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Abstract—ARM TrustZone provides a Trusted Execution Environment (TEE) to isolate security-critical services, which are generally
invoked from the Rich Execution Environment (REE) through a communication channel established by executing the Secure Monitor
Call (SMC) with the general registers configured as input parameters. Unfortunately, the communication channel has been abused by
adversaries to incur misbehavior of the TEE, to analyze the internal working of the TEE, and to exploit its vulnerabilities. We therefore
propose the TEE defense (TFence) framework that enables the creation of a partially privileged (par-priv) process, which benefits from
the coordination of the system mode and virtualization extension. More specifically, on ARM architecture, direct invocation of hypercall
and SMC is not allowed in the user process; however, we limitedly escalate the privilege of the process to enable it to directly
communicate with trust anchors such as hypervisor and TrustZone. This approach enabled us to remove the kernel dependency when
the process communicates with the TEE, which also reduces the attack surface to the critical part of the application involved in the
communication. Besides, direct communication with the hypervisor facilitates the adoption of application-shielding approaches to
protect the critical part and to restrict arbitrary access to the TEE.

Index Terms—Mobile Device Security, Trusted Execution Environment (TEE), ARM TrustZone, Communication Channel Security.
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1 INTRODUCTION

ARM TrustZone technology has been widely employed
to create the Trusted Execution Environment (TEE)

in ARM processor-based devices such as tablet PCs and
smartphones. The trusted applications (TAs) such as crypto
key management [1], [2], payment [3], and authentication [4]
are deployed inside the TEE to protect their confidentiality
and integrity. On the other hand, the client application
(CA) as a counterpart of each TA has been deployed in
the Rich Execution Environment (REE) to trigger the TAs.
Specifically, the CA leverages the TrustZone kernel driver to
send messages to the TEE by executing the Secure Monitor
Call (SMC) instruction with kernel privilege, which creates
a communication channel between the REE and the TEE.

Unfortunately, this communication channel has been
abused by adversaries to attack the REE, and to find and
exploit the vulnerabilities in the TEE. For example, as shown
in [5], [6], the adversary can send a malicious message to
the TEE to escalate his privilege. The adversary can also
perform a brute-force attack against TEE by continuously
executing SMC instructions with arbitrarily crafted mes-
sages as parameters of the instructions. By doing so, the
adversary can analyze the internal working in the TEE [7]
and exploit the vulnerabilities of the TAs (and TEE OS) to
exfiltrate the secrets stored in the TEE and to obtain full
control over the TEE [8], [9], [10], [11], [12]. This problem
fundamentally stems from the fact that the (1) message authentica-
tion, (2) message integrity protection, and (3) message verification
are not strictly enforced since they have been conducted by the
potentially malicious kernel.
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To address these problems and protect the communica-
tion channel between the CA and the TEE, we propose the
TEE defense (TFence) framework. TFence enables develop-
ers to create a partially privileged (par-priv) process, which
can directly communicate with trust anchors such as the
hypervisor and TrustZone without depending on the kernel.
Particularly, an application that runs in par-priv mode can
directly execute hypercall (HVC) and SMC instructions. At
the same time, TFence restricts the par-priv process from
executing other security critical instructions that should not
be executed by user applications.

We created the par-priv mode by leveraging the over-
looked hardware feature –System mode– which is one of the
privileged processor modes available on ARM architecture.
By running the process in System mode, we escalate its
privilege. Besides, to prevent the par-priv process from
abusing its escalated privilege, we implemented TFence as a
micro-hypervisor that interposes every interaction between
the par-priv process and the kernel to prevent any malicious
behaviors.

In terms of securing TEE, the benefit of adopting par-priv
mode is that we can remove the kernel dependency when
the process needs to interact with the TEE. The removal of
this dependency also reduces the attack surfaces. In other
words, to establish a secure communication channel, a small
part of the pre-authorized application that is involved in
communication needs to be protected; the kernel objects (e.g.,
APIs and function pointers) scattered over the memory do not
have to be monitored and protected. The direct communication
also enables existing approaches for x86 [13], [14] to be
readily employed on ARM architecture. We adopt appli-
cation compartmentalization and shielding approaches to
protect and authenticate that part of the CA that becomes
involved in creating and sending messages. In addition to
protecting the TEE, abusing the TEE to attack the REE (e.g.,
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Fig. 1. Communication channel between CA and TA. The channel in the
REE is insecure in the presence of a compromised kernel.

BOOMERANG attack) [5], [6] can be prevented because
TFence restricts the arbitrary message delivery into the TEE
and also validates every message.

We implemented the TFence prototype on Arndale board
equipped with an ARM Cortex-A15 dual-core processor
[15]. In the performance evaluation, the activation of hy-
pervisor mode imposes maximum 11% and 6% of overhead
to the overall system running the micro- and application
benchmarks. Notably, in spite of the overhead attributable
to hypervisor mode activation, we gain some performance
benefit from the removal of kernel dependency on the
invocation of privileged instructions, which were 2.5% and
17.6% for the SMC and hypercall invocations of TFence
compared to the result of runs without TFence, respectively.

The contributions of our work can be summarized as
follows:

• We introduce par-priv mode execution by leveraging
System mode and virtualization extension on ARM.
Our approach does not require any change to the
hardware architecture design.

• By taking advantage of the par-priv mode, we pro-
pose a new mechanism for communicating with the
TEE, which enables the application to directly com-
municate with the trust anchors without depending
on the kernel.

• To secure the TEE, we propose a way to authenticate
the message sender, and to protect and verify the
message bound for the TEE, which was not consid-
ered in the original design of TrustZone.

2 BACKGROUND AND RELATED WORK

2.1 TrustZone Service Invocation and Vulnerability
TrustZone aims to provide a TEE to devices based on an
ARM processor such as smartphones, tablets, and DTVs.
The technology is a security extension to the processor that
enables the system (e.g., memory, register and peripheral) to
be partitioned into two domains: the REE and the TEE.

Based on the protection and isolation guaranteed by
TrustZone, trusted applications (TA) that handle critical
resources such as user credentials [4] and digital rights [16]
have been deployed and executed in the TEE on mobile
devices. TrustZone is also utilized to host OTP [17], re-
mote attestation [18], security monitors [19], [20], memory
forensic framework [21], stealthy debugger [22] and an
architecture for provisioning credentials [23] in the TEE. In

addition, TrustZone components are analyzed in-depth and
leveraged to realize the TEE virtualization [24], [25].

On the other hand, the client application (CA) in the
REE, which is deployed as a counterpart of TA, places
parameters in the domain shared memory and asks the
kernel to invoke the Secure Monitor Call (SMC) instruction
to use the TAs. The invocation of SMC switches the pro-
cessor mode to Monitor which is introduced as part of the
TrustZone technology for managing the switches between
the two domains. Depending on the design of the TEE
application, some TEE-based services (e.g., periodic kernel-
integrity monitoring) do not need to be explicitly invoked by
the CA because it can be triggered by the timer interrupts
that are dedicated to the TEE. However, as of this writing,
all the studies in which the processor is explicitly switched
to Monitor mode use the same mechanism–invoking SMC
instruction with kernel privileges.

1 MOV R0 , #TA id //1 s t param : invoked TA id .
2 LDR R1 , =req buf//2nd param : request b u f f e r .
3 LDR R2 , =res buf //3rd param : response b u f f e r .
4 SMC #0 //SMC with an immediate value 0x0

Listing 1. Example message format for TA invocation.

Problem. As already presented in [5], [8], [9], [10], [11],
[12], [26], the communication channel between the CA and
TA is vulnerable (Figure 1). That is, adversaries can easily
compromise the messages transferred to/from the TEE. For
instance, as can be seen in Listing 1, the message transferred
to the TEE is created by setting several general registers
(e.g., R0 - R2). The messages might contain the service
number indicating the desired TA and parameters such as
the address of the request/response buffers. An adversary
can easily manipulate the register values and application-
specific data structures in the buffers to deliver a maliciously
crafted message to the TEE, which enables the adversary to
cause the misbehavior of the TEE, to analyze the internal
working, and to find and exploit the vulnerabilities of TAs
to compromise the entire security of the TEE.

