
Received December 2, 2019, accepted December 26, 2019, date of publication January 20, 2020, date of current version January 30, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2967746

The Image Game: Exploit Kit Detection Based on
Recursive Convolutional Neural Networks
SUYEON YOO 1,2, SUNGJIN KIM 3, AND BRENT BYUNGHOON KANG 1,2, (Member, IEEE)
1Graduate School of Information Security, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
2School of Computing, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
3Department of Intelligent System Engineering, Cheju Halla University, Jeju-si 63092, South Korea

Corresponding author: Brent Byunghoon Kang (brentkang@kaist.ac.kr)

This work was supported in part by the National Research Foundation of Korea under Grant NRF-2017R1A2B3006360, in part by the
Institute for Information and Communications Technology Promotion under Grant IITP-2017-0-01889, and in part by the Office of Naval
Research under Grant N00014-18-1-2661.

ABSTRACT Malware has been installed through drive-by downloads via exploit kit attacks. However,
the prior signature- or dynamic-based detection approach to the continuously increasing number of suspi-
cious samples is time-consuming. In such circumstances, convolutional neural networks (ConvNets) can help
in rapid detection owing to their direct image-feature generation using exploit codes. However, the general
ConvNet model entails the vanishing gradient problem, where the features used for a deep learning-based
detection method will become less effective as the network is deepened to improve detection accuracy.
In this paper, we propose a multiclass ConvNet model to classify exploit kits, where we adopt various image
processing techniques and adjust the size and other parameters of images. The proposed ConvNet model
recursively updates images and is designed for fully preserving image properties. This model updates the
output of feature maps and pooling using an original image. This model was tested using 36,863 real-world
datasets, achieving a 98.2% accuracy in exploit kit detection and family classification. Most importantly,
the proposed model is 38 times faster than previous machine learning models, and training time is reduced
by 77.8% when compared with prior well-known ConvNet models.

INDEX TERMS Exploit kit, image processing, ConvNet, image classification.

I. INTRODUCTION
Most malware delivered via the Web is contaminated by
attack toolkits referred to as exploit kits (EKs). An EK is
defined as ‘‘an off-the-shelf software package containing
easy-to-use attacks against known and unknown vulnerabil-
ities’’ by McAfee [1], [2]. GrandCrab ransomware (built for
the monetary profit of the attackers), which is being exten-
sively transmitted in recent years, is spread via EK attacks.

EKs have been widely used in malware propagation via
email attachments. Malicious emails are combined with
malicious documents that contain EKs or/and links that are
redirected to EKs. In particular, the recent distribution of
coin-miner, ransomware, trojans, and bankers has increased
considerably via EK attacks. Moreover, antivirus products
provide low detection rates for most EKs. Therefore, there are
limited solutions to prevent malware dissemination. Hence,
users who depend on antivirus products are exposed to con-
tamination risks owing to detection difficulties.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiafeng Xie.

Regarding security response, previous studies have
focused on machine learning-based detection [3] or call-
graph-based detection [4] to protect users from malware.
These methods have low performance. The prior EK detec-
tion based on machine learning showed a high trade-off
owing to the extensive computation required for feature
extraction (i.e., Prophiler [3] consumed 3.3 s/file.) Recent
image-based machine learning models [5], [6] experience
limitations in classification because of adversarial attacks
caused by adding garbage values. Furthermore, attackers
neutralize malware to benign via packers. At present, this
disablement is generalized.

Under this circumstance, convolutional neural net-
works (ConvNets) provide high accuracy and performance
in image classification based on text strings. Based on this,
we implement an image-based EK classification model using
a new deep learning approach. The benefits of this model are
fast performance and high detection rate.

EK is generally described using obfuscated script code.
This property is more suitable for an image-based detection
because the obfuscation can be distinguished from benign

18808 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-2622-9212
https://orcid.org/0000-0002-9372-2568
https://orcid.org/0000-0001-8984-1006


S. Yoo et al.: Image Game: Exploit Kit Detection Based on Recursive Convolutional Neural Networks

files without attempting to interpret the code. The property is
evident in the image. In particular, in techniques that avoid
detection using noise, current EK exhibits limited perfor-
mance compared to malware because EK is programmed in
a limited format such as HTML and JavaScript. The image is
a preferable medium that can be used to block malware con-
tamination propagated via the Internet. In this study, we built
the image-based detection model for the following additional
reasons:

ConvNets are known to provide 1) high accuracy in image
classification (as image similarity matching) and 2) high
performance via the imaging of direct code scripts. However,
the detection rate of ConvNets is sensitive to changes in
the depth, size, and hyperparameters of models, as previ-
ously known. Additionally, the detection rate is influenced
by color (i.e., texture, color, and brightness) and image com-
plexity. Thus, in this study, we build a grayscale-based hybrid
ConvNet model to overcome these sensitivities. The main
contributions of this study are as follows:

• We propose a new ConvNet model, i.e., a recursive
convolutional neural network (RCNN) model, which
provides an enhanced image classification.

• We demonstrate that our model is 38.31 times faster
than previous models. Additionally, its detection rate is
extremely high (more than 98.2%) compared to previous
models.

• The RCNN can be used for the detection of various
malicious attributes and for other types of image clas-
sification.

The remainder of this paper is organized as follows:
Section II presents related work and describes our research
background. Section III provides an overview of various
features and classifiers for our model setup. In Section IV,
we explain the core system framework and the technical
details of our design. Then, we describe the dataset used,
the experimental setup, and our experimental results in
Section V. The limitations of our model are discussed in
Section VI, and the conclusions are outlined in Section VII.

II. BACKGROUND AND RELATED WORK
A. EXPLOIT KITS
TheCVE-2018-4878 IE 0-day vulnerability emerged in 2018,
and it was deployed in RIG, Magnitude, GF Sundown,
KaiXin, Underminer, and Pseudo EK. Malware has been
globally distributed via these EKs. Currently, these EKs are
connected to links hidden in attached files and email URLs,
and numerous ransomware attacks are distributed via these
EK attachments. Additionally, a new EK, i.e., fallout, was
found at the end of August 2018. This EK is mainly hidden
in the obfuscated JavaScript of webpages [7], [8]. If inter-
net users access malicious websites, hidden redirect URLs
deliver user access points to a webserver that is already
deployed to these EKs and user PCs are often compromised.
That is, attacks via EKs consist of various malicious URLs
and brokers, such as emails and websites as intermediaries
for facilitating contamination.

To detect Malicious URL that leads to an exploit kit site,
Eshete et al. [9] and Kim et al. [10] leveraged the abnormal
behavior of EKs. WebWinnow [11] analyzed workflow of
exploit kits and extracted features from their attack-centric
and self-defense behavior. Kim et al. [10] focused on attack-
ers’ habitual URL manipulation behavior and then employed
similarity matching to classify suspicious URLs that have a
similar character array.

