Computers & Security 136 (2024) 103568

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

Check for

SuM: Efficient shadow stack protection on ARM Cortex-M i

Wonwoo Choi, Minjae Seo, Seongman Lee, Brent Byunghoon Kang *

Graduate School of Information Security, KAIST, South Korea

ARTICLE INFO ABSTRACT

Keywords: System software written in unsafe languages such as C/C++ is susceptible to various types of security
ARM vulnerabilities. Historically, backward-edges such as return addresses have been an attractive target for control-
Software vulnerability flow hijacking attacks due to the severity and ease of exploitation. Although various backward-edge control-flow
gzg;lx:i:cg]f tion integrity schemes have been proposed over the years, most of them mainly focus on protecting desktop/server-
Control-flow integrity class systems, leaving embedded systems unprotected. Even worse, bringing their defense mechanisms into
Compiler resource-constrained embedded systems is undesirable because they were originally designed for high-end
computing systems and thus are not directly applicable to embedded systems without compromising performance
and real-time constraints.
In this paper, we propose Shadow under the Mask (SUM), an efficient and robust backward-edge control flow
protection that is applicable to ARM Cortex-M processors. Specifically, SUM realizes a non-bypassable shadow
stack mechanism and safeguards its structural integrity in a novel combination of an MPU and FaultMask—an
overlooked hardware feature in Cortex-M processors. To be more specific, SUM restricts all access to the shadow
stack through MPU, ensuring its integrity; and temporarily disables its MPU protection through FaultMask
during the execution of safe instructions, guaranteeing that only authorized instructions can modify the shadow
stack. In our empirical evaluation, SUM incurs minimal runtime overhead of 2.77% and 2.63%, respectively, on
the BEEBS and CoreMark benchmark suites. These results underscore the viability of our proposed approach as
a practical and potent solution to address the highlighted cybersecurity challenge.

1. Introduction to launch control-flow hijacking attacks. These types of attacks can sub-

vert the execution flow of a program, thereby allowing adversaries to

Embedded systems, predominantly built upon microcontrollers
(MCUs), are designed to execute specific tasks with stringent real-time
and energy consumption constraints. They are pervasive, and their ubig-
uity extends across a wide range of devices, including but not limited
to smart home appliances, implantable medical devices, and Unmanned
Vehicles (UV). The advent of the Internet of Things (IoT) has augmented
these systems with formidable networking capabilities. However, this
newfound interconnectedness has also enlarged their attack surface,
thereby elevating the importance of security in embedded systems to a
paramount concern in both academic and industry spheres.

Regrettably, a majority of contemporary embedded systems are
largely built using low-level, unsafe languages such as C/C++. While
these languages offer performance benefits, their indiscriminate and
careless utilization can pose significant security risks. Among these,
memory errors constitute a critical vulnerability that can be exploited

* Corresponding author.
E-mail address: brentkang@kaist.ac.kr (B.B. Kang).

https://doi.org/10.1016/j.cose.2023.103568

carry out malicious activities. The situation is further compounded in
the context of embedded systems, where system software typically op-
erates at the same privilege level in a monolithic form.

A promising mitigation technique against such attacks involves en-
forcing control-flow integrity (CFI) (Abadi et al., 2005). However, de-
spite its security benefit, the original CFI implementation (Abadi et al.,
2005) with the protection of the shadow stack incurs non-negligible
overhead. To alleviate the observed performance overhead, quite a few
subsequent CFI researches have predominantly focused on implement-
ing forward-edge CFI (e.g., protection for call and jump instructions)
while comparatively neglecting backward-edges (i.e., return address).
This regressive tendency leads to an erosion of system security, as re-
cent studies (Carlini and Wagner, 2014; Goktas et al., 2014; Goktas et
al., 2014; Davi et al., 2014; Carlini et al., 2015) have demonstrated that
both coarse-grained (Zhang and Sekar, 2013; Zhang et al., 2013; Pappas

Received 18 July 2023; Received in revised form 26 September 2023; Accepted 26 October 2023

Available online 31 October 2023
0167-4048/© 2023 Elsevier Ltd. All rights reserved.

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cose
mailto:brentkang@kaist.ac.kr
https://doi.org/10.1016/j.cose.2023.103568
https://doi.org/10.1016/j.cose.2023.103568
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2023.103568&domain=pdf

W. Choi, M. Seo, S. Lee et al.

et al., 2013) and fine-grained (Abadi et al., 2005; Tice et al., 2014; Niu
and Tan, 2014, 2015; Ding et al., 2017; Hu et al., 2018) solutions fall
short of delivering their complete guarantee without the incorporation
of a shadow stack.

Given the importance of the shadow stack, numerous variants of
shadow stack techniques have been proposed over the years (Kuznetsov
et al., 2014; Lu et al., 2015; Dang et al., 2015; Zieris and Horsch,
2018). Nevertheless, as outlined in recent studies (Abbasi et al., 2019;
Yu et al., 2022), the majority of these defenses are geared toward
desktop computers and servers. Compounding this issue, the integra-
tion of existing defense mechanisms into embedded systems presents
formidable challenges. Namely, previous work commonly relies on (i)
software instrumentation, (ii) randomization, or (iii) hardware isolation
primitives—none of which can be effortlessly and seamlessly incorpo-
rated into embedded systems without sacrificing performance or secu-
rity assurances.

More specifically, the first approach (Abadi et al., 2005) write-
protects the shadow stack through software fault isolation (SFI) (Wahbe
et al., 1993; Sehr et al., 2010), inevitably accruing significant overhead
due to the heavy instrumentation of all memory write instructions. The
second approach (Shacham et al., 2004; Kuznetsov et al., 2014; Lu et
al., 2015; Zieris and Horsch, 2018) relies on obscuring its shadow stack
through randomization rather than providing robust isolation, thereby
rendering itself vulnerable to information leakage attacks (Evans et al.,
2015; Gawlik et al., 2016; Oikonomopoulos et al., 2016). Furthermore,
randomization is not practical for embedded systems as MCUs do not
architecturally support virtual memory or abundant physical memory.
The final approach (Cho et al., 2017; Koning et al., 2017; Pomonis et
al., 2017; Frassetto et al., 2018; Vahldiek-Oberwagner et al., 2019; He-
dayati et al., 2019; Burow et al., 2019; Ismail et al., 2021; Wang et al.,
2020; Gravani et al., 2021; Xie et al., 2022) ensures the integrity of the
shadow stack by actively employing hardware isolation primitives such
as Intel MPK (Programming Guide, 2011). However, there is no func-
tionally equivalent or comparable hardware security feature available
in MCUs.

To address this gap, this paper proposes shadow under the Mask
(SuM), an efficient and robust shadow stack designed for Cortex-M
processors. The overarching goal of using SuM is to guarantee the in-
tegrity of the shadow stack through a novel intra-address space isolation
called selective masking. This primitive is realized through a unique com-
bination of the memory protection unit (MPU) and FaultMask—an
execution priority control flag in ARM MCUs. Specifically, FaultMask
enables a particular instruction sequence to temporarily escalate its
privilege and be not subject to the restriction of the MPU. Through
this, SUM restricts unauthorized access via the MPU and only allows
authorized access by temporarily disabling the MPU with the help of
FaultMask.

We develop a full prototype of SUM utilizing the LLVM infras-
tructure (Lattner and Adve, 2004). Subsequently, we conduct a com-
prehensive set of experiments on our prototype using the BEEBS and
CoreMarks benchmark suites, focusing on its impact on runtime per-
formance and flash memory overhead. Our comprehensive evaluation
reveals that SUM, when tested on the two benchmark suites, incurs run-
time overhead of 2.77% and 2.63%. Concurrently, the observed flash
memory overhead amounts to 8.83% and 6.59%. It is important to note
that the practical implications of the flash memory overhead are empir-
ically determined to be considerably less pronounced than the recorded
values.

In summary, we make the following contributions:

» We devise a selective masking, a novel and efficient primitive for
intra-address space isolation. With this primitive, only authorized
instructions are allowed to modify protected regions.

» We design SUM, a novel lightweight backward-edge control flow
protection based on selective masking. Also, we implement a pro-
totype of SUM on top of the LLVM compiler.

Computers & Security 136 (2024) 103568

Unmapped
0x0 T — T — OXFFFFFFFF

Data System
Code (Stack, Peripherals Registers
Heap, (NVIC, MPU,

Global) Timer, etc)

L
Flash SRAM Peripheral System

Fig. 1. The memory layout of ARM MCUs.

+ We empirically evaluate the SUM implementation on the BEEBS
and CoreMark benchmark suites. Our experimental results show
that, on the two benchmark suites, the SUM implementation im-
poses 2.77% and 2.63% performance overhead and 8.83% and
6.59% for flash memory overhead.

2. Background

In this section, we describe the background information regarding
ARM MCU architectures that is essential to understanding our study.

2.1. Memory layout of MCUs

As depicted in Fig. 1, the memory layout of ARM MCUs is generally
divided into four regions as follows: System, Peripheral, Flash,
and SRAM regions. The System region maps system control registers
(e.g., interrupt controller (NVIC), MPU, timer), which are essential to
configure the system behavior. Attached peripherals and controllers are
memory-mapped in the Peripheral region. Therefore, software com-
ponents can communicate with peripherals through memory-mapped
I/0 (MMIO). The Flash and SRAM regions are commonly used for the
code region and for maintaining runtime data structures (e.g., stack
and heap), respectively. Since the memory resources and peripherals
are limited in MCUs, typically, there are unmapped memory regions
between each of the aforementioned regions.

2.2. Memory protection unit

Contrary to general-purpose processors, MCUs lack virtual memory
support provided by the memory management unit (MMU). There-
fore, all execution contexts of embedded systems based on MCUs share
the global address space, as depicted in Fig. 1. Instead of deploying
an MMU, ARM MCUs typically implement a memory protection unit
(MPU). The MPU enables a developer to configure access permission
over the physical memory regions. While the maximum number of con-
figurable memory regions varies from device to device, at least eight
regions are supported in general. The configuration of MPU is done via
the MPU control registers mapped in the System region.

2.3. Exception and exception priority

In ARM architectures, exceptions refer to any events that could
divert the normal execution flow. It includes peripheral interrupts, soft-
ware faults, and system calls. The handler of each exception needs to be
defined and declared in a vector table located at the specified location
of the read-only flash of an MCU.

To consider the difference in the criticality of events, ARM MCUs
support exception priorities and allow an exception with a higher prior-
ity to preempt lower ones. The priority of an exception is configurable
by setting the priority value, where a numerically lower value denotes
a higher priority. While the priority value of the majority of exceptions
can be defined by developers (with the lowest value being 0), Hard
Fault and Non-Maskable Interrupts (NMI) have fixed priority values of
-1 and -2, respectively.

W. Choi, M. Seo, S. Lee et al.

Address Space

Flash

; Vulnerable Store
str ro, [rl, #0]

Attack

; Function Prologue
push {r6, r7, 1lr}

; Function Epilogue

pop {ré, r7, pc}

Valid

SRAM

Stack

> | Return Address #n |

\4

| Return Address #0 |

Legacy

Computers & Security 136 (2024) 103568

Address Space

Flash

; Vulnerable Store

—— str ro, [rl, #0]

Attack

; Function Prologue
push {r6, r7}
cpsid f

str 1r, [r8, #-4]!
cpsie f

; Function Epilogue

pop {ré, r7}
ldr pc, [r8], #4

Valid

SRAM
Shadow Stack -
Return Address #n | = %
23
a8
sg
=z
Return Address #0 | P
Stack
SuM

Benign Access ——»

Malicious Access ——————»

Fig. 2. The shadow stack protection of SUM.

3. Threat model and assumption

We assume a powerful adversary model that gains an arbitrary
read/write primitive by exploiting memory corruption vulnerabilities
in software. With this primitive, adversaries would attempt to over-
write return addresses to obtain arbitrary code execution. To prevent
such an attack, SUM aims to prevent backward-edge control-flow hi-
jacking. However, we assume that the adversary cannot launch a code
modification or code injection attack due to the W@X. Additionally,
non-control data attacks (Chen et al., 2005) are out of the scope of this
work.