SeCReT [26], as the first work to secure the channel,
provides the session key (to CAs) that can be utilized to
encrypt the message. To protect the session key from an
untrusted kernel, SeCReT interposes mode switches and
removes the key from the memory during the kernel mode
execution. However, the approach that leverages the session
key might entail certain security problems. For example,
even if the original key is securely protected, a copy of
the key can be created during execution of the CA and be
exposed to the adversary.

Machiry et al. showed a BOOMERANG [5] attack that
enables a malicious user process to arbitrarily access the
kernel memory by abusing the TEE. Specifically, they crafted
the message delivered to the TEE such that it leads the TEE
to modify the critical kernel objects. In essence, this attack
was possible because the TEE never checks the validity of
the message semantic (e.g., mapping request to the kernel
memory). To address this problem, they proposed a mit-
igation that enforces the TEE to consult kernel whenever
memory mapping to the REE is needed. However, the
proposed solution was specific for a BOOMERANG attack,
which aims to protect the REE; thus, the message integrity
and restriction of the arbitrary SMC invocation from the REE
were not considered.
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Fig. 2. ARM vs. x86 in communication with trust anchors. Specifically, as
an architecture design difference, ARM counts on the kernel to interact
with trust anchors.

In this work, we attempt to protect the TEE by se-
curing the communication channel between the CA and
the TA. Notably, our work is differentiated from previous
TrustZone-based work [17], [18], [19], [20], [21], [23], [26],
[27], [28], [29] in that we partially escalate the privilege
of the CA, enable application-level TEE-service invocation,
and verify the legitimacy of the invocation, whereas the
previous work depended on the potentially malicious OS
kernel to invoke the SMC instruction for access to the TEE.

2.2 Communication with Trust Anchor on x86 vs. ARM

Research on x86 that aims to protect an application from an
untrusted OS have utilized user-level hypercalls as a means
of directly communicating with a trust anchor such as a
hypervisor [13], [14], [30], [31], [32]. For instance, McCune
et al. [13] used hypercalls to allow Pieces of Application
Logic (PAL) to communicate with the TrustVisor without
awareness of a malicious OS. Overshadow [30] creates a
secure communication channel by enabling the user-mode
shim to invoke the hypercalls for interacting with the
trustworthy hypervisor. In addition, to protect the high-
assurance process (HAP) from an Iago attack [33], Inktag
[14] utilizes user-level hypercalls to deliver security-critical
information such as the list of memory maps for HAP. As
shown in the previous work on x86, it seems quite natural
for security frameworks to use hypercalls to build a secure
communication channel since hypercalls are allowed to be
invoked in any processor mode (i.e., both in user and kernel
modes).

In contrast, on ARM architecture, a hypercall (i.e., HVC
in ARM) is designed as a privileged instruction; hence, a
user process is not allowed to invoke hypercalls, as shown
in Figure 2. Not only a hypercall, but also SMC is defined
as a privileged instruction [34]. Thus, the user process that
needs to communicate with the hypervisor or TrustZone-
based TEE would need to request the kernel to invoke those
instructions.

From the perspective of security, the restriction of the
direct interaction between the process and trust anchor (i.e.,
the kernel dependency on communication with the trust
anchor) has several limitations. That is, an adversary can
compromise the kernel to arbitrarily control the communi-
cation between the shielded process and the trust anchor,
and to attack the trust anchor. Furthermore, in terms of
building a security framework on ARM, the restriction can
increase the complexity of the design of the security frame-
work compared to that of x86. For instance, we might need
to implement an additional crypto function to protect the

TABLE 1
ARM architecture modes, registers, and privileges. Notably, System
mode shares the same register set with user mode, but it runs with

kernel privilege.

User System Supervisor Abort ...
Core register R0 - R12 R0 - R12 R0 - R12 R0 - R12 ...

SP SP SP svc SP abt ...
LR LR LR svc LR abt ...

Special register - - SPSR svc SPSR abt ...
Privilege User Kernel

communication channel on ARM, whereas a direct channel
is essentially available on x86.

2.3 ARM Hardware-assisted Virtualization
The high-end ARM processors support hardware-assisted
virtualization. The hypervisor mode (HYP) is used for
configuring the virtualization environment and managing
the multiple guest VMs. In particular, various guest VM
events can be trapped in HYP by setting up the hypervisor
control registers, such as Hyp System Trap Register (HSTR).
The stage-2 paging enables VM isolation. Paging translates
the guest VMs physical address (that is the intermediate
physical address) into the real hardware address (physical
address). This mapping information is available in the stage-
2 page table, whose base address is indicated by the Virtual-
ization Translation Table Base Register (VTTBR). To activate
stage-2 paging, the VM flag in the Hyp Configuration Reg-
ister (HCR) must be set. Hardware-assisted virtualization is
also available in x86 architecture and has been leveraged
to build various security benefits, including kernel integrity
monitor [35], [36], [37] and application shielding [13], [14],
[30]. In our work, we used virtualization to protect the
communication channel between the CA and TEE.

2.4 Revisiting System Mode on ARM
Table 1 indicates the available modes together with the priv-
ileges and registers of each mode on high-end 32-bit ARM
processors such as Cortex-A15. The modes from System to
FIQ are generally regarded as kernel modes. User and kernel
modes are banked for each security domain: the REE and the
TEE.

Notably, System mode shares all the registers with user
mode. The only difference between the System and user
modes is that System mode has higher privileges than user
mode. As shown in the table, System mode has the kernel
privilege similar to other modes such as Supervisor and
Abort. According to ARM [38], System mode was originally
introduced to facilitate nested exception handling without
corrupting the saved return address in LR.

However, System mode has either never been used, or
been used to a very limited extent in high-end OSs such
as Linux (instead, Supervisor mode is used for handling
the exceptions). According to our analysis of the Linux
kernel (4.4.32) implementation, a kernel compiled with
the ARM instruction set (32-bit instruction set) does not
use System mode. Although a kernel compiled with the
Thumb-2 instruction set (16/32-bit mixed instruction set)
utilizes System mode, it is limitedly utilized in the macro
that tentatively switches mode to System for pushing and
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Fig. 3. TFence enables creation of a partially privileged (par-priv) pro-
cess capable of directly communicating with trust anchors without kernel
dependency. This approach reduces the TCB for secure communication
to that part of the process that is responsible for creating and sending a
message. Also, it facilitates the authentication, integrity protection, and
verification of the message delivered into the TEE.

popping the SP and LR of user mode, whereas the same
operation can be conducted without using System mode in
a kernel compiled in an ARM instruction set. In TFence, this
overlooked hardware feature is leveraged to build a secure
communication channel as discribed in Section 4.2.

3 ATTACK MODEL AND ASSUMPTIONS

We assume a mobile/embedded system environment that is
built based on ARM processors supporting virtualization
and TrustZone extensions. The hardware-based memory
protection of TrustZone is properly configured; thus, there
exists no misconfiguration-based vulnerabilities such as al-
lowing read/write access to the TEE by creating a memory
mapping to that area. Further, since the device manufac-
turer and the TrustZone OS and trusted application (TA)
providers are not malicious, software stacks built in the
TEE are not malicious either. The general TEE application
development model that enables TEE providers to verify
the client application (CA) and TA before their deployment
in the device is assumed. Secure boot [39] guarantees the
integrity of the images loaded at boot time. We also assume
the presence of IOMMU and its proper configuration [40];
therefore, DMA attacks such as direct manipulation of the
physical memory are not available. Finally, attacks based on
physical access [29], [41] and side channels are beyond the
scope of our attack model.

On the other hand, an adversary can arbitrarily send
malicious messages to the TEE. To achieve this, an adversary
can either exploit the vulnerability of the legitimate CA
or create own malware. By doing so, he can compromise
the kernel by abusing the TEE privilege and semantic gap
between the REE and the TEE [5]. However, the adversary
can also exploit the REE OS vulnerability to escalate his
privilege; thus, the REE is basically untrusted in our attack
model. Based on the control over the kernel, he can freely
attempt to compromise the TEE (e.g., exfiltrating the secrets
or perpetuating his attack [42]).