The other efforts are to discriminate malicious Webpages
and JavaScript code that host drive-by download exploits [3],
[12]–[17]. Prophiler [3] is a lightweight machine-learning
filter for malicious Web pages. They extracted features
from HTML, JavaScript, URL, and DNS records. The pur-
pose of Prophiler is to quickly filter non-malicious pages
so it allows higher false positive rates than other detec-
tion model, Zozzle [12], which automatically extracts hier-
archical features from the JavaScript abstract syntax tree.
Recently published FriSM [15] enhanced string-similarity
features to detect variants derived from existing EKs.
Xu et al. [13] presented a combination of two detection mod-
els: one is based on application layer traffic information and
the other on network-layer traffic information. To complete
cross-layer detection, they drew the final decision via OR-,
AND- and XOR-aggregation. Yoo et al. [14] presented a
two-phase malicious Web page detection model using the
misuse and anomaly detection approaches hierarchically to
overcome drawbacks of both approaches. Wang et al. [16]
applied deep learning based malicious JaveScript code detec-
tion. Their detection system consists of random projection,
Stacked denoising auto-encoders, which learn text-type fea-
tures with unsupervised pre-training, and logistic regres-
sion layer. KIZZLE [17] can generate features of exploit
kits by analyzing unpacked binary malware code and using
fewer variants in metamorphic malwares caused by a code
reuse.

Although previous EKs detection approaches show a high
detection accuracy, the time-consuming feature analysis and
relatively the high training time are inevitable shortcomings.
Furthermore, code deobfuscation or unpacking malware is a
prerequisite to extract features.

B. VISUALIZATION
There has been a continuous effort towards utilizing
visualization approaches for malware analysis and detection
because visualization allows the detection model to find fea-
tures from different perspectives such as texture, color, and
graph structure. Yoo [18] used self-organizing maps (SOMs)
to visualize malicious code in an executable file. Using
SOMs, the author showed the difference between the for-
mats of a virus-infected file and a normal executable file
caused by inserting virus code into the original code by force.
Trinius et al. [19] showed the distributions of API calls
obtained after malware behavior analysis using treemaps and
the sequence of API calls according to an operation section
using thread graphs. Han et al. [20] proposed a visualization
method using opcode sequences.

VOLUME 8, 2020 18809



S. Yoo et al.: Image Game: Exploit Kit Detection Based on Recursive Convolutional Neural Networks

Whereas prior studies focused on visualizing malware
features, studies [21]–[26] that consider malware code as
a digital image has begun to emerge. Nataraj et al. [21],
[22] adopted an image processing technique: they converted
malware binaries into gray-scale images then extracted pat-
tern features from the images using GIST [27]. After that,
they used a k-nearest neighbor algorithm to classify malware.
Xiaofang et al. [23] visualized malware as gray images and
extracted image features with a speeded-up robust features
algorithm. The research of Liu and Wang [24] also focused
on the gray image, and the local mean method was used
to reduce the image size to speed up the ensemble learning
process. Han et al. [25] proposed a malware visualization
method and an entropy graph generated based on the gray
image was used to realize automatic analysis. However, this
method cannot be applied to packed malware, because the
entropy of packed malware are usually very high and cannot
indicate any specific pattern. Recently, Fu et al. [26] focus
on converting malware binaries into RGB-colored images to
extract low dimensional features that lead to reduce themodel
complexity.

C. CONVNET
Visualization approaches have been applied to support
malware analysis and detection for several years. However,
there are limitations in using a visualization approach to
detect malware. Most of the previous detection models in this
approach require the structure of malware but the structure of
non-PE files is difficult to get. The other limitation is the poor
performance when malware is packed or encrypted.

On the other hand, even though EK script data are more
appropriate for building ConvNet models using EK scripts
converted to images, to the best of our knowledge, there are
no previous studies that have addressed the detection of EKs
through visualization.

AConvNet is a neural networkmodel that uses convolution
layers mainly for image recognition or image classification.
An input image passes through convolution layers with filters
and pooling several times. Then, it passes through fully con-
nected layers and the softmax function to predict an image
object with values ranging from [0,1]. This CNN-based mal-
ware detection model [28]–[30] discriminates malware via
deep layers for classifying pixels after changing the binary
sections of malware into grayscale images. This model pro-
vides a high detection rate; however, it has limitations in
experiments on malware detection with packers. Other simi-
lar studies [31], [32] have shown 96.2% classification accu-
racy with Microsoft malware dataset [33] and 96% accuracy
with KAIST Cyber Security Research Center [34] dataset.

The drawback of image-based detection is that it cannot
classify malware when it is packed by packers. That is,
malware images show the same/similar grayscale images.
On the contrary, an image-based approach is suitable for
script-based EK detection. Previous studies have typically
suggested three models that analyze the EKs used as vec-
tors for malware delivery: a feature-based ML model,

FIGURE 1. Example of Gondad exploit kit changed to grayscale.

static analysis, and dynamic analysis. In this work, exclud-
ing the prior trials, we performed newly EK detection with
another image processing approach referred to as a CNN.

III. MODEL SETUP
We built an optimized image-based model via the following
four approaches to increase the detection rate of EKs: color,
size, classifier optimization, and a hybrid model. This section
presents the details of the model.

A. COLOR
In general, the type of color affects the detection rate of
a CNN model. Hence, when loading images, we normally
change the image type to grayscale. However, there is a broad
range of color types such as grayscale, RGB, and gamma.
Figure 1 shows an example when a Gondad EK is changed to
grayscale. The obfuscated code is black, and the initial script
code is changed to dark gray and black. The image exposes
the entire contour of an EK.

EKs contain various exploit codes that attack various
application vulnerabilities; for instance, Java, Flash Player,
plugins, and web browser vulnerabilities. These EKs attack
web access users, obtain system privileges and subsequently
distribute malware. There are several dozens of EK types,
such as RIG, Angler, Blackhole, and the recent Spelevo.
Particularly, all types of EKs have different code schemes.
For instance, an image of Angler is different from that of RIG.
There are several types of Anglers. Each type has a different
image, but a similar variant image. Figure 2 shows two types
of Angler and their variants. The images among the same
variant are quite similar, but those of different variants are
different.

We require an optimized image reproduced by image
transformation to accurately detect EKs. In this approach,
we generated five different image types from the same image
(see Figs. 3 and 4). In the experiment using transformed
images, we examined the change in detection rate. The model
for this experiment was tested with 2 convolution layers,
2 pooling layers, the ReLU activation function, the Adam
optimizer, and 24 epochs.

As shown in Figure 5, to improve the color-based classifi-
cation accuracy, we measured classification accuracy for an
image that was transformed to 8-bit grayscale, RGB, gamma
1.5, gamma 0.5 and limited grayscale. In this experiment,
the detection rates were 99.86%, 99.77%, 99.68%, 99.83%,
and 99.91%. In this test, the limited grayscale image showed

18810 VOLUME 8, 2020



S. Yoo et al.: Image Game: Exploit Kit Detection Based on Recursive Convolutional Neural Networks

FIGURE 2. Two types of Angler variants projected to grayscale; these
variants were detected in 2014, 2015, and 2016. In our datasets, there
were nine different types of Angler exploit kits. Here, we present two
types among them.

