged and non-privileged regions. Only the page table for the
privileged region has a mapping to that region, which is activated
at the entry to the privileged region. This approach, which switches
the page table during region switches, has a downside in that the
gate can be abused to map the malicious page table by executing
the instruction that updates the TTBR. To address this problem by
deterministically switching the TTBR, SKEE locates the page table
for the privileged region in the constant address (0x0) and uses the
zero register (XZR) in the TTBR update, as can be seen in Listing 2.
If the address (0x0) is not available, the authors recommend to use
the virtualization technique (i.e., the secondary paging) to remap a
certain memory region to 0x0 in the view of kernel. Depending on
device implementation, the address 0x0 can be reserved for hard-
ware peripherals. For instance, the Juno development board locates
Boot ROM at 0x0 [10], so it is necessary to remap the memory
to activate SKEE in the Juno board. Unfortunately, the additional
translation layer (i.e., the secondary paging) is not supported in the
hypervisor mode and kernel mode in the secure state (i.e., the TEE
kernel). As a result, the SKEE approach is difficult to adopt for the
protection of software running in such privileged modes.

1 ......

2 1:

3 mrs x5,tcr_el1 //Read the current TCR

4 and x5,x5,#0xfffffffffffdffff //Set T1SZ flags

5 orr x5,x5,#0x400000

6 msr tcr_el1,x5 //Configure TCR

7 isb
8

9 mov x6,#0xc03f // Check the TCR setting

10 mov x7,#0x1b //(1)virtual address range

11 movk x6,#0xc07f,lsl #16 //and (2)trans. granule size

12 movk x7,#0x8059,lsl #16

13 and x5,x5,x6

14 cmp x5,x7

15 b.ne 1b //If invalid, configure TCR again

16 ......

Listing 3: Part of Hilps gate code that configures the
translation configuration register (TCR). The flags for the
virtual address range and the page size are validated.

4.3 Hilps
As illustrated in Listing 3, Hilps leverages the TxSZ field in the TCR.
The range of the virtual address can be adjusted by configuring
TxSZ; by dynamically changing the virtual address range, the par-
ticular virtual address region can be hidden on the fly. By using
this, Hilps hides the privileged region during the non-privileged
region execution. This approach could be potentially vulnerable
when the attacker abuses the TCR update instruction in line 6 in
Listing 3. This is because, not only the virtual address range, but
also the translation granule size can be adjusted by configuring
the translation granule (TGx) field in the TCR. Currently, 4 KB, 16
KB, and 64 KB translation granule sizes are configurable on the
ARM 64-bit architecture. The granule size determines the index
size for walking page tables as well as the minimum page size. For
instance, 4 KB granule uses 9 bits slice of the virtual address as

the index whereas 16 KB granule uses 11 bits; 4 KB granule allows
1 GB, 2 MB, and 4 KB page sizes but 32 MB and 16 KB pages are
available with 16 KB granule depending on the level of page tables.
Therefore, the page table entries and the number of the entries
for walking a certain range of virtual addresses are determined by
the translation granule size. That is, changing the granule size can
cause undeterministic behavior because a certain virtual address
can be translated by different page table entries. The attacker can
exploit this to execute arbitrary and unintended instructions. For
example, in Listing 3, if the validation logic (line 9-14) is located
in the boundary of different 4 KB-sized page from the predecessor
code (line 1-7), changing the granule size configuration from 16 KB
to 4KB (or vice versa) could lead to undeterministically bypassing
the validation depending on system status (e.g., cache condition
and sparse physical memory allocation).

5 SYSTEM DESIGN
5.1 Overview of SelMon
SelMon splits the thin hypervisor (integrity monitor) into privileged
and non-privileged regions depending on its operation criticality
in terms of the monitoring platform self-protection. As described
in Section 5.2, we define the hypervisor exception vector, page ta-
bles, and system control registers as the security-critical objects,
which are isolated in the privileged region. On the other hand,
the non-privileged region performs primary operations for the
OS kernel integrity protection. We assume that this region can
be vulnerable and thus can be exploited by an attacker. However,
an attack triggered from the non-privileged region is effectively
isolated in the non-privileged region and thus, the integrity of
the hypervisor is preserved. This is because the following con-
ditions are satisfied by SelMon. First, the non-privileged region
cannot access the hypervisor-managed page tables; therefore, di-
rect memory manipulation attempts are hampered. Second, the
security-critical instructions do not exist in the non-privileged re-
gion; hence, the attacker cannot change the system configuration
such as the exception vector address. Lastly, the attacker cannot
reuse the critical instruction in the privileged region because the
entire privileged region is enforced to be non-executable during
the non-privileged region activation. The switches between regions
are managed through predefined ways. We designed the secure
gates that manage the entries to each region in a way that ensures
security of the privileged region.