We mainly focus on bare-metal embedded systems that consist of a
single task thread with a super-loop. However, it is worth noting that
our design principle can be extended to OS-based embedded systems
(the requirements for such an extension are explained in detail in Sec-
tion 8). Furthermore, we assume that all software components operate
at the privileged level, which is a typical choice for embedded systems
to avoid mode-switching runtime overhead and thus satisfy the real-
time constraints (Clements et al., 2017; Kim et al., 2018).

4. Design

SuM is a backward-edge control flow protection constructed upon
the mechanism of a shadow stack. The integrity of the shadow stack
is protected through a novel memory isolation primitive referred to as
selective masking. In this section, we describe the inner workings of

SUM. We initially present the design choices for deploying a shadow
stack suitable for MCUs. Thereafter, we expound upon the capability
and mechanism of selective masking. Additionally, we illustrate the
interplay between the shadow stack and selective masking in SUM. Fi-
nally, we introduce supplementary security measures employed by SUM
to protect against potential threats beyond trivial return address and
shadow stack corruption.

4.1. Shadow stack

While there exist several designs for a shadow stack (Burow et
al., 2019), identifying a suitable design is a critical endeavor, particu-
larly for execution environments bound by various constraints. Notably,
MCUs are subject to stringent constraints in runtime, memory, and flash
memory. Given these constraints, the design of a shadow stack should
be chosen based on two primary criteria: Mapping and Encoding. The
mapping of a shadow stack determines whether the return address in
the shadow stack is compact or parallel. Additionally, the encoding of
a shadow stack governs the tracking of the shadow stack’s top pointer.

Contrary to a compact shadow stack, a parallel shadow stack does
not sequentially store return addresses. Rather, a parallel shadow stack
stores return addresses at a constant offset from the original location
in the regular stack, resulting in unused regions between return ad-
dresses. This characteristic renders a parallel stack out-performing in
terms of runtime overhead since it obviates the need for tracking the
shadow stack pointer. However, it inevitably incurs substantial mem-

W. Choi, M. Seo, S. Lee et al.

ory overhead, as it requires the system to accommodate a shadow stack
equivalent in size to the regular stack. Consequently, a compact shadow
stack is a more suitable choice for MCUs.

Furthermore, for MCUs, two possible encoding schemes for shadow
stacks are present: Global Variable and Register. The former encodes the
shadow stack pointer in a global variable, while the latter does so in
a dedicated register. Among these, SUM adopts the register encoding
scheme, designating r8 as the dedicated register. This is due to the
fact that the global variable encoding scheme not only typically incurs
higher runtime overhead but also incurs greater flash memory overhead
due to the increased length of instructions required for shadow stack
operations (Burow et al., 2019).

4.2. Selective masking

Selective masking is an integral component of SUM, serving a vi-
tal purpose in thwarting memory corruption attacks that target the
shadow stack. It is a primitive that enables the restriction of access
to a protected region exclusively to authorized store instructions, while
preventing unauthorized store instructions from accessing it. This tech-
nique leverages the general functionality of the MPU to assist in mitigat-
ing unauthorized access attempts to the protected region. The approach
employed to grant access exclusively to authorized instructions relies
on specific features inherent in ARM MCUs:

* MPU_CTRL.HFNMIENA: A flag used to control the behavior of the
MPU while handling exceptions with a priority value higher than
-1. If this flag is set, the MPU is disabled. The affected exceptions
include the HardFault exception, which is used to handle critical
errors that are unlikely to be recovered without a reset (ARM, 2006,
2016).

FaultMask: One of the flags that can be used to elevate the cur-
rent execution priority value. When this flag is set via the CPSID £
instruction, the current execution priority value is boosted to the
HardFault exception’s priority value (ARM, 2006, 2016). This
register has been used by fault handlers, such as BusFault, to
rectify errors while remaining independent of other faults.

Thus, selective masking’s memory protection first works by setting
the MPU_CTRL.HFNMIENA flag and configuring the MPU to the pro-
tected region as read-only. Next, selective masking wraps the Fault-
Mask flag set (i.e., CPSID f) and clear instructions (i.e., CPSIE f)
around the authorized store instruction. Subsequently, this configura-
tion protects the MPU-configured memory region from all store instruc-
tions except those that are authorized.

4.3. Protected shadow stack

4.3.1. Concept

Once the shadow stack is deployed, the fundamental principle of
SUM'’s integrity protection against memory corruption attacks rests on
placing the shadow stack within a protected region of selective mask-
ing. Then, SUM authorizes shadow stack push instructions —wrapped
with FaultMask flag instructions—to modify the shadow stack. The
overview of this approach is depicted in Fig. 2.

Moreover, to ensure comprehensive protection, it is necessary to
impose a limit on the size of the shadow stack, preventing potential
overflow beyond the boundaries of the protected region. While embed-
ding a limit check prior to each shadow stack push instruction can meet
this requirement, it can also introduce unnecessary runtime overhead.
As such, SUM strategically leverages the unmapped regions of the ARM
MCU memory map. Specifically, the shadow stack is placed at the end
of the SRAM region, adjacent to the unmapped region. Consequently,
any attempts to overflow the shadow stack would trigger a BusFault
exception, signifying a violation of the memory protection mechanism.

Computers & Security 136 (2024) 103568

Algorithm 1: SUM Instrumentation.

Input: FL = f|, f5..... f, a set of Functions to Process

1 Procedure Initialization():

2 Initialize shadow stack pointer register (r8)

3 Initialize MPU_CTRL.HFNMIENA

4 Configure MPU to protected region as read-only

5 Procedure SuM_Instrumentation(FL):

6 for function f in FL do

7 if SPILLLR(f) then

8 RetAddr « GETSPILLINSTR(f)

9 ShdwStkPush « CONVERTSHDWSTKPUSH(RetAddr)

10 Restore < GETSPILLRESTOREINSTR(f)
11 CONVERTSHDWSTKPOP(Restore)
12 WRAP(CPSID, ShdwStkPush, CPSIE)

4.3.2. Instrumentation
As shown in Algorithm 1, we delineate the comprehensive workflow
of SUM to deploy and protect the shadow stack.

Initialization Procedure. To initialize, the following steps are under-
taken. Initially, at lines 2-3, the initialization procedure initializes the
shadow stack pointer register (r8). Furthermore, for selective masking,
MPU_ CTRL.HFNMIENA is initialized to disable the MPU during Hard-
Fault. Subsequently, in line 4, the MPU is configured to establish a
protected region with read-only permissions.

SUM Instrumentation Procedure. The primary instrumentation proce-
dure is described as follows. It iterates over each set of functions within
the function list (FL) in Line 6. For each function, it first determines
whether a function needs to be protected by the SUM-enforced shadow
stack. Specifically, a check is undertaken to ascertain whether the func-
tion spills the return address (i.e., 1r) in Line 7. This spilling may
transpire either because it is a non-leaf function or due to a consequence
of high register pressure. If so, it proceeds to locate the instruction
responsible for spilling the return address, along with the callee save
registers, onto the stack (within the function prologue). Once identi-
fied, in Line 9, the return address spill operation is transformed into
a shadow stack push operation. This modification involves changing
the original instruction, such as replacing “push ré, r7, 1r” with
“pushré, r7 + str lr, [r8, #-4]!” (as depicted in Fig. 2). Simi-
larly, in Line 10, the function identifies the instruction responsible for
restoring the return address and callee save registers from the stack
(within the function epilogue). Subsequently, in Line 11, the return
address restore operation is modified into a shadow stack pop opera-
tion. For example, “pop r6, r7, pc” is transformed into “pop r6, r7
+ 1dr pc, [r8], #4” (as illustrated in Fig. 2). As a result, in Line 12,
the function encapsulates the shadow stack push instruction.

4.4. SuM-aware attack prevention

While SUM’s shadow stack protection can thwart straightforward
attempts to corrupt the shadow stack, adversaries may gain an under-
standing of SUM’s mechanisms. Consequently, there could be attempts
to disable or bypass the shadow stack protection provided by SUM. In
such instances, SUM needs to guarantee that return instructions cannot
be exploited to hijack the control flow to locations other than the origi-
nal call sites. The subsequent sections, in conjunction with Fig. 3, detail
potential efforts to disable or bypass SUM’s shadow stack protection and
the corresponding mitigation.

4.4.1. WX (write XOR execute) policy

Enforcing the WX policy (Microsoft, 2018) is the foremost re-
quirement for security measures based on code instrumentation. Oth-
erwise, adversaries can overwrite the code region to achieve arbitrary
code execution. For example, the adversaries can forge a selectively
masked store in the code region to corrupt the shadow stack and hi-
jack backward-edge control flow. In this case, SuM effectively enforces

W. Choi, M. Seo, S. Lee et al.

Computers & Security 136 (2024) 103568

1
- 3
o 3 5 o <
TN EHIE 7 223
[0} =
@ = 0 5 = = S o 3 =9< 3
X & g H S sl|g| 2 z 0P« D
3| |a| o 7) 3||e] ® 3 3%0 S
® 2 ° = = B A
o)) @ e E
*x 3 o) =) @
(] = = = 3

Fig. 3. SuM attack vectors.) Code Corruption, @ Exception Frame Corruption, @ Indirect Call/Jump Pointer Corruption, @ System Register Corruption.

the policy using the MPU and ensures that write-able regions are non-
executable.

4.4.2. Exception return protection

Exception return is a special type of backward-edge control flow
for exception handlers; it requires extra measures to protect. Upon the
arrival of an exception, an ARM MCU preempts the currently execut-
ing instruction and makes a data structure (i.e., an exception frame)
before executing the corresponding exception handler. An exception
frame consists of the data required to perform an exception return, and
it includes the preempted program counter and return address regis-
ter (1r) value. Thus, the corruption of an exception frame can result in
backward-edge control flow hijacking.

To cope with this issue, SuM protects the security-critical exception
frame data, such as a preempted program counter, using the shadow
stack in a manner similar to how it handles return addresses. To this
end, SuM replaces the exception vector table, which is referred to
for locating the associated handler when an exception arrives, with
another table full of addresses for the SuM-generated exception dis-
patcher. Upon an exception’s arrival, the exception dispatcher stores the
security-critical exception frame data in the shadow stack and makes a
call to the original handler. After the control flow returns from the orig-
inal handler, the exception dispatcher then restores the saved exception
frame data before performing an exception return.

4.4.3. Forward-edge control flow protection

While SuM primarily focuses on protecting backward-edge control
flow, which covers a wide range of arbitrary code execution attacks, it is
essential to defend against potential abuse of forward-edge attacks; oth-
erwise, this could undermine our security guarantees. Several threats
might arise from the following possible attacks: (1) abuse of unintended
instructions and (2) jump to a function prologue.

(1) Abuse of Unintended Instructions. ARM Cortex-M supports a
variable-length Thumb-2 instruction set composed of intermixed 32-bit
or 16-bit instructions. Hence, adversaries may exploit the occurrence of
unintended (unaligned) 16-bit instructions located in the middle of an
intended 32-bit instruction. For instance, a FaultMask set instruction,
CPSID £, could accidentally occur in the middle of an intended 32-bit
instruction; as a result, adversaries can abuse it as a means to turn off
the protection of the shadow stack.

(2) Jump to the Prologue with Manipulated 1r. Beyond exploiting
unintended instructions, adversaries can corrupt the shadow stack by
using only intended instructions. As a concrete example, adversaries
with control of both (1) the target of an indirect jump (not a call) and
(2) the value of the link register (1r) can jump to a function prologue
with a maliciously crafted the 1r register, which keeps the 1r regis-
ter intact (whereas the call instruction does not), thereby gaining the
ability to push an arbitrary value onto the shadow stack.