FIGURE 3. Examples transformed to different images. From left to right:
RGB, gamma 0.5, gamma 1.5, grayscale, and scale limited.

FIGURE 4. Image comparison in RGB, grayscale, and limited grayscale.

FIGURE 5. This output was the result obtained using each different
image, as seen in Figure 3.

the highest accuracy of 99.91%. We adopted the limited
grayscale image for the proposed model.

Limited grayscale reduces the original gray scope by
applying limited scope. Thus, we varied the value from 0 to
10 to further highlight the image. In image transformation,
we allocated one value from the abovementioned range cor-
responding to each image pixel. For instance, when the range
of pixels was 0–255, a pixel value of 0–25 was allocated
to 0 and that of 26–50 was assigned to 2. This approach
provided higher classification accuracy compared to typi-
cal grayscale. Precision, recall, and F1-score was 99.91%.

FIGURE 6. Changes in classification rate with size. We used 17593 train
images, 3350 validation images, and 2326 test images. These images were
resized from 8×8 to 1024×1024 pixels. The results were average values
received from three iterations of a normal CNN model.

The overall performance including image transformation and
prediction was about 0.08 s per file.

B. SIZE
In general, the original image sizes in MNIST are fixed.
However, in the real world, the sizes of EKs are not fixed.
There are a variety of sizes, and benign sizes have a wide
range. Hence, we considered various EK image sizes in
real-world circumstances.

Most image sizes of EKs range from 4×4 to 1453×1453
pixels. However, we must resize original EKs to utilize
images in CNN models. The resizing of images is one of the
critical factors that affect the detection rate. Hence, to deter-
mine the best image size in an EK,we compared classification
accuracy for different image sizes. We resized images to a
fixed size, such as 8×8. In this experiment, we used pixels
between 8 and 1024. Figure 6 illustrates that 256×256 pixels
is the best optimized size. We used a standard CNN model
with 2 convolution layers, the ReLU activation function,
max pooling, same padding1, 10 epochs, a batch size of 32,
10 channels, 64 hidden units (which are used in the dense
layer), a filter size of 3×3, a dropout rate of 0.25, and the
softmax regression.

Figure 6 shows the classification accuracies for different
image sizes. This figure shows the best image size accord-
ing to accuracy. In light of these results, the variation in
classification accuracy with size is based on the charac-
teristics of color, texture, and brightness. These features
are different for every image. Therefore, the features of
an image can be expressed by its size. We identified
that classification accuracy peaked at image sizes of 8×8,
256×256, and 512×512 pixels and decreased significantly
after these peaks. Based on this trend, we clustered images
into three size ranges, i.e., 8–255, 256–511, and 512 and
above, and used these sizes to adapt our CNN models. That
is, we require different classification models based on the
image sizes, such as the hybrid model (evaluation results in
this approach are detailed in Section IV and Section V).

1To produce an output of the same size as the input, we use zero padding
outside the edges to create images with the same shape.

VOLUME 8, 2020 18811



S. Yoo et al.: Image Game: Exploit Kit Detection Based on Recursive Convolutional Neural Networks

FIGURE 7. CDF according to pixel sizes (upper), and the number of images
according to original image size (lower). The x axis label indicates size by
size. For instance, 200 represents an image size of 200 × 200 pixels.

As shown in Figure 7, detection rates were obtained after
resizing the original images to specific sizes. Particularly,
the CDF in Figure 7 shows that the cumulative number of files
in the size ranges of 8–512, 256–511, and more than 512 are
26.4%, 68.2%, and 80.3% of the total files, respectively. The
number of images (lower) in Figure 7 influences the detection
rate. Central areas in this number of images may affect high
detection rates. The images were broadly distributed accord-
ing to the y axis at these points. The central points along the x
axis between 1 and 500 image sizes are at the bottom. From
this figure, we can assume that a high detection rate is related
to specific image sizes and the number of images trained.

Figure 8 illustrates the outliers for the mean and standard
deviation. The sizes of benign images in the outliers can be
easily detected compared to the sizes of malicious images
(upper). The lower figure shows that the numbers of mali-
cious images between 300 and 700 can be distinguished from
those of benign images. The malicious images in this range
can be more precisely trained in our model.

C. RCNN
In this section, we introduce an RCNN model to increase
classification accuracy. This model is based on a normal
CNN model. However, the distinguishing characteristic from
a general CNN is that the RCNN model recursively updates
the original input image. The basic concept is to multiply the
feature maps created through a convolution layer with the
original image and to update the feature maps. All feature

FIGURE 8. Sizes of images range from 4 to 1453 pixels in benign samples
and from 13 to 558 in malicious samples (upper). Based on each image
size, the number of original images range from 1 to 316 in benign
samples and 1 to 694 in malicious samples (lower). The benign images
are smaller and the number of malicious samples in each image size is
broadly distributed in our dataset.

maps are updated; the size of a map is equal to that of the
input image. The details of the RCNN model are as follows:

1) PSEUDO CODE
To accurately classify a given image, we used approaches
related to image update in feature maps and pooling. These
image update algorithms are utilized for removing the ‘‘blur’’
phenomenon, in which image features are diminished.

Algorithm 1 is an implementation that uses the same size
matrix between an image and a feature map via SAME
padding. Hence, the code can be different if padding is not
applied. In Algorithm 1, an image update after the Conv layer
is based on the element-wise multiplication of two matrices;
one is an M × M input matrix and the other is an M × M
conv1 matrix, which is the output matrix of the first convolu-
tion layer operation after adding the SAME padding option.
In the case of Algorithm 1, we set M = 50, b is the number
of input images, and c is the number of nodes (i.e., channels)
of the first convolution layer. When i = {0, 1,..., b–1} and
j = {0, 1,..., c–1}, we extract the M × M conv1 matrix
of the j-th channel in the i-th image. Next, we reshape the
conv1 matrix to a 1 × M2 matrix (flattening step) and the
i-th original input image to a 1 × M2 matrix in the same
manner. We conduct element-wise multiplication of these
two flattened matrices. Then, the output of multiplication
is reshaped into an M × M matrix to be fed to the next
convolution or pooling layer. The process described above is
performed for all values of i and j.

18812 VOLUME 8, 2020



S. Yoo et al.: Image Game: Exploit Kit Detection Based on Recursive Convolutional Neural Networks

Algorithm 1 Image Update Algorithm on Feature Maps
Input: output matrix via a Conv layer (Conv1)
Output: updated Conv1

1: F ← feature maps
2: _X ← original images
3: B← a batch size
4: C ← # channel

5: Conv1 = ConvImageUpdate(F , _X , B, C)

6: function ConvImageUpdate(f , _x, b, c)
7: UpdateFeatureMap← tf .zeros([0, 50, 50, c])
8: for i = 0; i ≤ b− 1; i++ do
9: conv_row← tf .zeros([1, 50, 50, 0])
10: for j = 0; j ≤ c− 1; j++ do
11: conv_1← f [i, :, :, j]
12: conv_1← reshape conv_1 to vector[2500])
13: img_← _x[i, ; , :, 0]
14: img_1← reshape img_ to vector[2500]
15: conv_1← multiply conv_1 and img_1
16: conv_1← rearray conv_1 to [1, 50, 50, 1]
17: conv_row← concat conv_1
18: end for
19: UpdateFeatureMap← concat conv_row
20: end for
21: return UpdateFeatureMap
22: end function

In a nutshell, the feature map update method, used to
prevent feature loss in our recursive ConvNet model, is as
follows.