5.2 Security-critical objects
Critical objects that can be exploited by the attacker need to be
properly verified and isolated. The hypervisor exception vector,
page tables, and the hypervisor-related system registers are critical
components that need to be protected. Note that, in our work, we
consider that a thin hypervisor is deployed in the production mobile
device, the operation of which is lightweight and dedicated to secu-
rity. However, in general, the classified components are common
and prerequisite for building privileged software including the OS
kernel. Therefore, we expect that our analysis can be extended to
protect more complex softwares such as the OS kernel as well as
bundled hypervisors (e.g, KVM).

139



MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Jinsoo Jang and Brent Byunghoon Kang

Turn off:
Watchpoint & DEP

Turn on:
Watchpoint & DEP

Non-privileged region

Privileged code

Exception vector

Non-privileged code

Non-privileged data

Privileged data

Privileged code

Exception vector

Non-privileged code

Non-privileged data

Privileged data

Privileged region

Region switchRW

RWX

RX

RX

RW

RW

RWX

RX

RX

RW

Accessible Inaccessible

Figure 2: SelMon enables intra-region privilege separation
using general hardware features such as watchpoint and
DEP. For strict isolation and protection of the privileged re-
gion, switches between regions are conducted by predefined
and narrow interfaces that timely configure the hardware
features.

5.2.1 Page tables. There are two types of page tables that are
managed by the hypervisor: hypervisor and secondary page-tables.
Regardless of the types, we consider the tables as critical objects
that need to be protected.

Page table for hypervisor mode. The virtualization extension
supports virtual addresses in the hypervisor mode. To enable the
MMU, the hypervisor needs to configure page tables and the page
table base register. By configuring the page tables, the hypervisor
code and data can be set as read-only. Security features such as
DEP can also be enabled. However, once the attacker escalates his
or her privilege to the hypervisor, the settings for protection are
no longer valid. For instance, the attacker can make the hypervisor
text pages writable and freely modify the code [12].

Secondary page table.Asmentioned in Section 2.4, themonitor
(thin hypervisor) manages the secondary page table to ensure that
the OS kernel text and code are immutable (read-only). However,
this page table can also be abused to break the hypervisor integrity.
The attacker can manipulate the secondary page table entries such
that the hypervisor memory area is mapped to the OS kernel. Doing
so causes the hypervisor to be maliciously modified even from the
kernel with lower privilege.

5.2.2 Hypervisor exception vector. The exception vector is a code
that dispatches a handler routine corresponding to the current ex-
ception. Any exception occurrence changes the program counter
to the predefined location of the exception vector. The vector has
different branches depending on the exception occurrence privi-
leges (current or lower). For example, a hypercall that is triggered
from the OS kernel is trapped by the branch for the exception from
a lower privilege. However, any exceptions that occur in the hyper-
visor mode execution are trapped by the branches for the current
(hypervisor) privilege. Because the exception vector plays a role as
a code dispatcher, the integrity of the vector should be protected
to prevent the attacker from redirecting the control flow to the
malicious code.

5.2.3 System control registers. System control registers can be tar-
gets of attacks. For example, the TTBR can be modified to map
malicious page tables. The vector base address register (VBAR) can
be abused to replace the current exception vector with a malicious

one. Previous works [16, 30] remove all the security-critical in-
structions from the code region of the OS to prevent the attacker
from abusing the system registers. SelMon applies a similar ap-
proach. The critical instructions exclusively exist in the privileged
region. Moreover, the attacker cannot redirect the control flow to
the arbitrary location in the privileged region.

5.3 Privilege separation
In this section, we discuss the logical separation of the hypervisor
privilege. The separation is conducted based on the accessibility to
the critical objects classified in Section 5.2.

5.3.1 Privileged region. The critical objects are isolated in the priv-
ileged region. The writable objects such as page tables are protected
as privileged data. In addition, the exception vector and the privi-
leged region code are separated based on the granularity of page,
which is 4 KB. We set different page permissions to them, as shown
in Figure 2. Note that although the exception vector and the priv-
ileged code are all executable, the pages for the privileged code
have a writable permission whereas the exception vector page is
read-only. The writable permission is given to dynamically adjust
the executability of the privileged code at the entry to the non-
privileged region. We discuss the access control mechanism of the
privileged region in Section 5.4.

5.3.2 Non-privileged region. The non-privileged region performs
general operations required for monitoring the OS kernel. As dis-
cussed in Section 2.4, the monitor needs to emulate the update
of page tables and system registers for the monitored OS kernel.
Similar to previous works [12, 16, 30], we implemented our in-
tegrity monitor so that system registers such as the kernel TTBR
are updated by the hypervisor. Specifically, we enforce that the
kernel page tables are managed by the non-privileged region of
the monitor. Note that SelMon is applied to the hypervisor to high-
light its feasibility and superiority in protecting the trust anchor
compared to previous approaches. Thus, implementing the kernel
integrity monitor is not our main contribution. However, minimal
functionalities of the monitoring kernel were implemented for the
performance evaluation of SelMon.

5.4 Privileged region protection
The critical operations that can be abused to compromise the hyper-
visor integrity are exclusively performed in the privileged region.
In addition, critical data objects such as page tables are isolated
in the privileged region. Thus, the privileged region should not
be executable and accessible when the non-privileged region is
activated.