Table 1

Security-sensitive system control registers.
Register Description
MPU MPU configuration registers
VTOR Exception vector table relocation register
DEMCR Debug feature (e.g., DWT) activation register
DWT DWT configuration registers
SHPR System handler exception priority register
NVICIPR Peripheral exception priority register

To resolve these issues, SUM employs a coarse-grained CFI pro-
tection mechanism to prevent the aforementioned potential abuse of
indirect calls and jumps. Specifically, in the case of the indirect calls, it
applies label-based CFI that inserts a unique label into every function
entry, which is similar to the technique proposed in Du et al. (2022).
The label is specially chosen so that it cannot be produced by the com-
piler according to the specification of ARM instruction encoding (ARM,
2006). This restricts the potential branch targets of indirect calls exclu-
sively to function prologues. In the case of indirect jumps, SUM converts
all indirect jumps into jump-table-based branches (e.g., using the tbb
instruction) with index masking. This instrumentation restricts the in-
direct jumps to only valid jump targets; they are not allowed to jump to
unintended instructions or function prologues.

4.4.4. System register protection

SUM requires the protection of security-sensitive system control
registers, which are summarized in Table 1. Allowing adversaries to
manipulate these registers results in the subversion of its security guar-
antees. A challenge in protecting the registers is that the MPU cannot
enforce access control on System Control Space (SCS) (ARM, 2006,
2016), which is a memory region mapping the system control regis-
ters.

Therefore, to ensure the integrity of system control registers, we
leverage a watchpoint-based protection technique, which employs the
watchpoint unit found in ARM MCUs, namely, Data Watchpoint Trace
(DWT), similar to that used in the previous work (Shen et al., 2020).
To be more precise, the DWT has the ability of monitoring and rais-
ing the DebugMonitor exception upon detecting access to monitored
memory. Contrary to the MPU, the DWT has the ability to monitor the
SCS region, thus enabling SUM to closely monitor all memory access
to security-critical system control registers. In the event of an attack
attempt, the DebugMonitor exception handler can be activated to ini-
tiate appropriate responses (e.g., reset the system). It is pertinent to note
that the DebugMonitor exception is deactivated when handling an ex-
ception of equivalent or higher priority (ARM, 2006, 2016). Therefore,
it is incumbent upon developers to reserve the highest exception prior-
ity for the DebugMonitor exception, ensuring a robust line of defense.

W. Choi, M. Seo, S. Lee et al.

Computers & Security 136 (2024) 103568

Modified LLVM

Indirect Jump
Transformation

Register
Reservation

Source Code

v

Shadow Stack | | CFI > Linker
Transformation

Protected
Binary

Transformation

Fig. 4. SuM deployment process.

Table 2

The permission configuration of the MPU and DWT units.
Unit Regions Covered Perm.
MPU_0 Code in Flash r x
MPU_1 Others in Flash (e.g., data) rw_
MPU_2 Shadow Stack r
MPU_3 Others in SRAM (e.g., heap) rw_
DWT_0 MPU, VTOR, DEMCR, SHPR, NVIC_IPR r_
DWT_1 DWT r

5. Implementation

We built a prototype of SUM on top of the LLVM 9.0 compiler frame-
work (Lattner and Adve, 2004). The LLVM compiler was modified to
apply our compile-time instrumentation on embedded system source
code. Additionally, we developed a static runtime library to provide
supplementary code and data necessary for the functionality of SUM.
The subsequent sections will delve into the specific modifications made
to the LLVM compiler and the inner workings of the runtime static li-
brary.

5.1. LLVM modification

As seen in Fig. 4, the modified version of LLVM encompasses four
fundamental components: the indirect jump transformation, register
reservation, shadow stack transformation, and CFI transformation. The
indirect jump transformation is integrated into the LLVM middle-end,
which is designed to process the LLVM intermediate representation (IR).
On the other hand, the remaining components are implemented within
the LLVM backend responsible for handling machine-specific instruc-
tions.

The indirect jump transformation involves converting indirect jumps
into switch statements, effectively preventing the abuse of indirect
jumps (Section 4.4.3). This conversion is implemented using the In-
directBrExpandPass pass, a built-in middle-end pass in LLVM. To
ensure that no modifications are inadvertently reversed, the pass is po-
sitioned at the end of the LLVM middle-end. Additionally, the register
reservation ensures that the r8 register is not allocated during the reg-
ister allocation stage, and it is facilitated by LLVM’s markSuperRegs
function. The shadow stack transformation pass deploys and safeguards
a shadow stack, following the guidelines outlined in Algorithm 1. Lastly,
the CFI transformation pass focuses on enforcing label-based CFI (Sec-
tion 4.4.3) by inserting a unique label at function entry points and
incorporating label check instructions for indirect calls.

5.2. Runtime library support

The SUM runtime library comprises the initialization code, excep-
tion dispatcher, and redirection exception vector table. The initializa-
tion code is responsible for configuring system control registers, such
as the DWT for system register protection (Section 4.4.4) and the MPU
for selective masking (Section 4.2). The exception dispatcher and redi-
rection exception vector table serve as core components in exception
return protection (Section 4.4.2).

The detailed configuration is summarized in Table 2. Regarding the
MPU configuration, three MPU units, MPU 0, MPU 1, and MPU_3, are

designated to map the code (rw), data (rw), and heap (rw) regions, re-
spectively. The remaining MPU unit, MPU_2, is used for our purpose to
configure the shadow stack as read-only. Regarding the DWT configu-
ration, both of the two DWT units are configured to ensure the integrity
of security-sensitive system control registers. In detail, while DWT 0 is
used to protect MPU, VTOR, DEMCR, SHPR, and NVIC_IPR as they are
adjacent to each other. The DWT itself, which is far apart from the pre-
ceding registers, is protected by DWT 1.

6. Evaluation

In this section, we evaluate SUM with respect to both runtime and
flash memory overhead. Our evaluation leverages BEEBS (Pallister et
al., 2013) and CoreMark (EEMBC), open-source benchmark suites that
have been utilized extensively in previous studies as a measure of miti-
gation overhead (Zhou et al., 2020; Almakhdhub et al., 2020; Kwon et
al., 2019). Regarding BEEBS, it encompasses multiple workloads with
durations that may be deemed impractically brief. Consequently, we
selected 29 workloads that have been identified as having a more ex-
tended lifespan (Zhou et al., 2020).

As a baseline, we compiled our test program using the unmodified
LLVM 9.0, which is the same version upon which our modified compiler
is based. We employed the -O3 compiler optimization and link-time
optimization (- £1to) for both the baseline and SUM compilations. Fur-
thermore, we utilized picolibc (Packard Picolibc, 2018) as the standard
C library for both the baseline and SUM, given its capacity to facilitate
convenient scripts for compiling using LLVM. Our evaluation results
derived from our prototype, SUM, are described with more details in
Appendix A.

6.1. Runtime overhead

We conducted all experiments on the NUCLEO-F401RE develop-
ment board equipped with a Cortex-M4 MCU, 512 KB flash memory,
and 96 KB SRAM. The MCU was configured to run at its default fre-
quency (84 MHz). The execution time was ascertained utilizing the DWT
timer, characterized by its cycle-level granularity. Given that this mea-
surement approach necessitates adjustments to the DWT registers, we
temporarily suspended the system protection mechanisms pertinent to
these registers exclusively for the purpose of the evaluation. Each work-
load underwent execution across 10,240 iterations.

The primary components of SuM that could influence an applica-
tion’s runtime include the shadow stack, selective masking, CFI, and
exception return protection (ERP). The shadow stack incurs its overhead
mainly due to the insertion of shadow stack push and pop instructions,
along with the change in register allocation caused by the shadow stack
register reservation. The selective masking component also contributes
to the overhead through the insertion of cps instructions. The CFI over-
head predominantly arises from the label check instructions. Lastly, the
ERP imposes overhead due to the backup and restoration of contents
within the exception frame, though its impact is negligible as it is only
activated during exception handling.

Fig. 5 and Fig. 6(a) present the evaluation outcomes. SUM imposes
geomean runtime overhead of 2.77% and 2.63% on BEEBS and Core-
Mark, respectively. To discern the origins of this overhead, we executed

W. Choi, M. Seo, S. Lee et al.

40%
35%
30%
25%
20%
15%
10%

5%

Computers & Security 136 (2024) 103568

®SuM @SuM-SFI OSilhouette |

I I
N < & & 2 @ & & @ & o
IR Y NV SN P S S 4
& & %Q,(\ R ‘0’& 09 & ¢ & 006‘
& 4 X N SN o N
RO F g s
o

Fig. 5. Runtime overhead on BEEBS.

0% |
S F NS &S E
& T & & T
& S & G0 e @ N
mSuM OSuM-SFI DSiIhouettel | mSuM OSuM-SFI OSilhouette
30% 1 30% 1
25% A 25% A
20% A 20% A
15% A 15% -

10% -

5% A

10% A
1 -1 i
0% o

0%

(a) Runtime Overhead (b) Flash Memory Overhead

Fig. 6. Runtime and flash memory overhead on CoreMark.

0SS @SM mCFl @ERP [Config

|||
I

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Flash Memory |

Runtime |

Fig. 7. Constitution of the overhead on BEEBS. SS for Shadow Stack, SM for
Selective Masking, ERP for Exception Return Protection, and Config for Config-
uration.

further analyses on the individual components of SUM within the con-
text of BEEBS. As shown in Fig. 7, the predominant contributors to
this overhead are the incorporation of the shadow stack and the imple-
mentation of selective masking, which are responsible for 1.43% and
0.96% of the overall runtime overhead, respectively. Conversely, ex-
ception return protection imposes negligible runtime overhead, owing
to its activation solely during the exception’s arrival, which is an infre-
quent occurrence.

6.2. Flash memory overhead

In many embedded systems, the overhead of flash memory can be
a crucial factor due to the limited resources of flash memory. Thus,
we calculated the flash memory overhead of SuM for each workload
by dividing the flash memory consumption of the corresponding binary
with that of its corresponding baseline. The size information of each
binary was collected using the size command.

In addition to the components mentioned in Section 6.1, the con-
figuration code of SUM might influence the flash memory usage of an
application. For both the shadow stack and selective masking, the pri-
mary causes of flash memory overhead are similar to those of runtime
overhead, which are shadow stack instructions and CPS instructions in
the .text section. For CFI, the label affixed to each indirect call tar-
get, along with the label-checking instructions, leads to an increase in

the . text section. For ERP, the exception frame backup and restora-
tion instructions contribute to overhead in the .text section, while
the redirection exception vector table contributes to the overhead in
the .rodata section. Lastly, the configuration code adds instructions
to configure the MPU and the DWT into the . text section. It is worth
noting that the overhead incurred by ERP and configuration code is
constant (464 bytes and 174 bytes, respectively).

Fig. 8 and Fig. 6(b) illustrate the flash memory overhead of SUM.
The geomean flash memory overhead for SUM on BEEBS and Core-
Mark is 8.83% and 6.59%, respectively. However, based on the further
studies on the overhead constitution of SUM using BEEBS, our analy-
sis reveals that a significant portion of the overhead can be attributed
to the constant overhead, specifically ERP (0.96%) and configuration
code (2.56%). Concurrently, the shadow stack, selective masking, and
CFI contribute to flash memory overhead of 2.76%, 0.69%, and 1.79%,
respectively. These findings imply that in an embedded system charac-
terized by an extensive code base, the code size overhead will closely
mirror that emanating from the deployment of the shadow stack, selec-
tive masking, and CFI. With the formula defined as:

(1 + NCO) * BaselineSize + CO
BaselineSize

we can forecast the trend of SUM’s flash memory overhead according
to the baseline flash memory consumption, where NCO represents the
non-constant overhead ratio and CO represents the constant overhead
in bytes. For example, for BEEBS, with an NCO of 5.25% (i.e., the sum
of shadow stack, selective masking, and CFI) and a CO of 638 bytes
(i.e., the sum of ERP and configuration code), the result of the formula
—upon integrating a BaselineSize of 2 MB— indicates that the prac-
tical flash memory overhead of SUM is approximately 5.28% for MCUs
equipped with a flash memory capacity of 2 MB or beyond.