To create a feature map, the input image data of the kernel
size is sequentially composited with the kernel. Then, input
data including kernel size is extracted from the image data in
the original image, and the result is multiplied and combined
with the corresponding feature map. Then, the final result
matrix with the required feature updates is created. This can
be expressed using math notation. The general feature map
values are calculated2 and simply stated by the equation
G[m, n] = (i× h)[m, n], where the input image is denoted by
i and our kernel is denoted by h. An output matrix comprises
the indexes of rows and columns, whose elements are marked
as m and n, respectively.

G[m, n] =
j∑ k∑

h[j, k]i[m+ j, n+ k] (1)

We updated the subsequent feature map with the feature
values of the original image, and the formula is stated by
FU = G× I and detailed as.

FU [m, n] = (
j∑ k∑

h[j, k]i[m+ j, n+ k])× i[m, n] (2)

2Referred https://towardsdatascience.com/
gentle-dive-into-math-behind-{\penalty-\
@M}convolutional-neural-networks-79a07dd44cf9

Algorithm 2 Image Update Algorithm on Max Pooling
Input: output matrix via a max pooling
Output: updated pooling

1: M ← max pooling values
2: _X ← original images
3: B← a batch size
4: C ← # channel

5: MaxPooling = MaxImageUpdate(M , _X , B, C)

6: functionMaxImageUpdate(m, _x, b, c)
7: UpdateMaxPool ← tf .zeros([0, 25, 25, c])
8: for i = 0; i ≤ b− 1; i++ do
9: max_row← tf .zeros([1, 25, 25, 0])
10: for j = 0; j ≤ c− 1; j++ do
11: max_1← f [i, :, :, j]
12: max_1← reshape max_1 to vector[625])
13: img_← _x[i, ; , :, 0]
14: img_1← sum of all (ai,j + ai+1,j + ai,j+1 +

ai+1,j+1)
15: img_1← reshape img_ to vector[625]
16: max_1← multiply max_1 and img_1
17: max_1← rearray conv_1 to [1, 25, 25, 1]
18: max_row← concat max_1
19: end for
20: UpdateMaxPool ← concat max_row
21: end for
22: return UpdateMaxPool
23: end function

where FU means feature update and I denotes the matrix of
an input image. FU (2) works internally in TensorFlow when
executing Algorithm 1.

In our model, a max pooling is also updated in a similar
manner. The only change is to element-wise multiply the
matrix sum of an original image with filter size by the matrix
of max-pooling. In Algorithm 2, we sum all i,j elements
(ai,j + ai+1,j + ai,j+1 + ai+1,j+1) and place the results in ai,j
of the new image matrix (img_1 in Algorithm 2). In Tensor-
Flow, we can simply replace the corresponding line of code,
img_1 = (img_[0 :: 2, 0 :: 2] + img_[1 :: 2, 0 :: 2] +
img_[0 :: 2, 1 :: 2]+ img_[1 :: 2, 1 :: 2]). Then, the original
imagematrix size can be halved. For instance, a 50×50 image
matrix is reduced to a 25×25 matrix. Hence, we multiply the
new image matrix and max pooling output matrix. (Besides,
when applying average pooling, we can obtain mean val-
ues by dividing by 4 as we use a 2×2 pooling size in this
algorithm). Then, the algorithm sums all i, j elements. This
algorithm depends on user definitions in the hyperparameter.
Thus, the result can be slightly different according to model
architecture.

If the order of the code itself is an important factor in
detecting exploit code, natural language processing (NLP)
may provide a good method of detection. However, in exploit

VOLUME 8, 2020 18813

https://towardsdatascience.com/gentle-dive-into-math-behind-{\penalty -\@M }convolutional-neural-networks-79a07dd44cf9
https://towardsdatascience.com/gentle-dive-into-math-behind-{\penalty -\@M }convolutional-neural-networks-79a07dd44cf9
https://towardsdatascience.com/gentle-dive-into-math-behind-{\penalty -\@M }convolutional-neural-networks-79a07dd44cf9


S. Yoo et al.: Image Game: Exploit Kit Detection Based on Recursive Convolutional Neural Networks

FIGURE 9. Values of max-pool are updated with the resized image
of 50×50 pixels. In summary, the values in a 2×2 pixel area in the image
are summed, and the output is multiplied element-wise by a value that is
mapped with a max pool. This operation is processed until all image
pixels are calculated and updated with two strides.

TABLE 1. EK dataset list based on types, and the number of images used
in trainset and test.

kit detection, finding obfuscation features is more important
than ordering code. Therefore, we applied a CNN model
whose features are well represented in the image. In partic-
ular, the types of exploit kits are limited to approximately
thousands. While the variants of those types are myriad,
when converted, the difference from the original image is
not noticeable. Thus, there is no difficulty in comparing with
transformed images of other benign codes.

2) IMAGE COMPLEXITY
The location of the image update in RCNN is depen-
dent on image complexity. We can use the image update
after the Conv output matrix, after the max-pooling output
matrix, or after both. Someone can construct the image update
randomly between many deep layers. All this is dependent on
image complexity and model situations.

Table 1 shows the EK dataset we used in this exper-
iment. Twelve types of EK were used as described in
the table. In an experiment to evaluate image complexity,
we also adopted Caltech101 datasets. Among the datasets,
we selected 12 image types, i.e., airplanes, Google back-
grounds, car side, chandelier, faces, easy face, hawksbill,
helicopter, ketch, leopards, motorbikes, and watch. The num-
ber of images is 3,906. Additionally, we used the dataset

of 42,000 MNIST. In this experiment, we divided the number
of each train, valid, and test into 7:1:2. According to the
image complexity, we assumed that the accuracy and depth
of the CNN model are affected. Thus, we need to know the
position of image complexity in EK to build the model (i.e.,
to establish a deep or shallow model).

First, the image entropies of MNIST, EK, and Caltech101
are 1.1885-4.55047, 2.89596-6.60579 (except only four
benign samples, where their entropies are 0.263, 0.477, 0.539,
and 1.931, respectively), and more than 6.7, respectively.
Image complexity is based on Shannon’s information theory
[35]. In our datasets, the image complexity of EK is located
in the middle.

3) CORRELATION BETWEEN IMAGE COMPLEXITY AND
CONVNET MODEL DEPTH
Table 2 shows the results of accuracy according to the image
complexity and model depth between the basic CNN model
and our RCNN.