Non-executability. To ensure that the privileged region is not
executable, we exploit a hardware feature for DEP enforcement.
When the writable execute never (WXN) flag in the hypervisor
system control register (SCTLR_EL2) is set, all writable pages in
the hypervisor regime are non-executable. To benefit from this
feature, we configure the page permission of the privileged code
as writable (Section 5.3.1). Hence, by setting the WXN flag at the
entry to the non-privileged region, we can dynamically enforce the
no-executability of the privileged region.
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Figure 3: Mode and region switches with SelMon.

Non-accessibility. Besides the non-executability feature, we
need to guarantee that the privileged region should not be accessi-
ble during the non-privileged region is activated. By doing so, we can
protect the privileged code that is mapped with a writable permission
as well as critical data objects such as page tables. To this end, we
utilize the general hardware feature, the watchpoint, to monitor
any read or write access to the privileged region. Specifically, we
configure a watchpoint at the entry to the hypervisor so that it
monitors the entire privileged region. Then, the watchpoint is acti-
vated when the region switch to the non-privileged region occurs.
Note that the start address of the watchpoint monitoring should be
aligned to the size of the monitoring, which must be aligned to the
power of 2 (Section 2.3). To satisfy this requirement, we assign 8
MB for the privileged region and manage the start address of the
region to be aligned to the 8 MB granularity.

5.5 Region switch
Figure 3 describes the flow of region switches between the privi-
leged and non-privileged regions. Once a hypercall, which is im-
planted for the OS kernel monitoring as described in Section 2.4, is
invoked from the OS kernel, the hypercall exception is trapped by
the exception vector in the privileged region. The vector verifies the
type of OS request (e.g., TTBR configuration or page table update)
and dispatches a proper handler in the non-privileged region. At this
point, a region switch from the privileged to the non-privileged re-
gion occurs. To isolate the privileged region as discussed in Section
5.4, we switch the region through the secure gate that configures
the watchpoint and DEP flag.

On the other hand, during the non-privileged region execution,
there can be a request for the security-critical operations such as
the hypervisor page-table update. For example, hypervisor needs to
create a mapping to the OS kernel region to update the page tables
of the OS. To handle this request, a switch to the privileged region
should occur. We manage this switch by exploiting the hypercall
that is trapped by the exception vector in the privileged region.
Details regarding each entry to the regions are described in the
following sections.

1 //...(Omitted: save kernel registers)...

2 //Setup hypervisor trap for debug exception

3

4 L1:

5 mov x4,#MDCR_TDE //Get the MDCR value

6 msr MDCR_EL2,x4 //Set the MDCR

7 isb // Synchronization barrier

8 mov x5,#MDCR_TDE //Get the MDCR value

9 cmp x4,x5 // Validate the set value

10 b.ne L1 //If invalid, loop back

11

12 L2:

13 mov x4,#MDSCR_KDE_MDE //Get the MDSCR value

14 msr MDSCR_EL1,x4 //Set the MDSCR

15 isb // Synchronization barrier

16 mov x5,#MDSCR_KDE_MDE //Get the MDSCR value

17 cmp x4,x5 // Validate the set value

18 b.ne L2 //If invalid, loop back

19

20 L3:

21 mov x4,#WPVALUE //Get the monitoring addr.

22 msr DBGWVR0_EL1,x4 //Set the watchpoint addr.

23 mov x5,#WPVALUE //Get the monitoring addr.

24 cmp x4,x5 // Validate the set value

25 b.ne L3 //If invalid, loop back

26

27 L4:

28 mov x4,#WPCTLR_LO //Get the control flag(low)

29 mov x5,#WPCTLR_HI //Get the control flag(high)

30 add x4,x4,x5 //Get the full control value

31 msr DBGWCR0_EL1,x4 // Configure the watchpoint

32 mov x5,#WPCTLR_LO //Get the control flag(low)

33 mov x6,#WPCTLR_HI //Get the control flag(high)

34 add x5,x5,x6 //Get the full control value

35 cmp x4,x5 // Validate the configured value

36 b.ne L4 //If invalid, loop back

Listing 4: Entry to the hypervisor that configures the
watchpoint-related registers.

5.5.1 Entry to the hypervisor. In addition to saving the kernel
context, SelMon configures the watchpoint-related registers when
the CPU mode enters the hypervisor (Listing 4). The TDE flag in
MDCR_EL2 is set to route the watchpoint exception to the hypervi-
sor. The KDE and monitor debug event (MDE) flags are set to allow
the watchpoint exception generation in the hypervisor mode. Then,
we set the DBGWCR and DBGWVR to monitor the entire privileged
region. Because the watchpoint configuration is static, we load pre-
defined constant values for the registers. In addition, after setting
up the watchpoint registers, we check if the currently configured
values are predefined values to prevent the attacker from abusing
the configuration instructions to neutralize the watchpoint-based
protection. Note that even after setting those registers, the watchpoint
remains deactivated because the debug (D) flag in the PSTATE is
masked. As mentioned in Section 2.3, PSTATE.D is always masked
(cleared) whenever any exception occurs.