6.3. Comparison with SFI

In the absence of an effective intra-address space isolation primitive,
a purely software-based technique known as software fault isolation
(SFI) might be utilized to protect the shadow stack. SFI inserts bit
masking instructions before each store instruction to prohibit access
to the protected region. However, it requires the heavy code instru-
mentation on instructions that do not directly constitute shadow stack
operations. Such code instrumentation incurs additional runtime over-
head and flash memory overhead.

To evaluate the efficiency of shadow stack protection methods, we
devised re-implemented SUM based on SFI and conducted evaluation
with BEEBS. SUM-SFI inserts ORR instruction, which sets the specified
bit location of a register, before each store instruction to prevent the
store from accessing the shadow stack region. Specifically, our board
incorporates a 96 KB SRAM. Within this configuration, SUM-SFI des-
ignates the shadow stack to reside in the initial 64 KB segment of
the SRAM. Subsequent to this allocation, ORR instructions are inserted
to set the 16th bits of the destination address of store instructions.
This mechanism restricts any store operations directed towards the ini-
tial 64 KB segment of the SRAM, effectively protecting the shadow

W. Choi, M. Seo, S. Lee et al.

30%
25%
20%
15%
10%

5%

0%

L& @ ¢ O N .
S & ¥ & & &P & & & &
¥ N F O N
&3 N F & &
3 N @ &
S AN <&

Computers & Security 136 (2024) 103568

[mSuM ©SuM-SFI_OSilhouette |

e)
& S & F & S
R S S @& & 2 &) DN \d
SRR AR & &£ & &
S &S P $
.‘\o’
)

Fig. 8. Flash memory overhead on BEEBS.

stack. Additionally, to ensure normal operations, SUM-SFI must be
configured to accommodate store operations that interface with non-
SRAM regions, encompassing peripheral and system regions. To this
end, SUM-SFI discerns these specific instructions through the utiliza-
tion of backward-slicing techniques (Clements et al., 2017). Following
their identification, these instructions are manipulated with ORR opera-
tions to permit access solely to the designated regions and concurrently
exclude the broader SRAM region (i.e.,0x20000000-0x3FFFFFFF). For
example, for instructions accessing the system region (i.e.,0xE0000000-
OxFFFFFFFF), setting the 30th bit of the destination address should
suffice the requirement. It is imperative to recognize that this does not
epitomize an optimal SFI scheme in the context of memory utilization
— it underutilizes more than half of the available SRAM. This design
was chosen specifically to facilitate the empirical estimation of runtime
and flash memory overhead intrinsic to SFI-based shadow stack protec-
tion mechanisms.

The findings are graphically illustrated in Fig. 5 and Fig. 8. SUM-
SFI manifests pronounced overhead, both in terms of runtime and flash
memory, with respective overheads of 12.12% and 19.9% for BEEBS
and 12.63% and 20.17% for CoreMark. For comparative clarity, when
isolating from the constant overhead components, such as ERP and con-
figuration code, SUM-SFI imposes flash memory overhead of 15.92%
and 17.55% for BEEBS and CoreMark, respectively.

6.4. Comparison with silhouette

To overcome the inefficient SFI-based isolation, Silhouette (Zhou
et al., 2020) proposed its own intra-address space isolation primitive
for ARM MCUs, namely store hardening. Store hardening replaces inse-
cure store instructions with unprivileged store instruction (e.g., STRT)
and configures the MPU to restrict a protected region to be privilege-
accessible. By doing so, only unconverted secure store instructions are
permitted to access the protected region. With store hardening, Silhou-
ette implements a secure shadow stack by only allowing shadow stack
push instructions to manipulate the shadow stack.

Despite the notable reduction in overhead compared to SFI, the store
hardening technique still imposes considerable runtime and flash mem-
ory overhead. While the store hardening technique requires the con-
version of all insecure store instructions, there are various edge cases
where the conversion to an unprivileged store is not obvious. For exam-
ple, unprivileged store instructions cannot manage negative immediate
offsets as well as multiple stores. In such cases, additional fix-up instruc-
tions must be inserted to preserve the original logical flow with the cost
of runtime and flash memory. Moreover, the innate 4-byte size of all
unprivileged store instructions, contrasted with the predominant 2-byte
configuration of regular store instructions, amplifies the flash memory
overhead of Silhouette.

To compare SUM with Silhouette, we acquired the LLVM passes of
Silhouette (Zhou et al., 2021) and ported the passes to our compiler.
Fig. 5 and Fig. 6a exhibit the runtime overhead associated with Sil-
houette, while Fig. 8 and Fig. 6b provide insight into its flash memory
overhead. In this comparative analysis, Silhouette manifests runtime

overhead of 6.97% and 5.37% for BEEBS and CoreMark, respectively,
compared to 2.77% and 2.63% for SUM. Additionally, when consid-
ering flash memory overhead, Silhouette notably exceeds SUM with
metrics of 16.15% and 14.42% for BEEBS and CoreMark, respectively.
Excluding the constant overhead attributed to configuration code, Sil-
houette’s flash memory overhead stands at 15.57% and 13.57% across
the two benchmark suites. It is imperative to note that, in the pursuit of
a fair comparison, our empirical methodologies diverge from the orig-
inal experiments of Silhouette. Specifically, we incorporate the code
instrumentation on standard and HAL libraries, aligning with SuUM’s
threat model, which assumes potential vulnerabilities to memory cor-
ruption across any part of the code.

7. Security analysis

In this section, we demonstrate how SUM ensures the security of the
backward-edge control flow against memory corruption attacks. Specifi-
cally, we elucidate how the shadow stack protection and the SUM-aware
attack mitigation mechanisms obstruct adversaries from manipulating
the control flow of return instructions.

7.1. Return address corruption

Adversaries, particularly those unaware of the system’s protective
mechanisms or only conscious of the existence of the shadow stack, may
attempt to corrupt return addresses in either the stack or the shadow
stack region. SUM thwarts both of these attempts. Conventional buffer
overflow attacks, which typically overwrite return addresses, fail due to
the presence of the shadow stack deployed by SUM. Furthermore, more
sophisticated attempts to directly corrupt the shadow stack also fail, as
none of the store instructions, except for those in the function prologues,
are selectively masked. Thus, any attempt at corruption will result in a
memory permission violation fault, thereby triggering detection.

7.2. Disabling selective masking

The activation of selective masking depends on the configuration
of several security-sensitive system control registers, as summarized in
Table 1. Consequently, in order to disable the selective masking pro-
tection, adversaries must corrupt these critical system control registers.
SUM prevents such attempts by configuring the DWT’s debug registers,
ensuring that any attempt to disable selective masking fails, even when
faced with arbitrary read-write primitives.

7.3. Bypassing selective masking

Without the capability of deactivating the selective masking, the
only approach for adversaries to divert the backward-edge control flow
under SUM is to bypass the protection. This bypassing could be achieved
either by relocating the shadow stack with r8 manipulation or by
exploiting the existing selectively masked store instructions—whether
they were intended or not—to corrupt the protected shadow stack.

W. Choi, M. Seo, S. Lee et al.

The relocation of the shadow stack requires gadgets to manipulate
r8. However, since r8 is reserved during the compilation process, any
intended instructions manipulating r8 are not produced except the in-
structions that we explicitly added for the shadow stack. Further, any
unintended instructions manipulating r8 cannot be reached due to the
SuM’s protection applied to indirect calls and indirect jumps (Sec-
tion 4.4.3). Also, note that the recurrent utilization of epilogues to pop
return addresses not initially generated by prologues is proscribed. This
restriction is imposed because function prologues invariably dominate
all intra-function codes, encompassing the function epilogues. Addition-
ally, SUM’s indirect jump protection inherently precludes any indirect
jumps that target locations outside the intended functions.

Regardless of the approach, to exploit existing selectively masked
store instructions, adversaries must 1) divert the control flow towards
the store instruction and 2) gain control of the register that the store
instruction employs, which is 1r for intended ones. Thwarting either
of these conditions can prevent such bypass attempts. However, any at-
tempt to exploit unintended selectively masked store instructions is des-
tined to fail because the first prerequisite condition cannot be fulfilled.
While the only remaining control data for control flow diversion are
exception frames and indirect call/jump pointers, the exception return
protection of SUM effectively prevents its misuse through the backup-
and-restoring mechanism. Additionally, in the case of the abuse of in-
direct call/jump pointers misuse, the label-based CFI and table-based
jump conversion ensure that the execution flow could only branch to
function prologues or valid jump targets within the function, but not to
any unintended instructions.

Moreover, attempts to corrupt the shadow stack based on intended
selectively masked stores are also unlikely to succeed due to both the
unattainable first and second conditions. First, indirect jumps cannot
be abused due to the first condition, as the selectively masked store
instructions only exist within function prologues, which are not valid
jump targets. Nevertheless, although it is exceedingly complex, the first
condition could potentially be met during an attempt to abuse the ex-
ception frame. This is because exceptions can occur asynchronously at
any point in the program, including function prologues. However, ful-
filling the second condition is impossible because the 1r register within
the exception frame is safeguarded with SUM’s exception return pro-
tection. Also, attempt to misuse indirect calls fail due to the second
condition, as the indirect call itself replaces the 1r register with the
address of call-site.

8. Discussion

While the primary focus of this study pertains to bare-metal embed-
ded systems, it is worth noting that the strategies and methods outlined
herein could be suitably extended to accommodate OS-based embed-
ded systems. These systems would require only modest adaptations in
terms of the SUM runtime and the relevant operating system (OS). The
following delineates the necessary modifications:

Extended Exception Return Protection. In contrast to bare-metal em-
bedded systems, OS-based embedded systems deploy a separate stack
for handling exceptions, which facilitates the implementation of con-
text switching. Essentially, two distinct stacks are utilized: one for
exception-mode stack and another for thread-mode stack, with the
choice between them contingent on the current execution mode.
However, this arrangement presents a challenge in locating the ex-
ception frames warranting protection. The issue arises due to the
nested exceptions supported by ARM architecture, whereby an ex-
ception frame can be engendered either on the exception handler
stack or the normal stack, depending on the point of preemption.
As a result, a minor adaptation to the exception dispatcher is nec-
essary to identify and locate the previous exception frame accu-
rately.

Computers & Security 136 (2024) 103568

Shadow Stack Switching. In OS-based embedded systems, wherein
multiple tasks coexist, each task needs to deploy its own shadow
stack. Therefore, the operating system requires a mechanism sim-
ilar to the regular thread-mode stack switching conducted during
context switching. This necessitates the appropriate adaption of the
context switching routine. A crucial aspect to consider is that the
current shadow stack during context switching contains return ad-
dresses that remain to be consumed. Consequently, the operation
of switching the actual shadow stack pointer must be deferred un-
til the exception returns to the context that underwent the context
switch.

Shadow Stack Pointer Storage. Given the utilization of multiple
shadow stacks, it is an inevitable consequence that inactive shadow
stack pointers will be stored in memory during shadow stack switch-
ing. To ensure the integrity of these pointers, a robust storage mech-
anism is essential. In this context, selective masking can be de-
ployed to protect the shadow stack pointers, utilizing a strategy
similar to SUM’s protection of the shadow stack. In other words,
SUM could be extended to define an additional protected region for
shadow stack pointers and authorize shadow stack switching instruc-
tions.

Further Securing System Registers. In contrast to bare-metal embedded
systems, where concurrency of multiple tasks can lead to potential syn-
chronization issues, there is a requisite need for implementing exception
masking as a safeguard against race conditions. However, without any
consideration on the protection of SUM, DWT exceptions might also be
blocked, thus allowing attackers to manipulate security-sensitive sys-
tem registers (e.g., MPU). Thus, instructions to completely mask all
exceptions (i.e., CPSID I) must be converted to partial exception mask-
ing instructions (i.e., MSR BASEPRI, reg) to prevent DWT exceptions
from being suppressed under any circumstance unless the instructions
to be executed are verified carefully to not break the protection of
SuM.

Controlling MPU. While it may not be a common case for current
practice, there could be security-sensitive OS-based embedded systems
requiring MPU-based compartmentalization of tasks. Considering such
cases, extending SUM to support MPU switching emerges as a pertinent
avenue for future exploration. For that, exception masking may be used
to temporarily disable DWT and allow manipulation of MPU. However,
it is imperative to verify the manipulation code to ensure that it does
not alter the MPU regions under SUM’s management.