In a shallow model with a short layer, a basic CNN model
was composed of conv→max-pooling→ dropout→ dense
→ dropout→ dense. In contrast, the RCNN model was built
using conv→ conv-update→ max-pooling→ max-update
→ dropout→ dense→ dropout→ dense. These models had
12 classes, 3×3 filters, 10 channels, 2×2 max pooling size,
and used 64 nodes in dense layer. We used a learning rate
of 0.001 and a batch size of 16 in this experiment. The same
values of the hyperparameters were used in deep models.

In a deep model with a deep layer, a basic model used
3 conv, dropout, 3 conv, dropout, 4 conv, max-pooling,
dropout, dense, dropout, and dense in a sequential manner.
On the other hand, a deep RCNN model had conv→ conv-
update 3 times, dropout, and repeated conv→ conv-update
3 times again, had dropout, and repeated conv→ conv-update
4 times again, had max-pooling, max-update, dropout, dense,
dropout, and dense in a sequential manner.

Figure 10 shows the accuracies of both models for various
image types. In most cases, the RCNN showed higher accu-
racy than the general CNN. In particular, the RCNN exhibited
high performance in datasets with high image complexities.

This property is more clearly expressed in Figure 11.
The degree of image complexity in this figure is the same
as MNIST < EK < caltech101. The mean entropy of cal-
tech101 is 7.42. This figure illustrates that image complexity
and the depth of the layer are correlated.

As shown in Figure 11, for images with low entropy, such
as MNIST and EK, high accuracies are indicated in the initial
stage, whereas the accuracies for caltech101 images were low
in the initial stage and gradually increased as layers were
added. Consequently, low-entropy images use less number
of layers, but images with high entropies need deeper layers.
RCNN accommodates this rule, and the image complexity in
RCNN is proportional to the depth of the layer.

IV. DESIGN
In this section, we introduce a hybrid model based
on our RCNN. The proposed model is a multisize

18814 VOLUME 8, 2020



S. Yoo et al.: Image Game: Exploit Kit Detection Based on Recursive Convolutional Neural Networks

TABLE 2. Classification accuracy of basic CNN and our RCNN based on each different image type. In this experiment, we used 20 epochs. In this
experiment, RCNN showed a better performance than a basic CNN model in general. In particular, RCNN exhibited a high performance in a deep model.

FIGURE 10. Accuracy of ConvNet and RCNN. Experiments were repeated five times and mean values are reported. Results for the shallow
model with 20 epochs on the EK datasets with an input size of (a) 8 and (b) 256. (c) Results of the deep model on the MNIST dataset.
Results on the Caltech101 dataset for the (d) shallow and (e) deep models.

classification model. The images are classified by size, for-
warded to the appropriate RCNN model, and detected by the
same model.

This model involves the image-based classification.
Without feature extraction, this model computes the weight
(Wx + b) of an image of the same size mapped with filters
and keeps the weight of image features in (feature) maps
with matrices. Then, it reduces the size of the features via
pooling. These matrix values are trained using a labeling
method called softmax. Specifically, our RCNN appends the
features of the original image in the features of all (or some)

output matrices in this processing, and supplies more distinct
image features. This model generates the final output matrix
via the multiplication of two matrices (i.e., the resized image
and output matrix).

Figure 12 describes an RCNN classification model
in which a hybrid approach is added according to the
image size. In a file-size-based multi-RCNN model, each
RCNN has different nodes, epochs, batch sizes, and hid-
den layers, resulting in high accuracy. This model predicts
the class of EK through each different model based on
size.

VOLUME 8, 2020 18815



S. Yoo et al.: Image Game: Exploit Kit Detection Based on Recursive Convolutional Neural Networks

FIGURE 11. Deep model results according to image complexity. The X -axis denotes a deep layer. Here, we applied
10 conv layers.

FIGURE 12. Overview of our proposed model.

As shown in Figure 12, an original script code (EK source
codes like HTML, JavaScript, PHP, etc.) is first transformed
to grayscale. Then, the grayscale image is retransformed to
a limited grayscale (with one of 11 values, from 0 to 10).
This image is more distinguished. Subsequently, the size of
the image is calculated and forwarded to one of the RCNN
models according to the size. The input image is resized
to a different size after being entered into an RCNN model
(i.e., 8 × 8 pixels). Then, a feature map produced from the
1st Conv layer is updated via matrix multiplication between
the feature map and image map. The results are forwarded
to max pooling, and then the pooling matrix is updated with
the resized image in the same manner. The output matrix is

flattened and labeled via a fully connected dense net. In this
approach, each RCNNmodel has different hyper-parameters.
Thus, the filter sizes and channels are different.

Each RCNN is optimized based on size. The model pro-
vides one-hot encoding between 12 values when classifier
distinguishes an EK i in class j. The normalized image size in
our multi-classifier can be defined by the following equation:

resized image size i, 8 ≤ i ≤ 512 for all i ∈ R

where i is an image size and R denotes all EKs and benign
files with size i. The other sizes might give different results.
The EKs are determined as labeled outputs according to the
above multisized and multiclass approach. This model covers

18816 VOLUME 8, 2020



S. Yoo et al.: Image Game: Exploit Kit Detection Based on Recursive Convolutional Neural Networks

TABLE 3. Accuracy comparison between various ConvNet models. In this
evaluation, we used 23,327 image datasets including 16,337 train images,
4,663 test images, and 2,327 images for prediction (including 1561 benign
images and 766 EK samples), and equally applied 256 input size,
40 epoches, 1 batch size, and Adam optimzer in all image models. These
models used 10 classes as exploit kits and benign types. In this
experiment, a RCNN showed the highest accuracy at this size.

various EK image formswidely used inmalware proliferation
and benign files with various image types.

V. EVALUATION
In this section, we evaluated our model, and compared it to
prior works.

A. DATASETS AND EXPERIMENTAL SETUP
To demonstrate the performance of the proposed model,
we used 15,617 benign files and 17,709 EK files. This
dataset was labeled via the VirusTotal and manual inspection.
The datasets used for evaluation are detailed in Table 1.
The datasets are from VirusChaser, an antivirus company.
VirusChaser provided 35,616 samples in total, including
15,616 benign samples and 20,000 EK samples. The remain-
der of the dataset comprised 3.4% of the combined dataset
from http://www.malware-traffic-analysis.
net/. The datasets used will be made publicly available.3

We ran the experiments on Linux with an Intel R©

XeonCore R© Silver 4116 CPU 2.10 GHz, 48 cores, with
128 GB memory and NVIDIA TITAN V GPU.

This RCNN (or basic CNN) was programmed by using
Python 3.5.5, TensorFlow 1.12.0, and Keras 2.2.2 library
as the learning framework, and had 330 lines of code, and
228 code lines for data preprocessing were used.

B. ACCURACY AND PERFORMANCE
This classification in various types is a more difficult task.
Thus, the classification model should be reliable and accurate
for classifying EK types, and the model should satisfy the
overall classification. In this section, we verify the accurate
classification rate of EK types via classifiers of various CNN
models. Then, we determine the optimized model according
to the best results.