4 DESIGN OF TFENCE

TFence (TEE-defense) aims to prevent abusing the TEE and
to protect the TEE by securing the communication channel
between the CA and TA, as described in Figure 3. To this

end, TFence creates a partially privileged (par-priv) process
by leveraging the System mode of ARM, which enables the
process to directly communicate with trust anchors such
as the hypervisor and TrustZone. The advantage of direct
communication is that it removes the kernel dependency
when the process communicates with the trust anchors and
thus reduces the attack surfaces of the communication to
that part of the application that is involved in message
creation and transmission; hence, widely dispersed kernel APIs
and data structures that have been involved in the TEE communi-
cation do not need to be traced, monitored and protected. TFence
protects the relevant part of the application and the integrity
of messages sent to the TEE by adopting an application-
shielding approach, which also benefits from the direct
communication channel built by TFence. Moreover, all the
messages bound for the TEE are trapped and verified by
TFence before they are passed into the TEE. In this section,
we describe the design detail of TFence and how its goal is
achieved.

4.1 Boot Time Initialization

TFence is designed as a micro-hypervisor that runs with a
higher privilege than the OS. We initialize TFence as part of
the boot procedure of the device to benefit from secure boot.
Because secure boot [39] performs chained verification of the
loaded images, the integrity of our TFence implementation
as well as the boot-loader, TrustZone OS, and REE OS can
be protected.

During the boot, we activate the hypervisor mode by
configuring hypervisor-related registers. In addition, the
exception vector for the hypervisor mode is mapped in the
memory that is isolated from the REE OS. In general, the
exception vector defines the address of the handlers for each
exception, which should be individually mapped for the
activated domains (e.g., REE OS, hypervisor, and Monitor).
TFence only needs to handle part of the hypervisor-trap
exceptions. We simplify the implementation by disabling
the MMU in hypervisor mode. Thus, TFence runs based on
the physical memory without maintaining the page tables
for the hypervisor mode, whereas the REE OS continues to
use the virtual address. TFence also enables stage-2 paging
which is similar to the nested paging in x86 [43], and creates
stage-2 page-table mappings for the REE. The Intermediate
Physical Address (IPA), which is the physical address in the
view of the REE OS is identical to a real physical (machine)
address in the mapping. Note that the memory region for
TFence hypervisor implementation is not included in the
mapping to protect TFecne from the adversary.

Permanent invariants. Although we assume the kernel
is untrusted, part of kernel components that are patched for
the TFence implementation need to be protected from ma-
licious modification. To achieve this, TFence defines some
REE kernel objects as permanent invariants and protects
them by using stage-2 paging. These objects are the kernel
static area (e.g., code and data), and exception vector (and
handler code) that are initialized at boot time and should
not be updated during runtime. TFence simply configures
read-only permission in the stage-2 page that contains these
objects. Not only the object itself, but also the mappings to
the object (i.e., the REE page table entries addressing to the
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object) should be immutable during the runtime of the de-
vice. In other words, every process that is newly scheduled
should have the same page table entries for those objects.
TFence also defines the mapping information as permanent
invariants, but it does not write-protect them in stage-2
paging to minimize the performance overhead incurred by
frequent stage-2 paging faults. The permanent invariants are
checked on demand during the par-priv process execution
to prevent a confused deputy attack [5].

4.2 Creating Par-priv Process
TFence utilizes the System mode to escalate the privilege
of the application in the REE (e.g., CA), which enables
it to directly invoke privileged instructions such as HVC
and SMC. The System mode is superior to other kernel
privileged modes (e.g., IRQ, FIQ and Abort) for creating the
par-priv process in the following aspects:

(1) Using System mode simplifies the implementation.
System mode and user mode share every register including
the stack pointer (SP) register and link register (LR). Thus,
creating the par-priv process by leveraging System mode
is straightforward, because System mode only needs to
switch the mode bits in the Current Program Status Register
(CPSR) to System. On the other hand, other modes such
as Supervisor have their own copies of registers such as
SP and LR. Thus, the dedicated register values need to
be updated whenever a mode switch happens for par-priv
mode execution.

(2) In the ARM architecture, LR is used to store a return
address. Depending on the processor mode, the value of
LR can be automatically updated through hardware. For in-
stance, LRs dedicated for the exception modes, such as IRQ
and Abort, are automatically updated when corresponding
exceptions occur. This behavior is unsuitable for our pur-
pose, which is running a user process with privileged mode,
because it can break the control flow by overwriting LR.
By contrast, LR for the system mode is not affected by any
exception occurrence.

(3) System mode is barely used in Linux; thus, utilizing
it requires less effort for investigating the compatibility of
TFence with the existing kernel implementation.

In the following subsections, we describe how TFence
creates the par-priv process and confines its privilege to the
direct interaction with trust anchors.

4.2.1 Privilege Escalation
On ARM, the CPSR reflects the current status of program ex-
ecution including the current mode. The flag for the current
mode has five bits to present each mode, and specifically
0b11111 is predefined for System mode.

To convert the mode from user to System, we create
and export the system call that handles the request for
creating the par-priv process. When the user process invokes
the system call by invoking the supervisor call (SVC), the
mode switches to kernel (i.e., Supervisor mode) and the
CPSR of the user process is saved as an SPSR in the kernel
stack. The information in the SPSR (e.g., CPU mode flag) is
restored when the process is rescheduled. Thus, the system
call handler simply updates the mode flag of the SPSR to
System. This makes the process run in the System mode
when its execution is resumed.

TABLE 2
Group of system operations and its trap.

Co-processor (CP) System operations Trapped by
CP15 ID, system control, memory protection (control),

memory fault, cache & address translation, TLB,
performance monitor, memory mapping, DMA, HSTR
security extension, process & thread context,
vendor-specific feature

CP14 Jazelle functionality & ThumbEE configuration HSTR
(Device specific) Accesses to debug registers HDCR

Accesses to Trace registers HCPTR
CP0-13 Vendor-specific or optional features HCPTR

(Device specific) (e.g., Floating-point instructions)

4.2.2 Privilege Restriction
Since System mode is one of the kernel privileged modes,
any process (even malware) running in System mode can
execute any privileged instructions. Thus, the privilege for
the par-priv process should be appropriately confined to
building a direct communication channel between the par-
priv process and the trust anchors.

Restricting privileged operations. Privileged instruc-
tions other than HVC and SMC should not be allowed
to be invoked by the par-priv process to avoid thwarting
the security of the REE. This is because some privileged
instructions can configure the control registers that can be
abused by an adversary. For instance, the System Control
Register (SCTLR) contains flags for configuring security
critical features such as MMU, cache, alignment check, and
writable execute never (i.e., DEP) attributes.

In essence, hardware-assisted virtualization enables ac-
cess to those control registers to be trapped. Thus, to protect
the control registers from a malicious par-priv process,
TFence activates the hypervisor-trap whenever the par-priv
process is executed. In our implementation, all the accesses
to the critical control registers are possibly trapped by solely
leveraging Hyp System Trap Register (HSTR) because our devel-
opment board only provides CP15 and CP14 partially. However,
depending on the device, other optional features defined
by CP0-14 can also be trapped by hypervisor as shown in
Table 2. Any trap caused by access to the control register is
regarded as abnormal behavior because the par-priv process
should perform only user-level operations. The trap is dis-
abled when the processor mode switches back to the kernel
for handling exceptions. We achieved this by inserting HVC
instructions in every entry/exit point to/from the kernel to
invoke TFence at every mode switch between the par-priv
process and kernel.