9. Related works

A variety of shadow stack mechanisms has been proposed to ensure
the integrity of return addresses with their respective runtime integrity
guarantee for the security metadata (e.g., shadow stack). In the follow-
ing, we first elaborate on closely related work on embedded systems
and its limitations, paying particular attention to how to guarantee
the integrity of its security metadata. Furthermore, we briefly outline
other related works for high-end processors, such as x86-64 and ARM
Cortex-A.

9.1. Backward-edge protection for MCUs

Information Hiding. EPOXY (Clements et al., 2017) realizes a safe stack
mechanism (Kuznetsov et al., 2014) that divides the traditional stack
into the safe stack and unsafe stack. Specifically, it separates stack
objects into two groups: safe objects (e.g., benign local variables, re-
turn address), which are placed in the safe stack; and unsafe objects
(e.g., address-taken variables, buffers), which are placed in the unsafe
stack.

W. Choi, M. Seo, S. Lee et al.

To raise the bar against memory errors, EPOXY randomizes its lo-
cation within the global data segment (placed in the SRAM area).
However, it still leaves the safe stack open to memory corruption
attacks because such a randomized address is determined at the
compile-time; and moreover, the randomization relies on a few kilo-
bytes of the SRAM, which is insufficient to thwart information leak-
age attacks (Evans et al., 2015; Oikonomopoulos et al., 2016; Gaw-
lik et al.,, 2016), much less brute force attacks (Shacham et al.,
2004).

Coarse-grained CFI. BackFlow (Bresch et al., 2020) suggests a bitmap-
based, coarse-grained CFI technique to enforce that all backward
edges return only to call-preceded instructions. Specifically, Back-
Flow creates a bitmap that is used to mark the bits representing the
prior call-sites, and uses it to check at runtime whether the desti-
nation of return addresses is preceded by the call instruction. How-
ever, this approach provides no protection for bitmap against mem-
ory corruption attacks. Also, it is too coarse-grained to prevent CFI
bypass attacks (Carlini and Wagner, 2014; Goktas et al., 2014; Davi
et al.,, 2014), e.g., stitching an ROP chain with call-preceded gad-
gets.

ARM TrustZone-M. Since ARMv8 Cortex-M, ARM introduced Trust-
Zone-M (Yiu, 2015), a lightweight version of TrustZone, which was
previously only supported on high-end Cortex-A processors. No-
tably, it has an extremely fast world-switching mechanism, which
takes around 4 cycles. Based on this finding, TZmCFI (Kawada
et al,, 2021) and CFI CaRE (Nyman et al., 2017) implement and
protect a shadow stack based on TrustZone-M. In other words,
the shadow stack is placed in the secure world, which is sepa-
rated from the non-secure world where normal applications run. The
TrustZone-based isolation protects the shadow stack against all types of
unauthorized access from the non-secure world and hence achieves
strong backward-edge control flow protection. However, only the
ARMvVS8-M architectures support TrustZone-M, whereas the Fault-
Mask hardware feature is supported by both ARMv7-M and ARMv8-M
MCUs.

Unprivileged Instruction. Closest related to our work, Silhouette (Zhou
et al, 2020) and Kage (Du et al, 2022) introduce an efficient
intra-address space isolation technique through the store harden-
ing technique and make use of it to protect the shadow stack.
The store hardening technique is based on unprivileged store in-
structions, which perform memory write operations regardless of
the current privilege level as if it were unprivileged. Specifically,
they transform all store instructions except shadow stack instruc-
tions into unprivileged store instructions (e.g., strt), while config-
uring the shadow stack to be only accessible in the privileged mode
using the MPU. In the end, since the attack is forced to launch
memory corruption attacks against the shadow stack with unprivi-
leged store instructions, the integrity of the shadow stack mapped
as privileged is guaranteed. However, both of them rely on heavy
code instrumentation, thus incurring non-trivial performance over-
head.

Register Encoding. uRAI (Almakhdhub et al., 2020) achieves a back-
ward-edge control flow protection using a state register, which en-
codes the current execution path. uRAI encodes the path informa-
tion for each function call in the 1r register. Then, for each return,
the return target is identified based on the path information in the
1r register using Function Lookup Tables (FLTs), which consist of
return addresses indexed with the encoded path information. While
the approach is safe from memory corruption, given the 1r register
is not spilled, it incurs non-negligible code size overhead for storing
FLTs.

10

Computers & Security 136 (2024) 103568
9.2. Backward-edge protection for general-purpose CPUs

Contrary to MCUs, general-purpose processors are commonly
equipped with various kinds of hardware features that can be employed
or repurposed for security. As a result, numerous hardware-assisted re-
searches have been proposed to design and implement efficient and
effective back-edge protection. Here, we discuss these existing works
on general-purpose systems.

Information Hiding. Since the memory management unit (MMU) on
general-purpose CPUs supports the huge virtual address space, ran-
domization could be a practical defense against memory corruption
attacks. CPI (Kuznetsov et al., 2014) proposes a control flow hijack-
ing mitigation by protecting the integrity of code pointers. In the
course of that, CPI employs a safe stack, a lightweight variant of
shadow stack, and protects it with randomization. However, recent in-
formation disclosure attacks (Goktas et al., 2016; Oikonomopoulos et
al., 2016; Gawlik et al., 2016) demonstrate that randomization-based
approaches do not offer sufficient protection. To remedy this prob-
lem, Zieris and Horsch (2018) propose a leakage-resilient safe stack
to counteract these information disclosure attacks. Such attacks dras-
tically reduce the randomization entropy available for the shadow
stack through thread/stack spraying (Goktas et al., 2016) and mem-
ory oracles (Oikonomopoulos et al., 2016). To prevent such entropy
reduction, the authors analyzed the behavior of these attacks and the
design flaws of existing techniques (e.g., structural flaws, oversized
stack, etc.). Based on this analysis, they provided a set of counter-
measures, such as a dedicated memory pool and a minimized shadow
stack.

Domain-based Memory Isolation. Modern processors generally provide
domain-based memory protection primitives such as Intel MPK (Pro-
gramming Guide, 2011) and ARM DACR (ARM, 2021)). ERIM (Vahldiek-
Oberwagner et al., 2019) implements an in-process isolation framework
using Intel MPK. It shows how sensitive user data can be protected ef-
fectively based on its fast domain switching. Moreover, it presents the
usage of such a technique for an integrity-protected shadow stack im-
plementation. Similar to ERIM, IskiOS (Gravani et al., 2021) retrofits
the ERIM’s protection into the kernel; it adapts Intel MPK, which
is originally designed only for user use, to be leveraged in the ker-
nel space by configuring kernel pages as user-mode pages. As in
ERIM, it showcases the shadow stack integrity guarantee based on
it.

User Page Protection. To mitigate ret2usr attacks (Kemerlis et al.,
2014), most contemporary processors provide user page access preven-
tion primitives (e.g., Intel SMAP (Intel, 2016) and ARM PAN (ARM,
2021)). ILDI (Cho et al., 2017) builds a kernel space memory isola-
tion primitive based on ARM PAN and Load and Store Unprivileged
(LSU) instructions. Based on this primitive, it demonstrates its use-
fulness by building an integrity-protected shadow stack in the kernel
space. In a similar manner, SEIMI (Wang et al., 2020) proposes an in-
process memory isolation scheme using Intel SMAP. To be more precise,
it first escalates user processes to the privileged mode and configures
sensitive memory as user-mode pages, thus preventing any access to
the user-mode pages without turning off the SMAP protection. More-
over, the authors suggested shadow stack protection as one of its best
use.

10. Conclusion

This paper introduces SUM, which offers an efficient and secure
backward-edge control flow protection technique for ARM Cortex-M
processors. SuM deploys a non-bypassable shadow stack and efficiently
protects its integrity via selective masking—a novel intra-address space
isolation primitive that uses a unique combination of an MPU and
FaultMask. We implemented SUM based on the LLVM compiler frame-
work and evaluated the prototype of SUM on the BEEBS and CoreMark

W. Choi, M. Seo, S. Lee et al.

benchmark suites. The evaluation shows that SUM manifests low-
runtime overhead of less than 3% on both of the benchmark suites.
Additionally, even though SUM incurs 8.83% and 6.59% code size over-
head on BEEBS and CoreMark, respectively, this overhead is anticipated
to be much lower in practice. Consequently, SUM is anticipated to serve
as a pragmatic method for backward-edge control flow protection in
embedded systems.

CRediT authorship contribution statement

Wonwoo Choi: Conceptualization, Software, Writing — original
draft. Minjae Seo: Investigation, Writing — review & editing. Seong-
man Lee: Investigation, Writing — review & editing. Brent Byunghoon
Kang: Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Computers & Security 136 (2024) 103568

Data availability

Data will be made available on request.

Acknowledgement

This work was supported by the National Research Foundation of
Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-
2020R1A2C2101134).

Appendix A. Evaluation results

This section consists of evaluation results with detailed measure-
ments (see Tables A.1-A.5). For Table A.5, the values represent the
increment in the flash memory consumption from the corresponding
component, whereas the values in Table A.4 and Table A.1(b) show the
total flash memory consumption with the corresponding protection ap-
plied.

Table A.1
Runtime and flash memory overhead of SUM, SUM-SFI, and Silhouette on the CoreMark benchmark suite.
Workload Baseline (ms) SuM (ms) Silhouette (ms) SFI (ms)
CoreMark 54884.48 56326.51 2.63% 57833.41 5.37% 61813.81 12.63%

(a) Runtime Overhead

11

Workload Baseline (bytes) SuM (bytes) Silhouette (bytes) Silhouette-without-const (bytes) SFI (bytes) SFI-without-const (bytes)
CoreMark 26508 28254 6.59% 30330 14.42% 30104 13.57% 31854 20.17% 31160 17.55%
(b) Flash Memory Overhead
Table A.2
Runtime overhead of SUM, SUM-SFI, and Silhouette on the BEEBS benchmark suite.

Workload Baseline (ms) SuM (ms) Silhouette (ms) SFI (ms)

bubblesort 5902.53 5902.74 0.00% 7354.87 24.61% 7707.79 30.58%
ctl-string 1195.02 1200.80 0.48% 1230.92 3.00% 1213.52 1.55%
cubic 58638.90 60293.60 2.82% 63838.17 8.87% 60348.30 2.92%
dijkstra 75488.38 79840.89 5.77% 78172.04 3.56% 87081.29 15.36%
edn 3617.72 3694.37 2.12% 3715.44 2.70% 4123.39 13.98%
fasta 35077.26 35086.36 0.03% 35081.26 0.01% 35092.55 0.04%
fir 23975.98 23987.36 0.05% 23932.86 -0.18% 24928.13 3.97%
frac 11444.64 12225.53 6.82% 13202.32 15.36% 12140.56 6.08%
huffbench 33988.26 35190.06 3.54% 36874.03 8.49% 40077.80 17.92%
levenshtein 6122.72 6280.78 2.58% 7355.09 20.13% 7088.24 15.77%
matmult-int 4948.82 4999.86 1.03% 5092.17 2.90% 5456.74 10.26%
nbody 231309.90 236593.11 2.28% 243944.65 5.46% 236557.81 2.27%
ndes 3346.92 3388.29 1.24% 3398.58 1.54% 3446.27 2.97%
nettle-aes 7931.83 8374.45 5.58% 8001.22 0.87% 9456.42 19.22%
picojpeg 73217.46 75890.91 3.65% 80628.35 10.12% 95497.64 30.43%
qrduino 78783.96 80205.18 1.80% 81849.46 3.89% 85413.61 8.41%
rijndael 73759.36 74287.88 0.72% 76548.22 3.78% 87680.80 18.87%
sglib-dllist 2669.85 2737.83 2.55% 2676.32 0.24% 3223.43 20.73%
sglib-listinsertsort ~ 2795.66 2796.64 0.03% 2769.99 -0.92% 2906.54 3.97%
sglib-listsort 2231.70 2222.32 -0.42% 2228.00 -0.17% 2568.90 15.11%
sglib-queue 1974.20 2026.47 2.65% 2344.05 18.73% 2635.57 33.50%
sglib-rbtree 8968.64 9385.30 4.65% 10245.81 14.24% 10064.17 12.22%
slre 4250.94 4476.39 5.30% 4654.65 9.50% 4908.56 15.47%
sqrt 64131.32 67015.80 4.50% 70938.34 10.61% 66992.79 4.46%
st 38996.77 40161.01 2.99% 42336.03 8.56% 40192.91 3.07%
stb_perlin 5497.29 5545.72 0.88% 5474.60 -0.41% 5589.44 1.68%
trio-sscanf 1233.80 1335.67 8.26% 1361.72 10.37% 1516.36 22.90%
whetstone 222884.98 229147.73 2.81% 243126.81 9.08% 228731.19 2.62%
wikisort 197747.08 210506.50 6.45% 223322.53 12.93% 251378.03 27.12%
GEOMEAN 2.77% 6.97% 12.12%
MIN -0.42% -0.92% 0.04%
MAX 8.26% 24.61% 33.50%

W. Choi, M. Seo, S. Lee et al. Computers & Security 136 (2024) 103568

Table A.3
Runtime overhead of the individual components of SUM on the BEEBS benchmark suite.