1 L5:

2 mov x4,#SCTLR_WXN_LO //Get the SCTLR value

3 add x4,x4,#SCTLR_WXN_HI

4 msr SCTLR_EL2,x4 //Set the SCTLR

5 isb // Synchronization barrier

6

7 mov x5,#SCTLR_WXN_LO //Get the SCTLR value

8 add x5,x5,#SCTLR_WXN_HI

9 cmp x4,x5 // Validate the set value

10 b.ne L5 //If invalid, loop back

11

12 tlbi ALLE2 // Invalidate the TLB

141



MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Jinsoo Jang and Brent Byunghoon Kang

13 isb // Synchronization barrier

14

15 adr x4,savedPrivStack

16 str sp,[x4] //Save the priv stack

17 adr x4,savedNonPrivStack

18 ldr x4,[x4]

19 mov sp,x4 // Switch to the non -priv stack

20

21 msr DAIFclr,#8 // Enable the debug exception

22 b non_priv_reg //Jump to the non -priv region

Listing 5: Entry to the non-privileged region that enables the
DEP and watchpoint.

5.5.2 Entry to the non-privileged region. At the entry to the non-
privileged region, the privileged region is hidden. This is realized by
the gate that handles the region switch to the non-privileged region
(Listing 5). To enforce the no-executability of the privileged region,
we set the WXN flag in SCTLR_EL2; thus, the privileged region
code that is set as writable is enforced to be non-executable. After
setting up this system register, we check if the configured value is
equal to the predefined value, to hinder abusing the configuration
instruction. Note that SCTLR_EL2 also controls the MMU so the
attacker might execute this instruction to disable the MMU. To
inhibit this attempt, we map the hypervisor virtual address as iden-
tical to the physical address. Hence, even if the MMU is disabled,
the value verification routine that follows the SCTLR_EL2 setup is
still effective. The downside of using WXN is that it requires a TLB
flush. Because the hypervisor mode does not provide the address
space identifier (ASID), we just flush out the entire TLB for the
hypervisor. On the other hand, the ASID is available in kernel mode
for both the secure and non-secure states. Hence, we expect the
performance improvement of SelMon when it is applied for kernel
mode protection. After enabling the WXN, we save and restore the
stack for the privileged and non-privileged regions, respectively.
The stacks are assigned on a per-core basis but we omit the stack
pivot logic, which is based on a current CPU ID. Finally, we activate
the watchpoint monitoring by clearing the debug mask bit in the
PSTATE and jump to the non-privileged region.

1 /* ********** Non -privileged region ********** */

2 hvc #REQNO // Hypervisor call

3

4 /* ************ Exception vector ************ */

5 //...(Omitted: verify the current exception)...

6

7 L6:

8 mov x4,#SCTLR_NOWXN_LO //Get the SCTLR value

9 add x4,#SCTLR_NOWXN_HI

10 msr SCTLR_EL2,x4 //Set the SCTLR

11 isb // Synchronization barrier

12

13 mov x5,#SCTLR_NOWXN_LO //Get the SCTLR value

14 add x5,#SCTLR_NOWXN_HI

15 cmp x4,x5 // Validate the set value

16 b.ne L6 //If invalid, loop back

17

18 tlbi ALLE2 // Invalidate TLB

19 isb // Synchronization barrier

20

21 adr x4,savedNonPrivStack

22 str sp,[x4] //Save the non -priv stack

23 adr x4,savedPrivStack

24 ldr x4,[x4]

25 mov sp,x4 // Switch to the priv stack

26

27 b priv_reg //Jump to the privileged region

Listing 6: Entry to the privileged region. The hypercall (hvc),
which automatically disables the watchpoint, is trapped by
the exception vector. DEP is disabled before entering the
privileged region.

5.5.3 Entry to the privileged region. The entry to the privileged
region requires the non-privileged code to invoke a hypercall, which
is trapped by the exception vector. As described in Section 2.3, the
exception disables the watchpoint monitoring by automatically
setting PSTATE.D and thus makes the privileged region accessible.
In addition, the vector turns off the DEP by clearing the WXN in
SCTLR_EL2 to make the privileged code executable. The stack is
also switched for the privileged region.

In contrast to the privileged code, the gate to the privileged
region (Listing 6) is always accessible (executable) regardless of
which region is activated. Hence, the attacker can attempt to di-
rectly jump in the middle of the gate code to disable the DEP. This
makes the privileged region executable without invoking the hy-
percall. However, this malicious behavior can readily be detected
by SelMon because the watchpoint is still active due to the absence
of the exception. In particular, continuing to execute the gate code
without disabling the watchpoint monitoring incurs a watchpoint
exception that can be distinguished by investigating the exception
class (EC) field in the exception syndrome register (ESR). For exam-
ple, line 22 in Listing 6 causes the watchpoint exception because the
savedNonPrivStack, which is the storage of the non-privileged
region stack, is part of the privileged data monitored by the active
watchpoint.