Table 3 gives the results of EK classification from various
CNN models. In this evaluation, we used 2,327 test images,
and its results denote the accuracy. Among them, RCNN
increased classification accuracy to 98.9%, providing high
performance. Other image models also exhibited low accu-
racy in indicating benign and EK types, where unique image

3https://bit.ly/2R3Bnmu

TABLE 4. Accuracy result in RCNN. In this evaluation, we used
25,820 training images, 3,680 validation images, and 7,356 prediction
images. There are 12 classes. This dataset is even more complicated than
that of Table 3.

features affected the classification rate, while the deep-layer
models did not demonstrate the improved effectiveness of
classification.

In this experiment, ResNet50 and DenseNet121 showed
low accuracy because their models exhibited a relatively high
detection rate in a benign dataset but showed a low TP rate in
a malicious dataset; thus, we identified that most EKs were
classified as benign. These models showed overfitting for this
benign training data. In particular, MobileNetV2 exhibited
the lowest accuracy. The common point between the models
is that they do not properlymaintain the image characteristics.
Accuracy is denoted by the ratio of the number of correct pre-
dictions to the total number of predictions made. In particular,
we use macro average precision for multiclass classification.
In this experiment, we applied the same hyperparameter con-
figuration in all image nets and RCNN in terms of input size,
batch size, # of epoch and applied Adam as an optimizer.
In addition, each image model used its default configuration
values as the model hyperparameters. In this respect, RCNN
exhibited the highest accuracy in this evaluation, as seen
in Table 4. RCNN was very stable and exhibited a high
performance particularly in terms of training and validation
accuracy, as shown in Figure 13 and 14, as compared to other
image models.

Table 4 illustrates the accuracy result of RCNN4 in the
classification of EK and benign datasets. In this experiment,
we increased the number of classes to 12 and the number
of image datasets in the tests, as shown in Table 4. RCNN
adopted a filter size of 5 × 5, 40 epochs, and 12 classes.
The input size differs according to the original image size.
Accordingly, from the accuracy of this experiment, it can be
inferred that RCNN depends on image update techniques,

4The related datasets and codes that were used in the paper are going to
be opened later.

VOLUME 8, 2020 18817

http://www.malware-traffic-analysis.net/
http://www.malware-traffic-analysis.net/
https://bit.ly/2R3Bnmu


S. Yoo et al.: Image Game: Exploit Kit Detection Based on Recursive Convolutional Neural Networks

TABLE 5. Performance comparison with state of the art.

FIGURE 13. Changes in training accuracy of image models during
40 epochs.

FIGURE 14. Changes in validation accuracy of image models.

and can categorize image types well as either benign or one
of the EK types.

To measure the validation metric for multiclass classifi-
cation, we calculate the micro-average and macro-average
accuracy. Both accuracies can be calculated as follows:

ACCmicro =
(ACC1 ∗ N1)+ · · · + (ACCk ∗ Nk )

N1 + · · · + Nk
(3)

where ACC is the accuracy and Nk is the number of samples,
respectively. Micro accuracy is calculated from individual
accuracy of k in the multiclass model, whereas macro accu-
racy averages the performance of each individual class as
formula (4).

ACCmacro =
ACC1 + · · · + ACCk

k
(4)

From Table 4, the ACCmicro of RCNN is 0.982. Its
ACCmacro is 0.988.

TABLE 6. Train time comparison with CNN models. In this experiment,
we used 25,820 samples for training, and applied 256 input size, 4 batch
size, 40 epochs and 12 classes.

In the performance comparison, as detailed in Table 5,
RCNN is 38.3 times faster than typical machine-learning
models [3]. The result is caused by the properties of RCNN
that require unnecessary time consumption used for feature
extraction. This benefit is well exposed to other CNNmodels.
However, image-based CNN models require image transfor-
mation time, which accounts for most of the time consumed.
Although image preprocessing is required, the overall perfor-
mance is much higher than those of typical models.

In training time evaluation, most well-known CNNmodels
require a large amount of time for training. In this case,
RCNN is approximately 4.5 – 10 times faster than other CNN
models, as presented in Table 6.

VI. DISCUSSION AND FUTURE WORK
RCNN exhibits high performance in a deep model with
high image complexity. Relatively, the performance with low
complexity is similar to that of the typical CNN model.
Hence, it might be necessary to build an optimized model that
exhibits high performance for images with low complexity.
In future studies, we are going to add different map updates
to distinguish the properties further. For instance, this is to use
the highest value in the submatrix of the image pixel mapped
to max-pooling when updating the max-pooling.

In general, CNN is a model in which the output matrix is
reduced whenever the layers are deep. Sometimes, to make a
more effectivemodel, CNN increases the number of channels.
Instead, we can extend the output matrix size by increas-
ing the sizes of feature maps within our algorithm. Further,
we can update max-pooling differently by using contrast
padding. This can be one of the solutions to preserve image
features more clearly.

Furthermore, we plan to build new CNN models
that have suitable classification accuracies for high
image complexities. Many CNN models often dimin-
ish the image features when they have deeper layers

18818 VOLUME 8, 2020



S. Yoo et al.: Image Game: Exploit Kit Detection Based on Recursive Convolutional Neural Networks

TABLE 7. Confusion matrix between 1 and 63 image size. In this evaluation, we used 4496 test samples.

TABLE 8. Confusion matrix between 64 and 511 image size. In this evaluation, we used 2788 test samples.

(i.e., vanishing tendencies). EKs have low image complex-
ity, and general CNN models can be easily adopted in EK
detection. However, malware is even more difficult to detect.
To resolve the low detection problem, commercial methods
select a large-scale dataset such as more than Peta datasets
in the number of data elements (i.e., one of the commercial
products, CylancePROTECT, can use this approach.) In this
circumstance, we can update CNN models with the n-th
repeats in image update according to image complexities.
High image complexities can have a greater n. This model
will help support complex image detection. Future work will
consider the extension of this proposed model.

We also need additional experiments for proving the per-
formance with a large-scale EK. Thus, we need a technique
to discern remarkably image features accompanied by a large
fraction of benign instances. This feature investigation can
provide better detection models. We intend to evaluate this
approach in future work.

We can face nontrivial issues in classifying benign images
with apparently malicious images. Thus, problem-solving
studies should be considered in this case. Nonetheless,
the proposed model exhibited the potential for image-based
detection by showing high accuracy in EK detection and
type classification. This approach is rapid due to no fea-
ture extraction. Instead, the proposed model changes mali-
cious codes to one-time image transformation. This simple
approach provides quick and accurate detection performance.
This model was more than 38 times faster than those in pre-
vious studies and showed a high classification rate of 98.2%.
Moreover, the proposed method differentiates the weight of
image features by updating the output matrix, so the accuracy
of detection can be increased.