Workload Baseline (ms) Shadow Stack (ms) Selective Masking (ms) CFI (ms)

bubblesort 5902.53 5902.50 0.00% 5902.90 0.01% 5902.53 0.00%
ctl-string 1195.02 1192.87 -0.18% 1203.20 0.68% 1195.02 0.00%
cubic 58638.90 58825.87 0.32% 60057.75 2.42% 58469.12 -0.29%
dijkstra 75488.38 79803.80 5.72% 75525.71 0.05% 75490.01 0.00%
edn 3617.72 3693.64 2.10% 3618.49 0.02% 3617.81 0.00%
fasta 35077.26 35086.34 0.03% 35077.26 0.00% 35077.27 0.00%
fir 23975.98 23987.37 0.05% 23975.98 0.00% 23975.98 0.00%
frac 11444.64 11568.74 1.08% 11969.34 4.58% 11486.36 0.36%
huffbench 33988.26 35190.09 3.54% 33989.39 0.00% 33988.97 0.00%
levenshtein 6122.72 6268.52 2.38% 6132.17 0.15% 6122.55 0.00%
matmult-int 4948.82 4999.47 1.02% 4949.23 0.01% 4948.84 0.00%
nbody 231309.90 232370.21 0.46% 233507.54 0.95% 233386.12 0.90%
ndes 3346.92 3376.54 0.88% 3359.88 0.39% 3347.22 0.01%
nettle-aes 7931.83 8373.51 5.57% 7933.91 0.03% 7935.32 0.04%
picojpeg 73217.46 75227.83 2.75% 74151.81 1.28% 73227.80 0.01%
qrduino 78783.96 80190.19 1.78% 78794.52 0.01% 78784.19 0.00%
rijndael 73759.36 74225.86 0.63% 73853.50 0.13% 73760.35 0.00%
sglib-dllist 2669.85 2735.65 2.46% 2667.82 -0.08% 2669.65 -0.01%
sglib-listinsertsort ~ 2795.66 2796.64 0.03% 2795.66 0.00% 2795.66 0.00%
sglib-listsort 2231.70 2222.32 -0.42% 2231.70 0.00% 2231.70 0.00%
sglib-queue 1974.20 2026.10 2.63% 1974.42 0.01% 1974.33 0.01%
sglib-rbtree 8968.64 9075.30 1.19% 9278.27 3.45% 8968.64 0.00%
slre 4250.94 4367.56 2.74% 4366.25 2.71% 4261.29 0.24%
sqrt 64131.32 65331.67 1.87% 66275.99 3.34% 64548.63 0.65%
st 38996.77 39127.81 0.34% 39717.92 1.85% 38993.57 -0.01%
stb_perlin 5497.29 5499.83 0.05% 5536.89 0.72% 5492.96 -0.08%
trio-sscanf 1233.80 1247.71 1.13% 1248.03 1.15% 1307.49 5.97%
whetstone 222884.98 223088.53 0.09% 227358.98 2.01% 223053.78 0.08%
wikisort 197747.08 201075.26 1.68% 201919.16 2.11% 202976.02 2.64%
GEOMEAN 1.43% 0.96% 0.36%
MIN -0.42% -0.08% -0.29%
MAX 5.72% 4.58% 5.97%

Table A.4
Flash memory overhead of SUM, SUM-SFI, and Silhouette on the BEEBS benchmark suite.

Workload Baseline (bytes) SuM (bytes) Silhouette (bytes) Silhouette-without-const (bytes) SFI (bytes) SFI-without-const (bytes)
bubblesort 14316 15794 10.32% 17006 18.79% 16900 18.05% 17670 23.43% 16948 18.39%
ctl-string 16056 17682 10.13% 18706 16.50% 18600 15.84% 19198 19.57% 18476 15.07%
cubic 40252 42470 5.51% 45254 12.43% 45148 12.16% 44866 11.46% 44144 9.67%
dijkstra 14820 16318 10.11% 17442 17.69% 17336 16.98% 18214 22.90% 17492 18.03%
edn 17496 18990 8.54% 19958 14.07% 19852 13.47% 20782 18.78% 20060 14.65%
fasta 13876 15354 10.65% 16166 16.50% 16060 15.74% 16738 20.63% 16016 15.42%
fir 16268 17706 8.84% 18498 13.71% 18392 13.06% 19054 17.13% 18332 12.69%
frac 16664 18346 10.09% 19618 17.73% 19512 17.09% 19798 18.81% 19076 14.47%
huffbench 17320 18922 9.25% 20490 18.30% 20384 17.69% 21694 25.25% 20972 21.09%
levenshtein 14616 16134 10.39% 18130 24.04% 18024 23.32% 17806 21.83% 17084 16.89%
matmult-int 16072 17554 9.22% 18458 14.85% 18352 14.19% 19102 18.85% 18380 14.36%
nbody 20264 21938 8.26% 23338 15.17% 23232 14.65% 23502 15.98% 22780 12.42%
ndes 17836 19346 8.47% 20794 16.58% 20688 15.99% 21270 19.25% 20548 15.21%
nettle-aes 25572 27146 6.16% 27966 9.36% 27860 8.95% 28766 12.49% 28044 9.67%
picojpeg 28672 30302 5.68% 33878 18.16% 33772 17.79% 36142 26.05% 35420 23.54%
qrduino 30480 31878 4.59% 35430 16.24% 35324 15.89% 36778 20.66% 36056 18.29%
rijndael 27208 29018 6.65% 30326 11.46% 30220 11.07% 32246 18.52% 31524 15.86%
sglib-dllist 14320 15870 10.82% 16638 16.19% 16532 15.45% 17446 21.83% 16724 16.79%
sglib-listinsertsort 13744 15210 10.67% 15974 16.23% 15868 15.45% 16570 20.56% 15848 15.31%
sglib-listsort 14096 15558 10.37% 16370 16.13% 16264 15.38% 17062 21.04% 16340 15.92%
sglib-queue 14844 16314 9.90% 17662 18.98% 17556 18.27% 18926 27.50% 18204 22.64%
sglib-rbtree 14292 15822 10.71% 16818 17.67% 16712 16.93% 17494 22.40% 16772 17.35%
slre 16986 18504 8.94% 19648 15.67% 19542 15.05% 20408 20.15% 19686 15.90%
sqrt 15628 17222 10.20% 18246 16.75% 18140 16.07% 18554 18.72% 17832 14.10%
st 21732 23446 7.89% 24790 14.07% 24684 13.58% 25058 15.30% 24336 11.98%
stb_perlin 19084 20706 8.50% 21806 14.26% 21700 13.71% 22058 15.58% 21336 11.80%
trio-sscanf 19024 21486 12.94% 22882 20.28% 22776 19.72% 24122 26.80% 23400 23.00%
whetstone 39080 41258 5.57% 44210 13.13% 44104 12.86% 43734 11.91% 43012 10.06%
wikisort 26380 28270 7.16% 31222 18.35% 31116 17.95% 33170 25.74% 32448 23.00%
GEOMEAN 8.83% 16.15% 15.57% 19.90% 15.92%
MIN 4.59% 9.36% 8.95% 11.46% 9.67%
MAX 12.94% 24.04% 23.32% 27.50% 23.54%

12

W. Choi, M. Seo, S. Lee et al.

Table A.5

Computers & Security 136 (2024) 103568

Flash memory overhead of the individual components of SUM on the BEEBS benchmark suite. In this table, the bytes represent
the flash memory consumption increment due to each component.

Workload Shadow Stack (bytes) Selective Masking (bytes) CFI (bytes) Configuration (bytes) ERP (bytes)

bubblesort 424 2.96% 116 0.81% 284 1.98% 174 1.22% 464 3.24%
ctl-string 520 3.24% 128 0.80% 324 2.02% 174 1.08% 464 2.89%
cubic 1000 2.48% 200 0.50% 404 1.00% 174 0.43% 464 1.15%
dijkstra 440 2.97% 120 0.81% 284 1.92% 174 1.17% 464 3.13%
edn 432 2.47% 116 0.66% 292 1.67% 174 0.99% 464 2.65%
fasta 428 3.08% 112 0.81% 284 2.05% 174 1.25% 464 3.34%
fir 388 2.39% 112 0.69% 284 1.75% 174 1.07% 464 2.85%
frac 576 3.46% 152 0.91% 324 1.94% 174 1.04% 464 2.78%
huffbench 548 3.16% 120 0.69% 296 1.71% 174 1.00% 464 2.68%
levenshtein 464 3.17% 116 0.79% 284 1.94% 174 1.19% 464 3.17%
matmult-int 428 2.66% 116 0.72% 284 1.77% 174 1.08% 464 2.89%
nbody 580 2.86% 128 0.63% 312 1.54% 174 0.86% 464 2.29%
ndes 452 2.53% 120 0.67% 284 1.59% 174 0.98% 464 2.60%
nettle-aes 520 2.03% 116 0.45% 284 1.11% 174 0.68% 464 1.81%
picojpeg 528 1.84% 156 0.54% 292 1.02% 174 0.61% 464 1.62%
qrduino 316 1.04% 132 0.43% 296 0.97% 174 0.57% 464 1.52%
rijndael 748 2.75% 128 0.47% 296 1.09% 174 0.64% 464 1.71%
sglib-dllist 500 3.49% 112 0.78% 284 1.98% 174 1.22% 464 3.24%
sglib-listinsertsort 416 3.03% 112 0.81% 284 2.07% 174 1.27% 464 3.38%
sglib-listsort 412 2.92% 112 0.79% 284 2.01% 174 1.23% 464 3.29%
sglib-queue 420 2.83% 112 0.75% 284 191% 174 1.17% 464 3.13%
sglib-rbtree 436 3.05% 120 0.84% 320 2.24% 174 1.22% 464 3.25%
slre 456 2.68% 124 0.73% 284 1.67% 174 1.02% 464 2.73%
sqrt 508 3.25% 136 0.87% 312 2.00% 174 1.11% 464 2.97%
st 612 2.82% 136 0.63% 320 1.47% 174 0.80% 464 2.14%
stb_perlin 524 2.75% 132 0.69% 312 1.63% 174 0.91% 464 2.43%
trio-sscanf 612 3.22% 140 0.74% 1040 5.47% 174 0.91% 464 2.44%
whetstone 944 2.42% 212 0.54% 424 1.08% 174 0.45% 464 1.19%
wikisort 688 2.61% 144 0.55% 388 1.47% 174 0.66% 464 1.76%
GEOMEAN 2.76% 0.69% 1.79% 0.96% 2.56%
MIN 1.04% 0.43% 0.97% 0.43% 1.15%
MAX 3.49% 0.91% 5.47% 1.27% 3.38%

References

Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J., 2005. Control-flow integrity. In: Proceed-
ings of the 12th ACM Conference on Computer and Communications Security (CCS).