5.5.4 Exit from the hypervisor. At the exit from the hypervisor, the
saved kernel context including the general registers and watchpoint
configurations are restored. Because this routine is also exposed
to the non-privileged region, the attacker might try to abuse the
instructions that update the configurations. However, the exit rou-
tine ends with an eret instruction that de-privileges the CPU mode
to kernel and returns to the point immediately after the hypercall
invocation in kernel. Hence, the attacker also lose its hypervisor
privilege.

5.6 Compatibility with Debugging Activity
The watchpoints are shared resource between different processor
modes. However, SelMon does not interfere with the use of watch-
points outside of the currently protected mode because it saves
and restores the previous settings at the entry to and exit from the
hypervisor mode. For example, the user and kernel mode debuggers,
i.e., the gdb [9] and kgdb [11], which utilize the watchpoints for
setting the data breakpoints, are still available with the presence of
SelMon. In addition, the dynamic reconfiguration of the DEP does
not affect the security of other modes because the system control
registers are banked for each mode. Debugging the privileged soft-
ware such as the hypervisor and trusted firmware generally uses a
hardware debugger with JTAG interface. Because the hardware de-
bugger also configures the watchpoints to monitor data access, it is
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Table 3: System registers leveraged for building SelMon.

System register Description
DBGWVR & DBGWCR Configure watchpoint
DAIFCLR (Un)mask debug exception
MDCR Configure watchpoint exception handling location
SCTLR Configure DEP
ESR Validate trapped exception

necessary to disable SelMon to prevent any undesirable corruption
of the configuration.

6 IMPLEMENTATION
Lines of code. SelMon is sufficiently small to be manually audited
or formally verified [35]. The LoC of the current implementation
of the hypervisor is approximately 770 in assembly without in-
cluding the kernel patch for invoking the critical operation emu-
lation (520 LoC and 250 Loc for the privileged and non-privileged
regions, respectively). Note that the operation conducted by the
non-privileged region in our implementation is limited to emulat-
ing the critical OS kernel operations such as the page table and
TTBR updates (this is sufficient to demonstrate the feasibility of Sel-
Mon); the additional security components described in the previous
work [16] (e.g., tracking kernel memory double mapping) are not
implemented. Hence, the LoC of the non-privileged region could
be larger when the kernel monitor is fully implemented.

Thin hypervisor.We reserved the physical memory range from
0xFE000000 to 0xFEFFFFFF (16 MB) by modifying the Linux device
tree file (juno.dtsi) for the hypervisor implementation. Then, we
created a secondary page table that maps all physical memory
ranges other than the reserved area for the hypervisor isolation.
We locate the secondary page table from 0xFE000000. Once the
page-table setup is completed, the control registers for enabling
the secondary paging, such as virtualization translation table base
register (VTTBR_EL2), the virtualization translation control register
(VTCR_EL2), and hypervisor configuration register (HCR_EL2) are
configured.

Kernel patches. We follow the previous approaches [16, 30]
to implement the capability of kernel integrity monitoring in the
hypervisor. The instructions that set up the security-critical system
registers such as TTBR and VBAR are replaced with hypervisor
calls (i.e., hvc). In addition, we insert the hypervisor calls in the
page-table management functions (e.g., set_pte and set_pmd) to
verify and emulate the update of the write-protected kernel page
tables in the hypervisor. Note that the physical memory hosting
the kernel text is set as read-only in the secondary page table so
that the patches in the text are also immutable.

SelMon. To apply SelMon to the thin hypervisor, we divide the
hypervisor memory (16 MB) into two halves, which have 8 MB
each. The low (0xFE000000–0xFE7FFFFF) and high (0xFE800000–
0xFEFFFFFF) halves are assigned to the privileged and non-privileged
regions, respectively. Because the privileged region location and
size are aligned to the power of 2, it satisfies the watchpoint setting
requirement (Section 2.3). In our implementation, we only need one
watchpoint for enabling SelMon. However, the location and size of
each regions can be flexibly adjusted by using multiple watchpoints
as well.

Finally, Table 3 summarizes the system registers that SelMon
utilizes to realize the intra-region privilege separation. Those are
defined as part of a high-end ARM processor’s (i.e., ARMv8-A [6])
specification and are generally supported in production devices
unless they are intentionally disabled or modified by manufacturers.
Note that even if the system registers are available, we expect that
the manufacturer’s intervention is necessary to deploy SelMon in
production devices. This is because the secure boot [15] that checks
the integrity of the loaded images (e.g., secure OS and hypervisor)
using the manufacturer’s key at boot time is generally employed
in modern devices. ARMv8-M, the low-end specification for micro-
controllers, also defines debug facilities including the watchpoint.
However, due to the architecture discrepancy between ARMv8-A
and ARMv8-M, we expect that more design consideration will be
required to build SelMon on low-end devices. We discuss this in
Section 8.

7 EVALUATION
In this section, we first analyze the possible attack surfaces of
SelMon and discuss how they are effectively blocked. Then, the
performance overhead incurred by SelMon is measured.