On the other hand, some privileged instructions such
as MRS (Move to core Register from Special register), MSR
(Move to Special register from core Register), and CPS
(Change Processor State) cannot possibly be trapped by
hypervisor-trap configuration. These instructions can be
abused to read or write to registers dedicated to other
modes such as LR, SP, and SPSR. For instance, a malicious
par-priv process using those instructions can read or write
the stack pointer value of other privileged modes (e.g.,
Supervisor mode). In addition, it can arbitrarily change
its mode to other kernel-privileged modes. To address this
problem, TFence always saves dedicated register values of
other modes before entering par-priv mode, and restores
them when the mode switches back to the kernel. Further,
TFence prevents the par-priv process from accessing the
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Fig. 4. Transition between par-priv process and kernel.

kernel memory; thus, an adversary would not benefit from
changing the current mode to another kernel-privileged
mode.

Memory access control. TFence isolates memory for
the par-priv process by leveraging the default memory-
domain configuration in Linux and DACR. On a 32-bit
ARM processor, the first-level page table entry can define
the mapped memory region as one of the sixteen domains
by using its 4-bit domain flag. In Linux, 0, 1, and 2 are
assigned to the kernel, user, and device memory region,
respectively. On the other hand, DACR defines the access
permission for each of the sixteen domains by using 2-bit
flags for each domain. The possible permissions are (1) No
access (0b00), (2) Client: permission check against page table
attributes (0b01), (3) Reserved: unpredictable effect (0b10)
and (4) Manager: no permission check (0b11). Linux sets
DACR in a way to ensure that all the domains have Client
permission (0x55555555), and thus every memory access
follows the page-table configuration.

In TFence, although the par-priv process runs with
System mode, the process should not access to any other
domain except the user. Because the kernel, user, and device
domains are already classified in Linux, we simply need to adjust
the access permission settings in DACR dedicated to each core
to isolate the par-priv process in the user domain. Specifically,
when the par-priv process is executed, TFence configures
the DACR value to 0x4 to ensure that only the user domain
is accessible. The value of DACR is restored to the default
value (0x55555555) when the mode switches back to the
kernel. Note that although System mode also has a privilege
to manipulate DACR, malicious code running as a par-priv
process cannot manipulate the DACR due to the access re-
striction to the control registers enforced by TFence. Finally,
as utilized in ARMLock [44] and Shreds [45], we also obtain
the performance benefit from using DACR instead of stage-2
paging for user domain isolation. In other words, leveraging
DACR does not impose overhead incurred by the TLB and
cache maintenance, contrary to page-table approaches.

Transition gate protection. In TFence, the exception vec-
tor and return to user kernel code play roles in triggering
TFence at every switch between the par-priv process and
kernel (Figure 4). We achieved this by implanting hyper-
calls to invoke TFence at the entering/exiting points of the
kernel. Once invoked by the hypercalls, TFence (de)activates
the privilege operation restriction and the memory protec-
tion for the par-priv process as described above. Thus, the
transition gates between the par-priv process and the kernel
should be protected as well. The location of the exception
vector can be varied based on the configuration of control
registers, such as VBAR and SCTLR; however, Linux maps
it at 0xFFFF0000 with read-only access permission for both
the user and kernel modes. The malicious par-priv process

cannot reconfigure the address of the mapped exception
vector since access to the control registers is restricted by
TFence. Moreover, the physical memory area that contains
the exception vector and the return to user code is im-
mutable because it is protected by stage-2 paging at boot
time. Finally, because TFence already isolates the kernel
memory that contains the page tables from user domain,
even malicious code running with par-priv mode cannot
reconfigure the mapping to the transition gates.

4.3 Building Shielded Process
4.3.1 Overview
A TA that is deployed in the TEE performs security-critical
operations such as crypto, whereas its counterpart–a client
application (CA)–simply invokes the TA. Although the CA
does not conduct any critical operations, as can be seen in
Section 2.1, it can be abused to send maliciously crafted mes-
sages to the TEE. To prevent this, we adopt the application
shielding approach.

Figure 5 illustrates an example pseudocode of the
shielded application. The application can be separated into
two parts (i.e., non-shielded and shielded) based on the
4-KB page granularity by using a linker script. The non-
shielded part first escalates the privilege of the process
to the par-priv by invoking a system call. Then, it en-
ables TFence to recognize the shielded part by using a
hvc shielded part registration, which leads TFence to vali-
date the integrity of the shielded part.

The shielded part is invoked by a subroutine call from
the non-shielded part, which causes a stage-2 paging fault
since a different stage-2 page table (from that of the REE
kernel) is maintained for the shielded part. The fault is
trapped and handled by TFence to switch the stage-2 page
table, and thus enables the shielded part. Owing to the
separation of the stage-2 page tables, the shielded part is
completely isolated from the non-shielded part and REE
kernel. In addition, the heap protection hypercall enables
any dynamically allocated memory in the shielded part to
be registered and protected by TFence as well.

In general, the shielded part might play a critical role
in creating a message bound for the TEE and directly
sending it to the TA. The advantage of the shielding is
that we can authenticate the message sender by using the
protected (immutable) part as an identity of specific CA; in
turn, it enables generation of a strict message verification
policy based on a close correlation between the CA and TA.
Moreover, it ensures that the message is created without
adversary intervention, provided that part of the CA is free
of adversary-controllable bugs.

4.3.2 Initialization
To protect the TEE, only the authorized code is allowed to
send any message to the TEE and the message integrity
should be guaranteed. We achieve this by isolating the
application logic responsible for creating and sending the
message from the remaining part of the application and
designate that part to be protected as a shielded area by
TFence.

We enable TFence to recognize the shielded part by using
a hvc shielded part registration, which can be directly in-
voked by a CA running as a par-priv process. Once TFence
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in_buf_addr = malloc_and_init (in_size)
out_buf_addr = malloc_and_init (out_size)
create_input_message (in_buf_addr)
tz_driver = open (TrustZone_kernel_driver) //system call
/* ioctl for SMC invocation */
tz_ioctl (tz_driver, TA_id, in_buf_addr, out_buf_addr)

(a) Normal CA

convert_par_priv_process () //system call
hvc_shielded_part_registration (addr, size, entry)

hvc_shielded_part_termination ()

(a) CA with TFence

shielded partin_buf_addr = malloc_and_init (in_size)
out_buf_addr = malloc_and_init (out_size)
hvc_heap_protection (in_buf_addr, in_size)
hvc_heap_protection (out_buf_addr, out_size)
create_input_message (in_buf_addr)
/* direct SMC invocation */
invoke_TA (TA_id, in_buf_addr, out_buf_addr, format_id)

Fig. 5. Example pseudocode of shielded process, which aims to authen-
ticate and protect the logic responsible for TEE communication, and thus
restricts arbitrary access to the TEE.

receives the request for the shielded part registration, it
locks the REE memory mapped to the shielded part and
calculates the hash of the part by using the start address
and the size delivered as parameters of the hypercall. In
addition, it validates the hash against the pre-calculated
hash that is part of the metadata of the CA, which also
contains the allowed entry points of the shielded part and
is signed with a device specific key (or the TEE provider’s
private key). Remote attestation conducted between TFence
and the remote root of trust would also be a reasonable
option for the validation. Either way would require TFence
to cooperate with TrustZone to use the device specific key.

Once hash validation has been completed, TFence saves
the REE page-table mappings information of the shielded
parts (i.e., the addresses of the 1st and 2nd page table
entries and their values for mapping the shielded part) as
tentative invariants and configures the access permission of
the shielded part in the stage-2 page tables. There are two
of these page tables, i.e., for the non-shielded and shielded
parts, which are maintained by TFence. The table for the
non-shielded part is generated at boot time, and maps
the entire REE region as described in Section 4.1. During
registration, TFence configures the access permission of the
shielded part memory to read-only and non-executable in
this page table (before the hash validation). On the other
hand, the stage-2 page-table for the shielded part is created
during the registration process, and it only contains the
mapping for the shielded part of the CA (e.g., separated
code and data for the shielded part) including the exception
vector.

The transition between the two stage-2 page tables
happens based on the occurrence of stage-2 paging faults.
Any control flow transition to the shielded from the non-
shielded part causes stage-2 instruction fetch faults due
to the non-executable permission set in the stage-2 page-
tables of the non-shielded part. TFence validates the faulting
address against the registered entry points and configures
the Virtualization Translation Table Base Register (VTTBR)
to map the stage-2 page-table of the shielded part if the
fault is legitimate. The switch to the opposite side (e.g.,
context switch to another process) happens in a similar
manner based on the occurrence of faults due to a missing
mapping to the non-shielded part in the stage-2 page table
of the shielded part and the approach followed by TFence
to handle this fault. Because we assign a different virtual

machine identifier (VMID) for each of these two parts, an
additional TLB invalidation between the transitions is not
required.