Abbasi, A., Wetzels, J., Holz, T., Etalle, S., 2019. Challenges in designing exploit mitiga-
tions for deeply embedded systems. In: IEEE European Symposium on Security and
Privacy (EuroS&P).

Almakhdhub, N.S., Clements, A.A., Bagchi, S., Payer, M., 2020. 4RAL securing embedded
systems with return address integrity. In: Network and Distributed Systems Security
Symposium (NDSS).

ARM, 2006. ARMv7-M architecture reference manual. https://developer.arm.com/
documentation/ddi0403/latest/.

ARM, 2016. ARMv8-M architecture reference manual. https://developer.arm.com/
documentation/ddi0553/latest.

ARM, 2021. ARM ARMv8-A architecture registers.
documentation/ddi0595/2021-03/.

Bresch, C., Lysecky, R., Hély, D., 2020. BackFlow: backward edge control flow enforce-
ment for low end ARM microcontrollers. In: Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE.

Burow, N., Zhang, X., Payer, M., 2019. SoK: shining light on shadow stacks. In: IEEE
Symposium on Security and Privacy (S&P).

Carlini, N., Wagner, D., 2014. ROP is still dangerous: breaking modern defenses. In: 23rd
USENIX Security Symposium (USENIX Security).

Carlini, N., Barresi, A., Payer, M., Wagner, D., Gross, T.R., 2015. Control-flow bending:
on the effectiveness of control-flow integrity. In: 24th USENIX Security Symposium
(USENIX Security).

Chen, S., Xu, J., Sezer, E.C., Gauriar, P., Iyer, R.K., 2005. Non-control-data attacks are
realistic threats. In: 14th USENIX Security Symposium (USENIX Security).

Cho, Y., Kwon, D., Paek, Y., 2017. Instruction-level data isolation for the kernel on ARM.
In: Proceedings of the 54th Annual Design Automation Conference (DAC).

Clements, A.A., Almakhdhub, N.S., Saab, K.S., Srivastava, P., Koo, J., Bagchi, S., Payer,
M., 2017. Protecting bare-metal embedded systems with privilege overlays. In: Sym-
posium on Security and Privacy (S&P). IEEE.

Dang, T.H., Maniatis, P., Wagner, D., 2015. The performance cost of shadow stacks and
stack canaries. In: Proceedings of the 10th ACM Symposium on Information, Com-
puter and Communications Security (ASIACCS).

Davi, L., Sadeghi, A.-R., Lehmann, D., Monrose, F., 2014. Stitching the gadgets: on the
ineffectiveness of coarse-grained control-flow integrity protection. In: 23rd USENIX
Security Symposium (USENIX Security).

https://developer.arm.com/

13

Ding, R., Qian, C., Song, C., Harris, B., Kim, T., Lee, W., 2017. Efficient protection of path-
sensitive control security. In: 26th USENIX Security Symposium (USENIX Security
17).

Du, Y., Shen, Z., Dharsee, K., Zhou, J., Walls, R.J., Criswell, J., 2022. Holistic control-
flow protection on real-time embedded systems with Kage. In: 31st USENIX Security
Symposium (USENIX Security 22).

EEMBC CoreMark - industry-standard benchmarks for embedded systems. http://www.
eembc.org/coremark.

Evans, ., Fingeret, S., Gonzalez, J., Otgonbaatar, U., Tang, T., Shrobe, H., Sidiroglou-
Douskos, S., Rinard, M., Okhravi, H., 2015. Missing the point(er): on the effectiveness
of code pointer integrity. In: IEEE Symposium on Security and Privacy (S&P).

Frassetto, T., Jauernig, P., Liebchen, C., Sadeghi, A.-R., 2018. IMIX: in-process memory
isolation extension. In: 27th USENIX Security Symposium (USENIX Security).

Gawlik, R., Kollenda, B., Koppe, P., Garmany, B., Holz, T., 2016. Enabling client-side
crash-resistance to overcome diversification and information hiding. In: Network and
Distributed Systems Security Symposium (NDSS).

Goktas, E., Athanasopoulos, E., Bos, H., Portokalidis, G., 2014. Out of control: overcoming
control-flow integrity. In: IEEE Symposium on Security and Privacy (S&P).

Goktas, E., Athanasopoulos, E., Polychronakis, M., Bos, H., Portokalidis, G., 2014. Size
does matter: why using gadget-chain length to prevent code-reuse attacks is hard. In:
23rd USENIX Security Symposium (USENIX Security).

Goktas, E., Gawlik, R., Kollenda, B., Athanasopoulos, E., Portokalidis, G., Giuffrida, C.,
Bos, H., 2016. Undermining information hiding (and what to do about it). In: 25th
USENIX Security Symposium (USENIX Security).

Gravani, S., Hedayati, M., Criswell, J., Scott, M.L., 2021. Fast intra-kernel isolation and se-
curity with IskiOS. In: Proceedings of the 24th International Symposium on Research
in Attacks, Intrusions and Defenses (RAID).

Hedayati, M., Gravani, S., Johnson, E., Criswell, J., Scott, M.L., Shen, K., Marty, M., 2019.
Hodor: intra-process isolation for high-throughput data plane libraries. In: USENIX
Annual Technical Conference (USENIX ATC).

Hu, H., Qian, C., Yagemann, C., Chung, S.P.H., Harris, W.R., Kim, T., Lee, W., 2018.
Enforcing unique code target property for control-flow integrity. In: Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security (CCS).

Intel, 2016. Intel 64 and Ia-32 architectures software developer’s manual. https://
www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-
architectures-software-developer-vol-1-manual.pdf.

Ismail, M., Yom, J., Jelesnianski, C., Jang, Y., Min Vip, C., 2021. Safeguard value invariant
property for thwarting critical memory corruption attacks. In: Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications Security (CCS).

http://refhub.elsevier.com/S0167-4048(23)00478-9/bib89C7B73216A7536893B3441E0897210Cs1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib89C7B73216A7536893B3441E0897210Cs1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib693E11248C90F2C3271AA216C517B8A6s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib693E11248C90F2C3271AA216C517B8A6s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib693E11248C90F2C3271AA216C517B8A6s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibCBBD0C00F487A2AAB54F27E9B2696683s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibCBBD0C00F487A2AAB54F27E9B2696683s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibCBBD0C00F487A2AAB54F27E9B2696683s1
https://developer.arm.com/documentation/ddi0403/latest/
https://developer.arm.com/documentation/ddi0403/latest/
https://developer.arm.com/documentation/ddi0553/latest
https://developer.arm.com/documentation/ddi0553/latest
https://developer.arm.com/documentation/ddi0595/2021-03/
https://developer.arm.com/documentation/ddi0595/2021-03/
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib165311D3A9BED1F815EF157FF9E6EE62s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib165311D3A9BED1F815EF157FF9E6EE62s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib165311D3A9BED1F815EF157FF9E6EE62s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib7842E330EBFC0FD596FCDEDDCEECAEC8s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib7842E330EBFC0FD596FCDEDDCEECAEC8s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib0AE15C63ACD55ECB93AAF9234E0FDFD9s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib0AE15C63ACD55ECB93AAF9234E0FDFD9s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib3843A054ABF82357C4618E51F0C448B7s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib3843A054ABF82357C4618E51F0C448B7s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib3843A054ABF82357C4618E51F0C448B7s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib8FC108251F27EAE7BFDA02FA43A4FD8As1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib8FC108251F27EAE7BFDA02FA43A4FD8As1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib7C88B6561F4DB079E737A29DF5A85AA1s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib7C88B6561F4DB079E737A29DF5A85AA1s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib0966008D3708AA0DA722C5F8C8A0C555s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib0966008D3708AA0DA722C5F8C8A0C555s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib0966008D3708AA0DA722C5F8C8A0C555s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib3E5C2AABF65313DB9BC5AE7C2E0EAF86s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib3E5C2AABF65313DB9BC5AE7C2E0EAF86s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib3E5C2AABF65313DB9BC5AE7C2E0EAF86s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibAE3BFAA6CCBF58E396CE2041417897E8s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibAE3BFAA6CCBF58E396CE2041417897E8s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibAE3BFAA6CCBF58E396CE2041417897E8s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib439912832D7E3CB01CF138679312E9EFs1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib439912832D7E3CB01CF138679312E9EFs1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib439912832D7E3CB01CF138679312E9EFs1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibCAFE0EF0ADDF0AE55A3A8844DFED423Ds1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibCAFE0EF0ADDF0AE55A3A8844DFED423Ds1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibCAFE0EF0ADDF0AE55A3A8844DFED423Ds1
http://www.eembc.org/coremark
http://www.eembc.org/coremark
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibF6EEFA2061F4F9280D03D629156C2F8Fs1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibF6EEFA2061F4F9280D03D629156C2F8Fs1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibF6EEFA2061F4F9280D03D629156C2F8Fs1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib8B4B90BAAF79C44E65405D260EAB1CB7s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib8B4B90BAAF79C44E65405D260EAB1CB7s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib46F63E68A47D627463BDE645E19C7198s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib46F63E68A47D627463BDE645E19C7198s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib46F63E68A47D627463BDE645E19C7198s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibC5DF79DEE9D8660A254C36CB0C912447s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibC5DF79DEE9D8660A254C36CB0C912447s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib8A0A9D554A523D55F69EAD68000ED9A7s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib8A0A9D554A523D55F69EAD68000ED9A7s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib8A0A9D554A523D55F69EAD68000ED9A7s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibF77797C30404BE45830329BE09AE7632s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibF77797C30404BE45830329BE09AE7632s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibF77797C30404BE45830329BE09AE7632s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibC550E2CB33D4DB24956E002F1C0F655Ds1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibC550E2CB33D4DB24956E002F1C0F655Ds1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibC550E2CB33D4DB24956E002F1C0F655Ds1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib0B3E41E8E0A0FD819872A088E9642E14s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib0B3E41E8E0A0FD819872A088E9642E14s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib0B3E41E8E0A0FD819872A088E9642E14s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibBD18F0993E4F28091228A3F6B335177Fs1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibBD18F0993E4F28091228A3F6B335177Fs1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibBD18F0993E4F28091228A3F6B335177Fs1
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-1-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-1-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-1-manual.pdf
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib2F7E278208A7BDD85D57DB69B32012B8s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib2F7E278208A7BDD85D57DB69B32012B8s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib2F7E278208A7BDD85D57DB69B32012B8s1

W. Choi, M. Seo, S. Lee et al.

Kawada, T., Honda, S., Matsubara, Y., Takada, H., 2021. TZmCFI: RTOS-aware control-
flow integrity using TrustZone for ARMv8-M. Int. J. Parallel Program.

Kemerlis, V.P., Polychronakis, M., Keromytis, A.D., 2014. ret2dir: rethinking kernel iso-
lation. In: 23rd USENIX Security Symposium (USENIX Security).

Kim, C.H., Kim, T., Choi, H., Gu, Z., Lee, B., Zhang, X., Xu, D., 2018. Securing real-time
microcontroller systems through customized memory view switching. In: Network
and Distributed System Security Symposium (NDSS).

Koning, K., Chen, X., Bos, H., Giuffrida, C., Athanasopoulos, E., 2017. No need to hide:
protecting safe regions on commodity hardware. In: Proceedings of the Twelfth Eu-
ropean Conference on Computer Systems (EuroSys).

Kuznetsov, V., Szekeres, L., Payer, M., Candea, G., Sekar, R., Song, D., 2014. Code-pointer
integrity. In: 11th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI).

Kwon, D., Shin, J., Kim, G., Lee, B., Cho, Y., Paek, Y., 2019. uXOM: efficient execute-only
memory on ARM Cortex-M. In: 28th USENIX Security Symposium (USENIX Security).

Lattner, C., Adve, V., 2004. LLVM: a compilation framework for lifelong program analysis
& transformation. In: International Symposium on Code Generation and Optimization
(CGO). IEEE.