7.1 Security analysis
The security of SelMon depends on the proper configuration of
general hardware features (e.g., the watchpoint and DEP). The at-
tacker’s successful manipulation of the configuration could lead to
bypassing SelMon. In this regard, we describe how SelMon effec-
tively restricts the attacker from accessing the features.

Hypervisor code. Similar to the previous works [16, 17, 21, 27],
we also assume that the non-privileged region code does not contain
instructions that can configure the critical system registers (e.g.,
TTBR and VBAR). In addition, the page table andwatchpoint update
instructions do not exist in that region. Because the non-privileged
region code is mapped with read-only permission in the hypervisor
page table, the attacker cannot modify the region. The remaining
option for the attacker is injecting a malicious code to the writable
region and executing it; however, this attack is simply prevented
becausewe always enable the DEP at the entry to the non-privileged
region.

On the other hand, security-critical operations are performed in
the privileged region. As explained in Section 5.4, the privileged re-
gion is neither accessible nor executable during the non-privileged
region activation. Thus, the attacker cannot manipulate the privi-
leged region as well as reuse the critical instructions in that region.

Mode switch. As discussed in Section 5.5.1 and 5.5.4, the watch-
point is configured at the entry to and exit from the hypervisor.
Although the hypervisor entry and exit handlers are mapped as
read-only, they are still executable regardless of the current region
privilege. Hence, the attacker might try to abuse the watchpoint
configuration instructions. Clearing one of the TDE, KDE, and MDE
flags disables the watchpoint monitoring so that the privileged re-
gion can be accessible to the attacker. Maliciously reconfiguring the
watchpoint address (DBGWVR) and control (DBGWCR) registers
will disable the watchpoint protection as well.
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At the entry to the hypervisor, the watchpoint-related registers
are set to predefined values. Thus, we can verify them with con-
stant values immediately after the configuration. When the mode
switches back to kernel, the register values are restored to kernel’s
setting. Because the kernel settings are saved in the privileged re-
gion, the attacker cannot manipulate them. Furthermore, abusing
the exit routine is not advantageous because the attacker directly
loses its hypervisor privilege. That is, the last instruction, eret, in
the exit routine switches the CPU mode to kernel.

Region switch. Between region switches, SelMon configures
the DEP and debug masking (D) flag in the PSTATE. Because
PSTATE.D is configured using the immediate value (#8), the at-
tacker cannot abuse the instruction to reconfigure the flag with a
general register that delivers a malicious value. Care must be taken
for the DEP configuration because it requires to change the system
control register (SCTLR). Similar to the watchpoint configuration
protection, we verify the configured value after its being written
into the SCTLR. Because other system settings such as for the MMU
are controlled by the SCTLR, not only the DEP flag but also other
flags need to be protected. The SCTLR value should be constant so
that the verification is simple. We just compare the written value
with the predefined legitimate value. Due to the timing gap between
the configuration and verification, the MMU can be disabled for a
while. However, the verification is still effective and deterministic
because we map the virtual address to be identical to the physical
address. Therefore, the attacker cannot bypass the verification.

In particular, the gate to the privileged region must be executed
with the predefined interface, the hypercall, for a successful region
switch. Any attempt that jumps to the gate without the hypercall
invocation will generate a watchpoint exception. Finally, we do not
enable interrupts during the hypervisor mode because of small set
of the functionality. Thus, interrupts during the gate code execution
do not need to be considered from the security perspective [27].
Even if interrupts are enabled, they will not hamper the security
of SelMon because a single exception vector is used for both the
privileged and non-privileged regions. We can enforce that the
interrupts are securely handled by the privileged region.

Untrusted kernel. The colluding of untrusted kernel by the
attacker needs to be considered. For example, the attacker can re-
turn into a malicious kernel code once the hypervisor privilege is
obtained. Hence, any other region other than the hypervisor should
not be executable once the hypervisor mode is activated. Eliminat-
ing this attack vector is straightforward. We just map the kernel
region with a never execute (NX) permission in the hypervisor page
table.

Effectiveness against real-world attacks. Because SelMon
does not aim to detect or remove software vulnerability, it can-
not prevent an attacker from exploiting existing vulnerabilities of
trust anchors ([3, 4, 12]). However, as a baseline defense of the sys-
tem, SelMon protects the integrity of the trust anchor and isolates
critical operations, which greatly restricts the attacker’s ability to
compromise the system.

7.2 Performance
We evaluate the overhead of SelMon by measuring the hypervisor,
application, and OS performance. Specifically, the performance of

Table 4: Simple operation performance of original and hard-
ened hypervisors. Average latency (in µs) and standard devi-
ation of 10 runs of each case of SelMon are presented.

Operation Baseline SelMon Stdev Overhead
Mode switch 3.2 4.2 0.63 1.31×
TTBR update 4.0 5.2 1.03 1.30×
Page table update 4.4 6.5 1.08 1.47×

hypervisor operation primitives, which are required to implement
the kernel integrity monitor (e.g, TTBR update), is measured. Then,
we ran three benchmarks, namely SPEC CPU2006, LMBench, and
Phoronix Test Suite, to measure the performance of the application
and OS that run on the original and SelMon-hardened hypervisors.