4.3.3 Runtime Protection
Memory access control. For heap memory protection,
TFence provides hypercalls to enable the shielded part to
notify the starting address of the new allocation and its size
to TFence. If the heap allocation requires a new page map-
ping, the newly mapped area is configured as read-only and
read/write in the stage-2 page tables of the non-shielded
and shielded parts, respectively. In addition, TFence keeps
the physical address of the area and the REE page-table
mapping information to that area as tentative invariants.
The invariant list is checked before creating a new invariant
to prevent existing heap objects from being overwritten or
the mapping to them from being redirected to a malicious
mapping [33].

Stack protection is triggered when a stage-2 paging
fault happens due to entry to the shielded part. TFence
configures the access permission of the stack in the stage-
2 page tables as read-only and read/write for the non-
shielded and shielded parts, respectively. Therefore, only
the shielded part should be able to manipulate the stack
without incurring any stage-2 page fault. Furthermore, as in
the case of heap memory protection, the protected stack and
mapping information are also saved as tentative invariants
for future verification.

On the other hand, to handle corner cases such as direct
kernel access to the user space memory (e.g., copy to user),
TFence provides a hvc allow access to enable the shielded
part to explicitly register the start address and size of the
memory area allowed to be manipulated by the kernel.
Hence, any stage-2 write fault is validated against the reg-
istered information, and the write attempt is emulated by
TFence if it is confirmed as being legitimate. The semantic
of the written value also has to be validated by the shielded
code.

In signal handling, the kernel can manipulate the regis-
ter values before the signal handler routine starts. Hence,
TFence regards signal handling as an untrusted operation.
Thus, it does not allow any write attempt to the memory of
the shielded part until signal handling finishes. Any SMC
instruction invocation that happens during signal handling
is trapped and ignored by TFence. To explicitly notify the
start and end of signal handling, we inserted hypercalls
to the kernel code such as setup frame and restore sigframe,
which are set as invariants and protected during boot time,
as described in Section 4.1.

Register protection. During execution of the shielded
part, the occurrence of exceptions switches the processor
mode to kernel. Before starting the exception handling
routine, the context of the process such as general registers
(R0-R12, SP and LR), preferred return address and Current
Program Status Register (CPSR) is stored in the kernel stack.
To protect the context from the compromised kernel, TFence
copies the values to the isolated memory and restores them
when the mode switches back to the par-priv mode.

Note that this register protection procedure is different
from that for restricting the privilege of the par-priv process
as discussed in Section 4.2.2. In other words, the protection
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TABLE 3
Summary of TEE protection mechanism.

Sender authentication Load-time: hash validation of the shielded
part by using CA metadata (§4.4.1).
Runtime: SMC provenance validation (§4.4.3).

Message integrity Tentative invariants maintenance and check
between mode switches (§4.4.2).

Message verification Message format validation and sanitization
by trapping SMC (§4.4.3).

shown here aims to protect the par-priv process from the
kernel, whereas that in Section 4.2.2 prevents a malicious
par-priv process from attacking the kernel.

4.4 TEE Protection Mechanism

In this section, we describe the TEE protection mechanism
of TFence, which adopts the concept of an application-
shielding approach on x86 [13], [14], [30], [31] by benefiting
from the par-priv mode.

4.4.1 Message Sender Authentication

To ensure that only the authorized code is allowed to send
any message to the TEE, we first separate the applica-
tion into two parts (i.e., non-shielded and shielded). The
shielded part contains the logic responsible for creating and
sending the message. For example, the CA for DRM service
can isolate the functions for directing the encrypted stream
to the request buffer and invoking SMC in the shielded
part. Then, the hash of the shielded part is validated against
the pre-calculated hash that is part of the metadata of the
CA. Once hash validation has been completed, the shielded
part is protected by configuring the stage-2 page tables, and
also registered as the authorized code allowed for the SMC
invocation. Whenever the SMC is invoked, it is trapped by
TFence and the message sender is authenticated based on
this registered information.

4.4.2 Message Integrity

Since the memory of the shielded part (i.e., code, data,
stack and heap) is protected by using stage-2 paging, the
adversary cannot directly access the memory to manipulate
the message. However, more sophisticated attacks such as
Iago [33] or multi-core-based time-of-check-to-time-of-use
(TOCTOU) attacks should also be considered to protect the
message integrity. For instance, an adversary with kernel
privilege can try to overwrite the existing heap objects when
a new heap memory is allocated. Furthermore, while the
shielded part is running, an adversary can timely remap the
page tables on another core expecting one of the protected
objects to be written with a malicious payload.

TFence prevents Iago style attacks by maintaining mem-
ory objects and their page-table mapping information as ten-
tative invariants; thus, whenever a new memory allocation
happens, the list of the invariants is always checked first.
A TOCTOU attack is also detected by the invariant check
mechanism, which is performed whenever mode switches
occur between the user, kernel, and Monitor. We discuss the
efficacy of the defense mechanisms in Section 6.1.

…
Trusted applications

Indexed by (TA_id, CMD id)

Msg format def.Msg Invoked
TA - # of registers

- type 
- offset
- valid value
….
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Fig. 6. TFence traps TA invocation and verifies the message bound for
the TA.

4.4.3 Message Verification

Depending on the TA type or TEE OS implementation, the
message format can be varied. For example, Qualcomm’s
TrustZone implementation defines several SMC invocation
formats based on the atomicity of the operation of the
requested TA and the number of parameters delivered to
the TA [46]. The registers for the parameters can contain a
simple integer value or pointer that maps the address of the
message buffers for the request (and response) to (and from)
the TA. Besides, the message buffers themselves can contain
the application specific (i.e., TA) data structure that defines
several different types of members (i.e., scalar and pointers)
for communication between the CA and TA.

Thus, TFence needs to recognize the semantics of mes-
sage formats to properly validate the message when the
SMC instruction is invoked. This requires current TA val-
idation processes conducted by TEE providers or the TA
development process to be reinforced with a supplementary
task that analyzes and extracts the semantics of a message
consumed by each TA. The metadata defining the available
message formats can either be provided with the corre-
sponding TA, or can be part of the TEE and updated by
the firmware upgrade procedure of the device when new
formats are defined. By doing so, the predefined message
formats can be shared with TFence and application devel-
opers.

In TFence, we designed the PoC message format to
enable it to present serialized information such as the num-
ber of registers used, the type (i.e., scalar or pointer), and
offset of each object in the buffers, and imposed a unique
message format identifier. Accordingly, the identifier can be
provided to TFence when the SMC is executed. The current
TFence prototype utilizes the immediate value of the SMC
instruction to place the identifier. As the immediate value
consists of 4 bits on 32-bit ARM processors, it can present
up to sixteen formats associated with each TA identifier. In
the case that TA needs to define more than sixteen formats,
we can reserve one of the general registers to present more
information. On 64-bit processors, the size of the immediate
value is 16 bits, and we expect this to be sufficient to be used
for delivering the format information.

Trapped and verified SMC. To verify every message sent
to the TEE, instead of allowing the SMC instruction invoca-
tion to directly switch the processor mode from par-priv
to Monitor, TFence traps all the SMC instruction execution
that occurred in the REE and verifies its legitimacy (Figure
6). This verification process might be disadvantageous in
performance compared with the alternative design that ver-
ifies messages in the TEE. This is because of the overhead
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TABLE 4
TEE-related CVEs and TFence defense mechanism.