Lu, K., Song, C., Lee, B, Chung, S.P., Kim, T., Lee, W., 2015. ASLR-GUARD: stopping ad-
dress space leakage for code reuse attacks. In: Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security (CCS).

Microsoft, 2018. Data execution prevention. https://docs.microsoft.com/en-us/windows/
win32/memory/data-execution-prevention.

Niu, B., Tan, G., 2014. Modular control-flow integrity. In: Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI).

Niu, B., Tan, G., 2015. Per-input control-flow integrity. In: Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security (CCS).

Nyman, T., Ekberg, J.-E., Davi, L., Asokan, N., 2017. CFI CaRE: hardware-supported call
and return enforcement for commercial microcontrollers. In: International Sympo-
sium on Research in Attacks, Intrusions, and Defenses (RAID). Springer.

Oikonomopoulos, A., Athanasopoulos, E., Bos, H., Giuffrida, C., 2016. Poking holes in
information hiding. In: 25th USENIX Security Symposium (USENIX Security).

Packard, K., 2018. Picolibc. https://github.com/picolibc/picolibe.

Pallister, J., Hollis, S., Bennett, J., 2013. BEEBS: open benchmarks for energy measure-
ments on embedded platforms. arXiv preprint. arXiv:1308.5174.

Pappas, V., Polychronakis, M., Keromytis, A.D., 2013. Transparent ROP exploit mitiga-
tion using indirect branch tracing. In: 22nd USENIX Security Symposium (USENIX
Security).

Pomonis, M., Petsios, T., Keromytis, A.D., Polychronakis, M., Kemerlis, V.P., 2017. kr"x:
comprehensive kernel protection against just-in-time code reuse. In: Proceedings of
the Twelfth European Conference on Computer Systems (EuroSys).

Programming Guide, Intel® 64 and Ia-32 architectures software developer’s manual, Vol-
ume 3B: System programming Guide, Part 2 (11) (2011) 0-40.

14

Computers & Security 136 (2024) 103568

Sehr, D., Muth, R., Biffle, C., Khimenko, V., Pasko, E., Schimpf, K., Yee, B., Chen, B.,
2010. Adapting software fault isolation to contemporary CPU architectures. In: 19th
USENIX Security Symposium (USENIX Security).

Shacham, H., Page, M., Pfaff, B., Goh, E.-J., Modadugu, N., Boneh, D., 2004. On the effec-
tiveness of address-space randomization. In: Proceedings of the 11th ACM Conference
on Computer and Communications Security (CCS).

Shen, Z., Dharsee, K., Criswell, J., 2020. Fast execute-only memory for embedded systems.
In: 2020 IEEE Secure Development (SecDev). IEEE, pp. 7-14.

Tice, C., Roeder, T., Collingbourne, P., Checkoway, S., Erlingsson, U., Lozano, L., Pike,
G., 2014. Enforcing forward-edge control-flow integrity in GCC & LLVM. In: 23rd
USENIX Security Symposium (USENIX Security).

Vahldiek-Oberwagner, A., Elnikety, E., Duarte, N.O., Sammler, M., Druschel, P., Garg,
D., 2019. ERIM: secure, efficient in-process isolation with protection keys (MPK). In:
28th USENIX Security Symposium (USENIX Security).

Wahbe, R., Lucco, S., Anderson, T.E., Graham, S.L., 1993. Efficient software-based fault
isolation. In: Proceedings of the Fourteenth ACM Symposium on Operating Systems
Principles (SOSP), pp. 203-216.

Wang, Z., Wu, C., Xie, M., Zhang, Y., Lu, K., Zhang, X., Lai, Y., Kang, Y., Yang, M., 2020.
SEIMI: efficient and secure SMAP-enabled intra-process memory isolation. In: IEEE
Symposium on Security and Privacy (S&P).

Xie, M., Wu, C., Zhang, Y., Xu, J., Lai, Y., Kang, Y., Wang, W., Wang, Z., 2022. CETIS:
retrofitting intel CET for generic and efficient intra-process memory isolation. In: Pro-
ceedings of the ACM SIGSAC Conference on Computer and Communications Security
(CCS).

Yiu, J., 2015. ARMv8-M architecture technical overview. ARM white paper.

Yu, R., Del Nin, F., Zhang, Y., Huang, S., Kaliyar, P., Zakto, S., Conti, M., Portokalidis, G.,
Xu, J., 2022. Building embedded systems like it’s 1996. In: Network and Distributed
Systems Security Symposium (NDSS).

Zhang, C., Wei, T., Chen, Z., Duan, L., Szekeres, L., McCamant, S., Song, D., Zou, W.,
2013. Practical control flow integrity and randomization for binary executables. In:
IEEE Symposium on Security and Privacy (S&P).

Zhang, M., Sekar, R., 2013. Control flow integrity for COTS binaries. In: 22nd USENIX
Security Symposium (USENIX Security).

Zhou, J., Du, Y., Shen, Z., Ma, L., Criswell, J., Walls, R.J., 2020. Silhouette: efficient
protected shadow stacks for embedded systems. In: 29th USENIX Security Symposium
(USENIX Security).

Zhou, J., Du, Y., Shen, Z., Ma, L., Criswell, J., Walls, R.J., 2021. Silhouette-compiler.
https://github.com/URSec/Silhouette-Compiler.

Zieris, P., Horsch, J., 2018. A leak-resilient dual stack scheme for backward-edge control-
flow integrity. In: Proceedings of the 2018 on Asia Conference on Computer and
Communications Security (ASIACCS).

http://refhub.elsevier.com/S0167-4048(23)00478-9/bibA8F988D9CC0F21D645D36E04E7F685F0s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibA8F988D9CC0F21D645D36E04E7F685F0s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibEAD6325FC8A478A7AF4398F77D1AB938s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibEAD6325FC8A478A7AF4398F77D1AB938s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibD29186A16177A4D89D9A6BD4EE26070Cs1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibD29186A16177A4D89D9A6BD4EE26070Cs1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibD29186A16177A4D89D9A6BD4EE26070Cs1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib4563E841F23919F895FE100AAD6EF167s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib4563E841F23919F895FE100AAD6EF167s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib4563E841F23919F895FE100AAD6EF167s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibF6B49A8367CC3D16C063B1F70BF0C657s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibF6B49A8367CC3D16C063B1F70BF0C657s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibF6B49A8367CC3D16C063B1F70BF0C657s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibE3B5C9011368E0CBAF3C47935A757F2Cs1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibE3B5C9011368E0CBAF3C47935A757F2Cs1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib0C2E9BCB2A1E38F8DFDA5E1478F2ECC8s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib0C2E9BCB2A1E38F8DFDA5E1478F2ECC8s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib0C2E9BCB2A1E38F8DFDA5E1478F2ECC8s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibB8E63A288C589C2E7923CC261C7C69EBs1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibB8E63A288C589C2E7923CC261C7C69EBs1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibB8E63A288C589C2E7923CC261C7C69EBs1
https://docs.microsoft.com/en-us/windows/win32/memory/data-execution-prevention
https://docs.microsoft.com/en-us/windows/win32/memory/data-execution-prevention
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibEF10C4BFB69A62DAB09085C4248E39C2s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibEF10C4BFB69A62DAB09085C4248E39C2s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibFC8F24558FD47464DD35B598371A3C8Ds1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibFC8F24558FD47464DD35B598371A3C8Ds1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib3B5AA6026DD7E1758848DCDFF6852FC8s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib3B5AA6026DD7E1758848DCDFF6852FC8s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib3B5AA6026DD7E1758848DCDFF6852FC8s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib561A120C524A96BEB6A4CBFCAD047573s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib561A120C524A96BEB6A4CBFCAD047573s1
https://github.com/picolibc/picolibc
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib08AD08856B35927CB71E3E002ED4A5CDs1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib08AD08856B35927CB71E3E002ED4A5CDs1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib22AC4EEF036EAC13B5536E7B2F942FC0s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib22AC4EEF036EAC13B5536E7B2F942FC0s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib22AC4EEF036EAC13B5536E7B2F942FC0s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibC3793CCADC96E9CD4C68294253AB6B03s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibC3793CCADC96E9CD4C68294253AB6B03s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibC3793CCADC96E9CD4C68294253AB6B03s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib997A000C0FC1857A838E5279DFB4D693s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib997A000C0FC1857A838E5279DFB4D693s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib997A000C0FC1857A838E5279DFB4D693s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibDE968478F257375E46C97A2D94DE83DCs1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibDE968478F257375E46C97A2D94DE83DCs1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibDE968478F257375E46C97A2D94DE83DCs1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibC35971544B52B159E52C04656B698DFEs1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibC35971544B52B159E52C04656B698DFEs1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib7FE1745A182848E59DB32596E928A2ECs1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib7FE1745A182848E59DB32596E928A2ECs1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib7FE1745A182848E59DB32596E928A2ECs1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib04B1C497E2FB2C29BCEDD6679688E517s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib04B1C497E2FB2C29BCEDD6679688E517s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib04B1C497E2FB2C29BCEDD6679688E517s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibE01FDEA7E9E597F7B0553F2B30F21806s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibE01FDEA7E9E597F7B0553F2B30F21806s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibE01FDEA7E9E597F7B0553F2B30F21806s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib39972AFAB57CFAD3BE8CCED41688057Bs1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib39972AFAB57CFAD3BE8CCED41688057Bs1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib39972AFAB57CFAD3BE8CCED41688057Bs1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib7C96795E3D52904DC4941D1A31CAAD16s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib7C96795E3D52904DC4941D1A31CAAD16s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib7C96795E3D52904DC4941D1A31CAAD16s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib7C96795E3D52904DC4941D1A31CAAD16s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib9A78C5259C273366CDE07C8941145B13s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib6F82CD131F182FA5D85363A09561F3C4s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib6F82CD131F182FA5D85363A09561F3C4s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bib6F82CD131F182FA5D85363A09561F3C4s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibAEAE059371A1EF20B1F1297430C00688s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibAEAE059371A1EF20B1F1297430C00688s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibAEAE059371A1EF20B1F1297430C00688s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibEBE521A266FFEAF8F446BF1DE70E51C6s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibEBE521A266FFEAF8F446BF1DE70E51C6s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibD3E0785FCC82874A478F34C9BBE6A4B2s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibD3E0785FCC82874A478F34C9BBE6A4B2s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibD3E0785FCC82874A478F34C9BBE6A4B2s1
https://github.com/URSec/Silhouette-Compiler
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibE0080F9D0D11D0FC6BD3A77D57A81DB5s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibE0080F9D0D11D0FC6BD3A77D57A81DB5s1
http://refhub.elsevier.com/S0167-4048(23)00478-9/bibE0080F9D0D11D0FC6BD3A77D57A81DB5s1

	SuM: Efficient shadow stack protection on ARM Cortex-M
	1 Introduction
	2 Background
	2.1 Memory layout of MCUs
	2.2 Memory protection unit
	2.3 Exception and exception priority

	3 Threat model and assumption
	4 Design
	4.1 Shadow stack
	4.2 Selective masking
	4.3 Protected shadow stack
	4.3.1 Concept
	4.3.2 Instrumentation

	4.4 SuM-aware attack prevention
	4.4.1 W⊕X (write XOR execute) policy
	4.4.2 Exception return protection
	4.4.3 Forward-edge control flow protection
	4.4.4 System register protection

	5 Implementation
	5.1 LLVM modification
	5.2 Runtime library support

	6 Evaluation
	6.1 Runtime overhead
	6.2 Flash memory overhead
	6.3 Comparison with SFI
	6.4 Comparison with silhouette

	7 Security analysis
	7.1 Return address corruption
	7.2 Disabling selective masking
	7.3 Bypassing selective masking

	8 Discussion
	9 Related works
	9.1 Backward-edge protection for MCUs
	9.2 Backward-edge protection for general-purpose CPUs

	10 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgement
	Appendix A Evaluation results
	References