7.3 Hypervisor
Adopting SelMon imposes an overhead due to its privilege sepa-
ration and domain switches. As demonstrated in Section 5.1, we
applied SelMon to the thin hypervisor that monitors the OS kernel.
Then, the performance of hypervisor operations such as the update
of TTBR, page table, and kernel memory is evaluated. Specifically,
the times for each operation performed on the SelMon-hardened
and original hypervisors are measured and compared.

As can be observed in Table 4, SelMon imposes a 31% overhead
for the simple switch between the kernel and hypervisor. This over-
head includes a constant time for the hypervisor entry, the entry to
the non-privileged region, and the hypervisor exit. In addition to
the simple switch time, the TTBR update case requires more time
to execute the update instruction in the non-privileged region. Be-
cause the instruction execution does not require additional region
switches, it does not increase the overhead compared to that of
mode switch. On the other hand, the page table update case requires
switches between the non-privileged and privileged regions. The
update request is sent by invoking the hypervisor call from the non-
privileged region, which switches the region to privileged. Once
the page table is updated, the non-privileged region is reactivated
through the region switch gate. These additional operations are the
main factors that increase the overhead of SelMon, compared to
the other two cases.

The performance of accessing the OS kernel is also estimated
(Table 5). A single read and write operation imposed an overhead
of approximately 30% similar to the simple switch. However, the
overhead was obscured as the processing data size increases. When
the size of the write and read operation is bigger than 80 bytes, the
overhead dramatically decreased down to 6% and 2%, respectively.
Note that we premap the OS kernel region to the hypervisor; thus,
the overhead for the page table update (i.e., hypervisor or secondary
page tables) is not included in this result.

7.4 Application and OS benchmarks
The performance impact of SelMon to applications is evaluated by
running LMBench and SPEC CPU2006 benchmarks. On the other
hand, we used the kernel test collection provided by Phoronix Test
Suites to evaluate the overhead imposed to the OS kernel.

LMBench. We measure the latency of basic OS operations such
as open and execve on two different environments: OSs running
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Table 5: Performance of read and write operations on original and SelMon-hardened hypervisors. The average latency of 10
runs (in µs), standard deviation, and overhead are described. The size of operations varies from 8 to 800 bytes. The target
memory region is pre-mapped; hence, the operations do not include the overhead of the page table update.

8 bytes 80 bytes 800 bytes
Operation Baseline SelMon Baseline SelMon Baseline SelMon
Read 3.8 5.1 (σ : 0.56, 1.34×) 7.9 8.1 (σ : 1.1, 1.02×) 50.7 52.1 (σ : 3.63, 1.02×)
Write 4.4 5.7 (σ : 0.67, 1.29×) 7.8 8.3 (σ : 0.82, 1.06×) 51 53.7 (σ : 2.98, 1.05×)

Table 6: LMBench results from Linux OSs on original and
SelMon-hardened hypervisors. The average latency (in µs)
and standard divation of 10 runs of each SelMon test case
are described.

Baseline SelMon Stdev Overhead
syscall 0.690 0.690 0.004 1.00×
read 1.545 1.546 0.009 1.00×
write 1.310 1.313 0.004 1.00×
stat 4.939 4.953 0.012 1.00×
open+close 10.886 10.956 0.209 1.01×
signal handler 6.532 6.534 0.225 1.00×
sock stream 26.093 26.531 0.919 1.02×
fork+exit 565.940 745.142 7.134 1.32×
fork+execve 1466.65 1899.20 60.620 1.29×
\bin\sh -c 5639 7249 37.824 1.29×

on original and hardened hypervisors. Table 6 indicates the results
in microseconds. Simple operations, which only introduce low la-
tencies, including syscall, read, write, stat, open, signal handler, and
sock, did not show any significant impact of SelMon. We suspect
that this is because each test case does not invoke the hypervi-
sor during measurement of the execution time. More specifically,
considering that the hypervisor is invoked for the context switch
(TTBR update) and the OS page-table update, those tests do not
include such OS operations during the measurement.

However, the last three test cases, i.e., the fork, execve, and
shell execution, imposed an overhead of approximately 30%, which
is aligned to the overhead of SelMon imposed on the hypervisor
operation primitives. As described in Section 7.3, the overhead
was incurred due to the constant latency of the mode and region
switches. The results indicate that the last three cases frequently
invoke the hypervisor operations that update the OS page tables for
the new process creation. Additionally, due to the relatively high
latency of the last three test cases, there might be several context
switches that invoke the hypervisor to support the TTBR update.