Group CVE id Exploit primitive TFence defense mechanism
G1 CVE-2014-4322 Memory bound check failure, integer overflow Sandboxing (exploit isolation) in

par-priv modeCVE-2015-4421 Memory bound check failure, arbitrary memory write
G2 CVE-2015-6639, CVE-2015-6647 Memory bound check failure, buffer overflow Message authentication, integrity

protection, and verification
CVE-2016-2431 Blindly trust the system call parameters from TA, arbitrary memory write
CVE-2013-3051, CVE-2015-4422 No memory bound check, arbitrary memory write

G3 CVE-2016-5349 Pointer sanitization failure, arbitrary memory read Pointer sanitization based on non-
falsifiable message formatCVE-2016-8763, CVE-2016-8764 Pointer sanitization failure, arbitrary memory write

imposed by the additional mode switch from TFence to the
TEE after trapping and verifying the messages. However,
we adhere to this design decision to minimize the increase
in the TEE complexity and to prevent the creation of new
attack surfaces.

Once the SMC invocation is trapped, TFence verifies
several conditions: (1) It checks whether the current process
invoking the SMC was registered through TFence hypercall.
The value of the Translation Table Base Register (TTBR) is
compared against the information registered during the ini-
tialization process. (2) TFence checks if the SMC is invoked
by the shielded part by verifying the current value of the
Virtualization Translation Table Base Register (VTTBR) that
has a separate values for the shielded and non-shielded
parts. (3) The parameters fed into the TEE should also
be validated. TFence checks the parameters based on the
current message format definition, information of which is
delivered as the immediate value of the SMC instruction.

For the brevity of the explanation, we assume that the
message format is the same as shown in Listing 1. R0 con-
tains the requested service number (i.e., TA identifier) that is
an integer value. TFence can validate it against the available
service numbers in the TEE. R1 contains the virtual address
of the request buffer. TFence converts the virtual address to
the physical, and checks if it falls within the memory area
of the shielded part (i.e., protected stack and heap) by using
the tentative invariants. The virtual address of the response
buffer to which the TA writes its response is held in R2. It is
validated in a similar way by using invariants. Specifically,
the translated physical address should not belong to one
of the protected objects such as the code of the shielded
part, the REE kernel, and the TEE. Finally, once all the
conditions are validated, TFence updates the register values
such that they reflect the physical address of the parameters
and invokes SMC to switch the processor to Monitor mode.

Note that, although our example message format is
very simple, there should not be any technical barrier to
validate application-specific data structures in the request
and response buffers. To this end, the definition of the
precise message format is significant and would require an
enhancement of the current TA investigation or develop-
ment procedure. In addition, the format identifier should
be imposed to ensure that it is tightly coupled with the
TA identifier and each of its operations (or commands)
to prevent malicious CAs from bypassing the procedure
TFence uses for the validation and sanitization of pointers.

5 CASE STUDY

In this section, we generalize the publicly disclosed TEE-
related vulnerabilities and classify them into one of three

groups as shown in Table 4. Additionally, we discuss the
effectiveness of TFence to hinder the attacks that exploit the
vulnerabilities.

Compromising TrustZone kernel driver (G1). Ad-
versaries have exploited the vulnerabilities in the TEE-
related drivers to escalate the privilege to kernel and thus
freely send crafted messages to the TEE. For instance,
both CVE-2014-4322 [47] and CVE-2015-4421 [8] exploit the
vulnerability–absence of memory address bound check in
the TrustZone driver–to compromise the kernel. Because
TFence also requires part of the TrustZone driver to be mi-
grated to the shielded part, the same vulnerability could be
exploited in the par-priv mode. However, TFence confines
the escalted privilege to the par-priv mode. This strictly
restricts the allowed privileged operation to the direct com-
munication with the trust anchors, whereas exploitation of
the TrustZone kernel enables the adversary to fully control
the REE. Moreover, the message verification conducted by
TFence would still be effective even in the presence of the
compromised OS.

Exploiting TEE vulnerability (G2). The vulnerabilities
in the TEE (i.e., TA or TEE OS) have been exploited to
compromise the TEE (G3 in Table 4). CVE-2015-6639 [9]
exploits the buffer overflow vulnerability to compromise
Qualcomm’s TEE DRM service. CVE-2013-3051 [48] and
CVE-2015-4422 [49] abuse the fact that a vulnerable TA does
not conduct any memory bound-check for the input from
the CA. CVE-2016-2431 [12] exploits the vulnerability of a
TEE OS system call, which blindly trusts the parameters
from any TA. The attack techniques exploiting these CVEs
other than CVE-2016-2431 are similar in that they abuse
some TA commands that are not supposed to be invoked
by the legitimate CA. Hence, the attacks can be prevented
by TFence enforcing a strict message verification policy es-
tablished for each process (i.e., the CA). For example, TFence
can define and use the list of allowed TAs and commands
for each CA to fulfill the message verification. However, de-
pending on the attack techniques, we also expect the current
pointer verification by TFence to be sufficient to neutralize
some CVEs. Note that since the CVE-2016-2431 exploits the
interface between the malicious TA and TEE OS, TFence
needs to prevent the first attack phase –compromising the
TA– to incapacitate this attack.

BOOMERANG attack (G3). The TEE generally believes
that the pointer values in the message from the REE are
properly sanitized. Unfortunately, the sanitization is con-
ducted based on the message format provided by the mes-
sage sender (i.e., CA), which can be easily compromised; the
adversary can provide an falsified message format to the
REE sanitizer to stealthily manipulate one of pointers such
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Fig. 7. Attacks against TEE with TFence.

that it represents the physical address of one of the REE
kernel objects. Consequently, the adversary can abuse the
TEE to attack the REE. By performing this confused deputy
attack, namely BOOMERANG [5], CVE-2016-5349 [50] and
CVE-2016-8762 [51] showed that the arbitrary memory read
and the privilege escalation to root can be achieved without
exploiting the REE vulnerabilities. TFence can effectively
address the BOOMERANG for the following reasons: (1)
message verification is performed based on the information
queried from the TEE, which cannot be directly manipulated
by the adversary (2) the pointers in the message are always
regarded as the virtual address; thus, they are converted
to physical address and sanitized by TFence before being
delivered to the TEE.

6 EVALUATION

6.1 TEE Attack and Defense

Real-world attacks against the TEE have abused the insecure
communication channel to deliver a malicious payload to
vulnerable trusted services as discribed in Section 5. As
the baseline defense of the TEE, TFence restricts arbitrary
messages from being fed into the TEE. In this section, we
discuss the efficacy of TFence in terms of the TEE protection
with several attack scenarios shown in Figure 7.

Attack 1. Arbitrary invocation of SMC instructions with
kernel and par-priv modes. Those are blocked by TFence
since the message senders are not registered by hypercalls
and are thus not authorized.

Attack 2. Direct access to the shielded part memory by
the kernel privileged process, which aims to manipulate the
message. This attack is detected by TFence due to the stage-2
paging faults incurred by the access to the protected area.

Attack 3. Malicious system services [33]. We deployed
the rootkit that hooks a memory allocator and reuse the al-
ready mapped memory for the new heap-memory allocation
request from the shielded part. If this attack succeeds, the
adversary can induce the shielded part to self-modify one
of the protected objects. However, this attack was prevented
by TFence because all the memory objects in the shielded
part are maintained as tentative invariants, which can be
checked whenever new memory is allocated.

Attack 4. Multi-core based TOCTOU attack. We exploit
the fact that the client applications of the TEE-based crypto
services (e.g., DRM and secure storage) open the encrypted
file, copy the contents to the shared buffer, and send it to the
TEE as part of the message to be processed by the invoked
TA. We first modify the file content such that it presents the
corrupted stack layout with malicious payload. When the
shielded process requests new memory for the buffer, we
inform the virtual address of the new allocation to another

core through the inter-processor interrupt (IPI). Then, the
core that receives the interrupt updates the page table of
the client application to remap the new buffer with the
protected stack, expecting the stack to be corrupted while
the shielded part is running. However, the attack failed due
to the invariant check mechanism of TFence that includes
page-table mapping validation and is conducted with every
mode switch (and SMC traps).