As a result, the advantages and disadvantages of our
proposed model can be summarized as follows. Low
computational cost: In exploit kit detection, previous detec-
tion methods required feature extraction time. However,
our proposed model reduces computational costs by chang-
ing the exploit kit code to RGB (converting three RGB
to the matrix) and then to a limited grayscale image (one
matrix). High performance: This ConvNet-based exploit
kit detection model can identify an obfuscated exploit kit
without clarification via the deobfuscation of the original
exploit kit. This provides rapid detection performance. This
proposed model is 38 times faster than previous typical
machine learning models. Also, the training time is 77.8%
faster than prior CNN models, as shown in Figure 13. Mul-
ticlass ConvNet model provides a high detection rate:
Based on each file size of the exploit codes, the size of
images that are transformed to grayscale is classified into
three different size groups and forwarded to a size-based
differentiating model to filter the suspicious images. This
approach facilitates the increase of the detection rate. Further,
we enhanced classification accuracy by applying improved
image processing techniques (RCNN) that recursively update
the images. This is designed for sufficiently preserving
image properties in order to overcome the vanishing gradient
problem.

In contrast, in the case of converting a short attack code
into an image, it is difficult to preserve the characteristics
of the attack code in the image. (The same problem
occurs with other static-based EK detection methods) It
does not respond to an adversarial attack that inserts
garbage code. This is a common disadvantage of the CNN
model.

VOLUME 8, 2020 18819



S. Yoo et al.: Image Game: Exploit Kit Detection Based on Recursive Convolutional Neural Networks

TABLE 9. Confusion matrix in samples more than 512 image size. In this evaluation, we used 72 test samples.

VII. CONCLUSION
Exploit kits are one of the roots of malware contamination.
This type of attack has rapidly increased. However, the detec-
tion rate is still low. In particular, antivirus products still
exhibit low detection rates. Accordingly, we propose a CNN
model based on image updates to conserve image features.
To do this, scripts with malicious forms were converted into
images. The changed image attributes provide useful insight
into EK classification via the filter of a CNN model because
this model is based on features, which are distinguished
from benign HTML/JavaScript codes, through obfuscation,
size, unique images, etc. These properties are well emerged
when EKs are transformed into limited grayscale images.
To make the model more precise, we proposed a limited
grayscale, size-based hybrid model, and recursive image
update method. This affects classification accuracy. In this
paper, we expanded the scope of detection with image fea-
tures. Above all, this model provides both high detection
and high performance, which is a rare achievement in prior
models.

APPENDIX
CONFUSION MATRIX IN RCNN
See Tables 7-9.

ACKNOWLEDGMENT
(Suyeon Yoo and Sungjin Kim are co-first authors.)

REFERENCES
[1] M. Hopkins and A. Dehghantanha, ‘‘Exploit Kits: The production line

of the Cybercrime economy?’’ in Proc. 2nd Int. Conf. Inf. Secur. Cyber
Forensics (InfoSec), Nov. 2015, pp. 23–27.

[2] McAfee. (Feb. 2015). Mcafee Labs Threat report. [Online]. Available:
https://docplayer.net/7975859-Report-mcafee-labs-threats-report.html

[3] D. Canali, M. Cova, G. Vigna, and C. Kruegel, ‘‘Prophiler: A fast filter for
the large-scale detection of malicious web pages,’’ in Proc. 20th Int. Conf.
World Wide Web (WWW), 2011, pp. 197–206.

[4] B. J. Kwon, J. Mondal, J. Jang, L. Bilge, and T. Dumitras, ‘‘The dropper
effect: Insights into malware distribution with downloader graph analyt-
ics,’’ in Proc. 22nd ACM SIGSAC Conf. Comput. Commun. Secur. (CCS),
2015, pp. 1118–1129.

[5] X. Yuan, P. He, Q. Zhu, and X. Li, ‘‘Adversarial examples: attacks and
defenses for deep learning,’’ IEEE Trans. Neural Netw. Learn. Syst.,
vol. 30, no. 9, pp. 2805–2824, Sep. 2019.

[6] J. Su, D. V. Vargas, and K. Sakurai, ‘‘One pixel attack for fooling deep
neural networks,’’ IEEE Trans. Evol. Comput., vol. 23, no. 5, pp. 828–841,
Oct. 2019.

[7] C. Grier, A. Pitsillidis, N. Provos, M. Z. Rafique, M. A. Rajab, C. Rossow,
K. Thomas, V. Paxson, S. Savage, G. M. Voelker, L. Ballard, J. Caballero,
N. Chachra, C. J. Dietrich, K. Levchenko, P. Mavrommatis, D. Mccoy,
and A. Nappa, ‘‘Manufacturing compromise: The emergence of exploit-
as-a-service,’’ in Proc. ACM Conf. Comput. Commun. Secur. (CCS), 2012,
pp. 821–832.

[8] V. Kotov and F.Massacci, ‘‘Anatomy of exploit kits,’’ inProc. 5th Int. Conf.
ESSOS. Berlin, Germany: Springer, 2013, pp. 181–196.

[9] B. Eshete, A. Alhuzali, M. Monshizadeh, P. A. Porras,
V. N. Venkatakrishnan, and V. Yegneswaran, ‘‘EKHunter: A counter-
offensive toolkit for exploit kit infiltration,’’ in Proc. NDSS, 2015,
pp. 1–15.

[10] S. Kim, J. Kim, and B. B. Kang, ‘‘Malicious URL protection based
on attackers’ habitual behavioral analysis,’’ Comput. Secur., vol. 77,
pp. 790–806, Aug. 2018.

[11] B. Eshete and V. N. Venkatakrishnan, ‘‘WebWinnow: Leveraging exploit
kit workflows to detect malicious urls,’’ in Proc. 4th ACMConf. Data Appl.
Secur. Privacy, 2014, pp. 305–312.

[12] C. Curtsinger, B. Livshits, B. G. Zorn, and C. Seifert, ‘‘Zozzle: Fast and
precise in-browser javascript malware detection,’’ in Proc. USENIX Secur.
Symp., San Francisco, CA, USA, 2011, pp. 33–48.

[13] L. Xu, Z. Zhan, S. Xu, and K. Ye, ‘‘Cross-layer detection of malicious
Websites,’’ in Proc. 3rd ACM Conf. Data Appl. Secur. Privacy, 2013,
pp. 141–152.

[14] S. Yoo, ‘‘Two-phase malicious Web page detection scheme using misuse
and anomaly detection,’’ Int. J. Reliable Inf. Assurance, vol. 2, no. 1,
pp. 1–10, Jun. 2014.

[15] S. Kim and B. B. Kang, ‘‘Frism: Malicious exploit kit detection via feature
based string-similarity matching,’’ in Proc. Int. Conf. Security Privacy
Commun. Syst. Cham, Switzerland: Springer, 2018, pp. 416–432.

[16] Y. Wang, W.-D. Cai, and P.-C. Wei, ‘‘A deep learning approach for detect-
ing malicious JavaScript code,’’ Security Commun. Netw., vol. 9, no. 11,
pp. 1520–1534, Jul. 2016.

[17] B. Stock, B. Livshits, and B. Zorn, ‘‘Kizzle: A signature compiler for
detecting exploit kits,’’ in Proc. 46th Annu. IEEE/IFIP Int. Conf. Depend-
able Syst. Netw. (DSN), Jun. 2016, pp. 455–466.