SPEC CPU2006. Figure 4 shows the performance of CPU2006
test cases with the hardened hypervisor. The result is normal-
ized to the performance measured with the original hypervisor.
Contrary to the result of LMBench, the overhead measured with
CPU2006 was negligible. A maximum overhead of 2% was observed
in sjeng. Specifically, bzip2 with SelMon shows better performance.
Although we did not thoroughly analyze the reason for this result,
we expect this is due to the noise incurred by various factors (e.g.,
CPU throttling). The result implies that the portion of operations
that invoke the hypervisor (i.e., page table and TTBR update) is not
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Figure 5: Performance ofOS, evaluated by running Phoronix
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the original hypervisor (lower is better).

significant in each applications. Due to the longer runtime (in sec-
onds) compared to that of LMBench, most of the SelMon overhead
was obscured.

Phoronix Test Suite.We evaluate the performance impact to
the OS kernel due to the adoption of SelMon. As can be observed
in Figure 5, ten kernel test programs from Phoronix Test Suite are
used. The overhead varies from 1% to 5% with OpenSSL and MAFFT.
In addition to MAFFT, 7-ZIP and bzip2 introduce a relatively high
overhead of 4%. Note that bzip2 in Figure 5 takes a much larger
input (256 MB) than bzip2 in Figure 4 (at most 50 MB). We expect
that large file compression requires frequent context switches and
page faults due to disk read and copy operations. This in turn
leads to more frequent invocations of the hypervisor because of the
implanted hypercalls in the context switch and page fault handlers.
Finally, compared to SPEC CPU2006, most test cases from Phoronix
result in higher overhead due to their kernel intensive operations.

8 DISCUSSION
Although we show the efficacy of SelMon by porting it to the hy-
pervisor, it can be adapted to protect the software running in kernel
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mode, which also provides the required hardware features (i.e., DEP
and watchpoint). Because the features are generally available in
both the secure states, OS kernels hosted in the rich execution en-
vironment (REE) and the TEE created by TrustZone can perform
self-protection by arming with SelMon. Some engineering effort
is expected to realize this. For instance, the privileged part that
verifies and emulates the critical operations needs to be located
in the region that is protected by SelMon. Most importantly, the
gate code needs to be allocated in the memory region the virtual
and physical addresses of which are equally mapped. This is to
prevent the attacker from abusing the instruction that updates the
SCTLR, which can be exploited to turn off the MMU. In spite of this
requirement, our approach is still more flexible than SKEE [17] in
that we do not require a particular memory address (e.g., 0x0) to be
reserved for the security application.

Although our approach helps reinforce the security of Trust-
Zone by protecting the secure OS in the TEE as aforementioned, it
is not compatible with the monitor mode that generally acts as a
gatekeeper of the TEE. This is because the watchpoint exceptions
are not supported in the monitor mode in essence. As discussed in
Section 2.5, previous approaches are not suitable for the protection
of monitor mode as well. Hybridizing SelMon and the software
fault isolation (SFI) [19, 38, 45] could be a reasonable approach to
address this problem. For instance, the lack of watchpoint support,
which enforces the non-accessibility, can be compensated by instru-
menting read and write operations so that they are enforced not to
access the privileged region. We set aside this for our future work.

The specification for the ARM microcontroller (e.g., ARMv8-M)
also defines debugging properties including the watchpoint. How-
ever, reproducing SelMon with this low-end architecture requires
amendments to the current design due to the architectural dis-
tinction. For example, the low-end specification does not support
MMU and DEP. Thus, we cannot setup the permission of each re-
gion’s components using the page table and dynamically adjust the
DEP policy. Furthermore, to reduce the cost in building resource
constraint devices, the debug facilities are generally subject to be
removed from the device. We expect employing the memory pro-
tection unit (MPU) together with compiler technique [22] to be
a possible solution to emulate such missing components. We will
further explore this to implement SelMon on low-end devices.

On the other hand, x86 provides hardware watchpoints as well.
Unfortunately, the size of the possible monitoring range is limited
to 8 bytes per individual watchpoint; thus, it is not suitable for
implementing SelMon using watchpoint on x86. Instead, the mem-
ory protection key [13], which enables the memory regions to be
partitioned into sixteen parts and selectively disables (and enables)
the access to each region, could be a viable hardware feature for
deploying SelMon to x86-based systems.

9 CONCLUSION
We first analyzed the existing approaches for the self-protection of
privileged software and showed why these approaches are not suf-
ficient to be generally adopted in mobile devices. Then, we demon-
strated, SelMon, a mechanism to protect the privileged software
on the ARM architecture by leveraging general hardware features
such as the DEP and watchpoint. To show the effectiveness of our

approach, we applied SelMon to the thin hypervisor that monitors
the OS kernel integrity. In the performance evaluation, SelMon
imposed an overhead of approximately 30% in the hypervisor prim-
itive operations. However, most of the overhead was obscured in
SPEC CPU2006 due to its minimal portion of hypervisor invocation
in the entire runtime of each test case. In the OS performance eval-
uation with Phoronix, a maximum overhead of 5% was observed.
Although we ported SelMon in the hypervisor, it can similarly be
adopted by other modes such as secure and non-secure kernels
because of the availability of the required hardware features (e.g.,
the watchpoint), which highlights the portability of our approach.
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