Attack 5. Malformed message delivery. We sent mali-
cious messages to the TEE, which contain a pointer to the
static region of the REE OS, and to the code and data of
the shielded part as the addresses of the response buffers,
respectively. This attack can lead the TEE to corrupt the
objects pointed to [5], [6]. TFence prevented the attack
based on the message verification mechanism that checks
the message by leveraging the permanent (and tentative)
invariants and message format definition of the currently
invoked trusted application (TA).

Limitation. Although TFence provides a way to au-
thenticate and protect the message, the effectiveness of the
message verification depends on the correctness and con-
creteness of the message format definition, which needs to
be explored further. In our prototype of TFence, only simple
information such as the type (e.g., scalar or pointer) of each
member of the message is described in the definition; hence,
confused deputy attacks [5] can be prevented by TFence
to a limited extent; unfortunately, it is possible for certain
messages to be valid in terms of the message verification,
but remain effective to exploit some vulnerabilities in the
TEE. Besides, although we address the memory allocation-
based Iago attack, other malicious system service-based
attacks can lead the shielded CA to create and deliver a
malicious message to the TEE. We aim to address these
limitations in our future work.

6.2 Par-priv Mode Security Analysis

The adoption of par-priv mode should not introduce new
attack surfaces to the system. However, since the par-priv
process is designed to run in System mode that has kernel
privilege, an adversary might attempt to exploit this to run
malicious code as the par-priv process. Thus, to protect the
REE from a malicious par-priv process, any attack that can
be crafted with the kernel privilege should be considered
and prevented by TFence.

The adversary abusing the par-priv mode could try to
manipulate the kernel memory or dump the memory of
other processes. To this end, the adversary would need to
modify the page-table entries to map the target object in the
memory or remove the protection attributes set in the page-
table. Memory-bound attacks such as these are prevented
as TFence isolates the par-priv process in the user memory
domain by leveraging DACR. Any kernel object, including
the page-table, is located in the kernel domain, which is
isolated from the user domain to prevent a malicious par-
priv process from accessing them.

The invocation of privileged instructions is also allowed
in System mode. Thus, the adversary could attempt to
manipulate DACR configuration, and thus to neutralize the
domain separation. Apart from this, he could simply disable
the MMU or the page-table based access-permission check
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Fig. 8. LMBench results of TFence normalized to Linux. In most cases,
the overhead is less than 7%.
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Fig. 9. Application benchmarks of TFence normalized to Linux. The re-
sult indicates that the maximum overhead imposed by enabling TFence
is 6%.

by configuring the SCTLR. However, TFence traps and
prevents any attempt to perform these security-critical op-
erations by leveraging hardware-assisted hypervisor traps.
With the ability to directly communicate with the trust an-
chors, the malicious par-priv process might try to perform a
brute force attack by sending arbitrary messages to the TEE.
This is also prevented since TFence traps and verifies all the
messages bound for the TEE by configuring the hypervisor
traps for SMC invocation and using the pre-defined message
formats.

The aforementioned protective measures would need to
be ensured by timely triggering TFence at every switch
between the par-priv and kernel modes. To this end, the
transition gates also require protection. Although the excep-
tion vector that invokes hypercalls when the mode switches
to kernel is mapped in the user domain, it is mapped
with read-only access permission for both the user and
kernel. Access to the page-tables and privileged instructions
that can be exploited to relocate the exception vector is
also restricted by TFence. The return to user also invokes
hypercalls when the mode switches from kernel to par-priv
mode. Being mapped in kernel domain, its access by the
par-priv process is obviously prevented. Finally, as shown in
the BOOMERANG attack, the adversary can abuse the TEE
to incapacitate the transition gates patched in the kernel.
However, this attack is also hampered by the message
verification process that checks each pointer-type member
against invariants maintained by TFence.

6.3 Performance
In this section, we analyze the performance overhead im-
posed on the REE OS and the CA, as incurred by TFence.

6.3.1 REE OS
We measured the overhead imposed on the REE OS by
running LMBench [52] and Phoronix Test Suite [53].

Microbenchmarks. Adopting TFence incurs perfor-
mance overhead in the following respects: (1) enabling the
stage-2 paging (2) execution of the transition gates on each
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Fig. 10. CA with TFence removes kernel dependency when communi-
cating with TEE.

CA TFence TEE

SMC: invoke TA Verify message/ reinvoke SMC

Return to TFenceReturn to CA in par-priv mode
4 TEE 

service

2

6

3

5

CA Kernel TEE
1 SVC: open TrustZone driver

SVC: write msg to TrustZone driver SMC: invoke TA

Return to kernelReturn to CA in user mode
4 TEE 

service

2

6

3

5

1
SVC: convert to 
par-priv process

Initialization
Invocation

Initialization
Invocation

Kernel

Fig. 11. Normal CA, which relies on kernel to communicate with TEE.

exception occurrence. Figure 8 shows the result of running
LMBench. We ran each case 100 times for both Linux and
TFence-enabled Linux, and estimated the overhead based
on the average latency from each case. The overhead is
normalized to Linux. Most operations caused less than 7%
of overhead except fork+exec, for which it is approximately
11%.

Application benchmarks. Figure 9 summarizes the nor-
malized overhead obtained with the Phoronix Test Suite,
which was relatively smaller than that observed with LM-
Bench. In most cases, the overhead for each test was less
than 1% regardless of the test type. Exceptionally, pybench
that performs system bound tests and estimates the average
performance results of Python showed 6% overhead, which
is the worst result achieved for our application benchmarks.
Compared to other test cases, we suspect that pybench
performs highly memory-intensive operations that require
frequent page-table walks and TLB flushes.

6.3.2 Client Application with TFence
In this section, the performance of SMC and HVC invoca-
tions, and the overall performance of CAs that leverages
TFence to secure communication were measured and ana-
lyzed.

Performance of communication with TA. In contrast to
a normal CA (Figure 11), a CA with TFence (Figure 10) does
not depend on the TrustZone kernel driver. We measured
the elapsed time for communication between a CA and TA
in both cases. For a normal CA, we created two versions of
TrustZone kernel drivers: a character device driver and proc
file. The drivers only contain primary functions such as the
ioctl or write proc handlers, and virtual-to-physical memory
translation. The ioctl and write proc handlers simply copy
the messages from the CA by using copy from user, config-
ure general registers for the parameters, and invoke SMC.
As creation of a message copy is unnecessary for a CA with
TFence, the CA simply configures parameters and invokes
the SMC.

Table 5 summarizes the result of the experiment. A CA
with TFence outperforms normal CAs in all aspects regard-
less of the kernel interface types used for SMC invocation. In
the initialization phase, a CA with TFence was significantly
faster than a normal CA (improved 83.5% against opening
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TABLE 5
Performance of communication between CA and TA.

Type Normal CA (proc file) Normal CA (char device) TFence CA w/o Trap TFence CA w/ Trap
Initialization open(proc tzdrv) 112.6µs open(char tzdrv) 54.5µs convert par priv 9.0µs convert par priv 9.0µs (-83.5%)*

Invocation write proc 25.7µs ioctl 16.2µs SMC 7.7µs (-52.5%)† SMC w/ trap 15.8µs (-2.5%)†
* Against open(char tzdrv), † Against ioctl

char tzdrv) due to the simplicity of the operation required
for par-priv process creation. In particular, the latency of
par-priv process creation involves elapsed time for config-
uring the SPSR to System followed by the interposition of
TFence to partially restict the privilege of the CA.

For TA invocation, direct SMC execution with a TFence
trap outperforms a normal CA that uses the ioctl interface
with 2.5% performance improvement. Note that the use
of ioctl includes the latency for message copying, memory
translation, and mode switches between the user, kernel,
and Monitor, whereas the SMC with traps includes the
time consumed for trapped message verification, memory
translation, and re-invocation of the SMC, and the round
trip latency between the par-priv, hypervisor, and Mon-
itor modes. In our evaluation, message verification was
performed as described in Section 4.4.3. We expect the
performance of SMC with TFence to be fluctuant depending
on the verification policy and the complexity of the message
format to be checked.