[18] I. Yoo, ‘‘Visualizing windows executable viruses using self-organizing
maps,’’ in Proc. ACM Workshop Vis. Data Mining Comput. Secur.
(VizSEC/DMSEC), 2004, pp. 82–89.

[19] P. Trinius, T. Holz, J. Gobel, and F. C. Freiling, ‘‘Visual analysis ofmalware
behavior using treemaps and thread graphs,’’ in Proc. 6th Int. Workshop Vi.
Cyber Secur., Oct. 2009, pp. 33–38.

[20] K. Han, B. Kang, and E. G. Im, ‘‘Malware analysis using visualized image
matrices,’’ Sci. World J., vol. 2014, Jul. 2014. Art. no. 132713.

[21] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, ‘‘Malware
images: Visualization and automatic classification,’’ in Proc. 8th Int. Symp.
Vis. Cyber Secur., 2011, p. 4.

[22] L. Nataraj, V. Yegneswaran, P. Porras, and J. Zhang, ‘‘A comparative
assessment of malware classification using binary texture analysis and
dynamic analysis,’’ inProc. 4th ACMWorkshop Secur. Artif. Intell. (AISec),
2011, pp. 21–30.

[23] B. Xiaofang, C. Li, H. Weihua, and W. Qu, ‘‘Malware variant detection
using similarity search over content fingerprint,’’ in Proc. 26th Chin.
Control Decision Conf. (CCDC), May 2014, pp. 5334–5339.

[24] L. Liu and B. Wang, ‘‘Malware classification using gray-scale images
and ensemble learning,’’ in Proc. 3rd Int. Conf. Syst. Informat. (ICSAI),
Nov. 2016, pp. 1018–1022.

18820 VOLUME 8, 2020



S. Yoo et al.: Image Game: Exploit Kit Detection Based on Recursive Convolutional Neural Networks

[25] K. S. Han, J. H. Lim, B. Kang, and E. G. Im, ‘‘Malware analysis using
visualized images and entropy graphs,’’ Int. J. Inf. Secur., vol. 14, no. 1,
pp. 1–14, Feb. 2015.

[26] J. Fu, J. Xue, Y. Wang, Z. Liu, and C. Shan, ‘‘Malware visualization for
fine-grained classification,’’ IEEE Access, vol. 6, pp. 14510–14523, 2018.

[27] A. Oliva and A. Torralba, ‘‘Modeling the shape of the scene: A holistic
representation of the spatial envelope,’’ Int. J. Comput. Vis., vol. 42, no. 3,
pp. 145–175, 2001.

[28] D. G. Llauradó, ‘‘Convolutional neural networks for malware classifi-
cation,’’ M.S. thesis, Dept. Comput. Sci., Univ. Politècnica de Catalunya,
Barcelona, Spain, 2016.

[29] E. K. Kabanga and C. H. Kim, ‘‘Malware images classification using
convolutional neural network,’’ J. Comput. Commun., vol. 06, no. 01,
pp. 153–158, 2018.

[30] W. Wang, M. Zhu, X. Zeng, X. Ye, and Y. Sheng, ‘‘Malware traffic clas-
sification using convolutional neural network for representation learning,’’
in Proc. Int. Conf. Inf. Netw. (ICOIN), 2017. pp. 712–717.

[31] S. Seok and H. Kim, ‘‘VisualizedMalware Classification Based-on Convo-
lutional Neural Network,’’ J. Korea Inst. Inf. Secur. Cryptol., vol. 26, no. 1,
pp. 197–208, Feb. 2016.

[32] S. Choi, S. Jang, Y. Kim, and J. Kim, ‘‘Malware detection using malware
image and deep learning,’’ in Proc. Int. Conf. Inf. Commun. Technol.
Converg. (ICTC), Oct. 2017, pp. 1193–1195.

[33] Microsoft Malware Classification Challenge (Big 2015), Microsoft, Red-
mond, WA, USA, Feb. 2015.

[34] KAIST Cyber Security Research Center. [Online]. Available: http://csrc
.kaist.ac.kr

[35] Wikipedia. (May 2018). Information Theory. [Online]. Available:
https://en.wikipedia.org/wiki/Information_theory

[36] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, ‘‘Beyond blacklists:
Learning to detect malicious web sites from suspicious URLs,’’ in Proc.
15th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining (KDD),
2009, pp. 1245–1254.

[37] A. Fass, R. P. Krawczyk, M. Backes, and B. Stock, ‘‘JaSt: Fully syntactic
detection of malicious (obfuscated) JavaScript,’’ in Proc. Int. Conf. Detec-
tion Intrusions Malware, Vulnerability Assessment. Cham, Switzerland:
Springer, 2018, pp. 303–325.

[38] C. Seifert, I. Welch, and P. Komisarczuk, ‘‘Identification of malicious Web
pages with static heuristics,’’ in Proc. Australas. Telecommun. Netw. Appl.
Conf., Dec. 2008, pp. 91–96.

[39] G. Tan, P. Zhang, Q. Liu, X. Liu, C. Zhu, and L. Guo, ‘‘MalFilter:
A lightweight real-time malicious URL filtering system in large-scale
networks,’’ in Proc. IEEE Intl Conf Parallel Distrib. Process. Appl., Ubiq-
uitous Comput. Commun., Dec. 2018, pp. 565–571.

SUYEON YOO received the B.S. degree in
industrial engineering from Pusan National Uni-
versity, Busan, South Korea, and the M.S.
degree in industrial and systems engineering from
the Korea Advanced Institute of Science and
Technology, Daejeon, South Korea, where she is
currently pursuing the Ph.D. degree with the Grad-
uate School of Information Security. Her current
research interests include web security, big data
analysis, machine learning, and malware detection
and analysis.

SUNGJIN KIM received the B.S. degree in
computer science from Ohio State University,
Columbus, USA, and the M.S. degree in computer
science from Sogang University, Seoul, South
Korea, respectively, and the Ph.D. degree from the
Korea Advanced Institute of Science and Tech-
nology (KAIST), Daejeon, South Korea, in 2019.
He is currently an Assistant Professor with Cheju
Halla University. His current research interests
include network security, machine learning, big

data analytics, social network analysis, web security, and malware detection
and analysis.

BRENT BYUNGHOON KANG (Member, IEEE)
received the B.S. degree from Seoul National Uni-
versity, the M.S. degree from the University of
Maryland, College Park, and the Ph.D. degree in
computer science from the University of Califor-
nia at Berkeley. He is currently an Associate Pro-
fessor with the Graduate School of Information
Security, Korea Advanced Institute of Science and
Technology (KAIST). Before KAIST, he has been
with George Mason University as an Associate

Professor. He has been working on systems security area including bot-
net defense, OS kernel integrity monitors, trusted execution environment,
and hardware assisted security. He is currently a member of the USENIX
and the ACM.

VOLUME 8, 2020 18821