Performance of hypercall. We compared the hypercall
performance by creating a hypercall that simply invokes
TFence but immediately returns to the previous mode that
invoked the call. For a normal CA, we prepared two ver-
sions of hypercall invocation that are performed by (1) a
new system call and (2) device drivers (character device and
proc file). Each driver provides ioctl and read proc interfaces
to the normal CA to execute the HVC instruction. On the
other hand, a CA with TFence does not require any kernel
component for hypercall invocation. Thus, (3) we directly
execute the hypercall in a CA with TFence.

We ran each case 100 times and evaluated the average la-
tency. For (1), we directly executed the SVC instruction with
the new system-call number in a normal CA. The device
drivers for (2) are simpler than the TrustZone kernel drivers
used for the SMC performance evaluation. Particularly, the
drivers directly execute the hypercalls designated for this
evaluation without copying any parameter from the CA.

The results are presented in Table 6. The hypercall
invocation with TFence outperforms the two other cases
owing to the removal of kernel dependencies. The worst
performance was observed for the case with the kernel
driver. This is because the time complexity of the run with
the kernel drivers and standard libc functions (e.g., read) is
the highest among the three cases. Specifically, interaction
with the kernel through the read proc interface results in
higher latency than that with ioctl. However, depending on
the library and system call implementations, the latency and
the performance of hypercalls can be varied.

6.3.3 Open Source TEE with TFence
To evaluate the end-to-end overhead of securing the
communication channel, we applied TFence to the open
source TEE software–SierraTEE [54]. The TrustZone driver

TABLE 6
Hypercall performance comparison.

Type System call Kernel driver TFence hypercall
read proc ioctl

Invocation 9.1µs 26.7µs 11.5µs 7.5µs (-17.6%)†
† Against system call
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Fig. 12. Message format used in SierraTEE.
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Fig. 13. Crypto service overhead with TFence normalized to SierraTEE.

(otz client.ko) was isolated and executed as part of the
shielded part in par-priv mode, which required some
kernel-level functions to be removed (e.g., ioctl and
copy from user) or replaced with user-level functions (e.g.,
replacement of kmalloc with calloc). In addition to the Trust-
Zone driver, the TEE APIs (otz api.o and otz TEE api.o) and
wrapper functions to invoke them were also isolated in
the shielded part. Besides, the message verification was
performed based on the SierraTEE message format (Figure
12).

Table 7 presents the lines of code for implementing
TFence and a shielded process that invokes SierraTEE
crypto services. Particularly, the LOC for TEE kernel driver
indicates changes to the original code of SierraTEE kernel
driver and APIs. In our work, we manually performed the
program analysis and separation, which could be erroneous
depending on the program behavior and complexity (e.g.,
user input processing). Several works [55], [56], [57] propose
automatic methods for program separation and verification.
We will explore the feasibility of coordination between
TFence and those systems.

The performance overhead was measured by using
a Sierra TA that provides several crypto services: AES,
HMAC, and message digest (MD5). The size of the input
text varies from 0.5 KB to 2 KB. The CA prints out the
input text and the output of the crypto operations on each
run. Figure 13 shows the result of our experiment. The
maximum overhead was approximately 191% for the small-
est input size (0.5 KB) with MD5. However, the overhead
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TABLE 7
LOC for applying TFence to SierraTEE.

Components Language LOC
Non-shielded TFence API ASM 25

crypto service call C 137
Shielded TFence API ASM 21

TEE kernel driver C 361
TFence Hypervisor ASM + C 1823 + 74

Kernel patch ASM 63

dramatically decreased as the input size increased in all
cases. Thus, for an input size of 2 KB, the overhead became
negligible. According to our analysis, some overhead was
always added to the CA with TFence due to the additional
operations such as calculating and comparing the hashes
of the pages, and creating stage-2 page mapping. However,
this constant latency was amortized when the overall run-
time of the CA was sufficiently large.

7 DISCUSSION

7.1 Alternatives for Direct Communication

As an alternative means of realizing direct communication
between an application and trust anchors, we can consider
leveraging the hypervisor trap instead of System mode. For
instance, configuring the Hyp Configuration Register (HCR)
enables some instructions (e.g., DC ZVA) invoked in user
mode to be trapped in the hypervisor. The advantage of
this alternative approach might be minimizing the number
of kernel patches and the overhead for the par-priv mode
configuration (note that the application shielding is still
required).

However, we expect an increase in the development
complexity of hypervisor compared with the current design
because of the following reasons. The alternative approach
requires more hypervisor logics to distinguish and emulate
the trapped instruction to support both the original and new
functionalities of the instruction. Furthermore, the availabil-
ity of the instructions is OS-dependent because the user-
mode accessibility of certain instructions can be configured
by the OS kernel. This might lead to another trapping of
control instructions to restrict and emulate the OS behavior.
We will further explore alternative approaches for TFence
enhancement.

Message encryption can also be considered as a possi-
ble solution to protect the communication channel without
creating a par-priv process. However, this approach addi-
tionally requires ensuring the confidentiality of the shielded
part to protect the crypto logic and keys. Moreover, the con-
fidentiality requirement might result in placing additional
functions such as (un)marshaling of parameters transferred
between the shielded and non-shielded parts, which was not
necessary in our approach, which only needs to guarantee
the integrity of a message.

7.2 Compatibility with 64-bit Processor

Some hardware features (e.g., HSTR and DACR) leveraged
by TFence are not available in the 64-bit ARM architecture
(AArch64). However, porting TFence onto AArch64 remains
feasible because there are alternatives to the deprecated

features. Instead of HSTR, we could use HCR, which also
enables security-critical system operations to be trapped.
For memory isolation between the user and kernel, we
can use Translation Table Base Registers (TTBRs) and an
Address Space Identifier (ASID) to replace the operation
of DACR. That is, since the user and kernel memory are
naturally separated by using two TTBRs (i.e., TTBR0 and
TTBR1 for the user and kernel, respectively) on 64-bit Linux,
we can manipulate TTBR1 and ASID to remove the kernel
mapping without flushing TLBs whenever par-priv mode is
entered.

7.3 Performance Optimization
TFence consistently imposes overhead on the overall system
owing to the hypervisor activation, which is around 6%
with LMBench. We expect this overhead to be possibly
addressed by dynamically enabling and disabling TFence
based on the existence of the par-priv process. More specif-
ically, when the last par-priv process is terminated, we can
disable the stage-2 paging. This disabling might expose
TFence to an adversary that directly accesses the physical
memory. However, as shown in [58], we can utilize Trust-
Zone technology, TZASC [59], to protect hypervisor-related
memory (i.e., TFence) when the stage-2 paging is disabled.
In addition, to dynamically (de)activate the transition gate
that is inserted in each exception handler, we can leverage
the Vector Base Address Register (VBAR), which enables the
exception vector to be remapped to the address specified in
the VBAR. In particular, we can map the patched exception
vector for TFence only when there exists a par-priv process.
The performance optimization of TFence will be addressed
in our future work.

7.4 TEE Security for IoT Device
According to the new ARM architecture design for the
microcontrollers (ARMv8-M [60]), the optimized version of
TrustZone will be available for low-power devices as well.
For efficiency purposes, ARMv8-M exempts the Monitor
mode and SMC instruction, and enables the domain switch
between the REE and the TEE to be performed in a more di-
rect way by introducing a Secure Gateway (SG) instruction
(note that this is confined to low-power devices; thus, high-
end devices such as mobile phones would continue to use
the conventional version of TrustZone). We expect attacks
that exploit the arbitrary domain switch and the trusted
service invocation to continue to be possible even with the
new design. However, due to the resource constraint (e.g.,
ARMv8-M neither contains an MMU nor a hypervisor), a
different approach would have to be found to enhance the
TEE security. In future, we could explore the attack vectors
on these devices to devise efficient defense mechanisms.

8 CONCLUSION

We proposed a new mechanism for accessing TEE services,
which lessens an adversary’s opportunities to compromise
the TEE. As future works, we intend to further explore
the enhancement of the message verification mechanism to
defeat the attempt to exploit the potential vulnerabilities in
the TEE. In addition, we will validate the compatibility of
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our proposal with TEE standards, and optimize the design
of TFence to bridge the gap.
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