
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2980026, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2020.DOI

Value-based Constraint Control Flow
Integrity
DONGJAE JUNG1, MINSU KIM2, JINSOO JANG3, AND BRENT BYUNGHOON KANG.4,
(Member, IEEE)
1Graduate School of Information Security, School of Computing, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea (e-mail:
jjp1018@kaist.ac.kr)
2S2W LAB Inc., Seongnam, Republic of Korea (e-mail: minsu@s2wlab.com)
3Department of Computer Science & Engineering, Chungnam National University (CNU), Daejeon, Republic of Korea (jisjang@cnu.ac.kr)
4Graduate School of Information Security, School of Computing, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea (e-mail:
brentkang@kaist.ac.kr)

Co-Corresponding author: Jinsu Jang (e-mail: jisjang@cnu.ac.kr).
Corresponding author: Brent Byunghoon Kang (e-mail: brentkang@kaist.ac.kr).

ABSTRACT Control flow integrity (CFI) is a generic technique that prevents a control flow hijacking
attacks by verifying the legitimacy of indirect branches against a predefined set of targets. State-of-the-art
CFI solutions focus on reducing the number of targets using the context of a program such as the path to
the indirect branch and the origin of the code pointer. However, these solutions work with an impractical
assumption that the attacker only compromises control data; non-control data such as condition data that
can also be abused by attackers are not considered. To overcome these limitations, in this paper, we propose
value-based constraint CFI (vCFI) to improve the effectiveness of CFI by retrieving and protecting all data
that can potentially be manipulated for control flow hijacking. We first perform static analysis such as
dependency, condition, and data analyses to derive all control flow-related data. Then, vCFI protects these
data during runtime by instrumenting a program to be hardened. We implemented vCFI as a compiler
extension and evaluated its performance using SPEC CPU2006. The performance degradation caused by
adopting vCFI was reasonable, and the average overhead was 13.6%.

INDEX TERMS Control flow hijacking, control flow integrity, non-control data, program analysis

I. INTRODUCTION

CONTROL flow is a general target for attackers at-
tempting to compromise applications. For instance, an

attacker can exploit a stack buffer overflow bug, overwrite
the return address in the stack frame, and thus hijack the
control flow of the application after the manipulated return
address is used by indirect branch instructions (e.g., ret on
x86). Hijacking control flow implies that the attacker has
full control over the application as the attacker can now
execute arbitrary logic. Therefore, protecting the control flow
is considered key in software security.

Control flow integrity (CFI) [1] is the first approach that
proposed a defensive measure to protect the control flow. The
key idea is checking the legitimacy of a certain branch when
an attack occurs. A group of valid branch targets is derived by
a static analysis that constructs the control flow graph (CFG).
Since the proposal of CFI, a long stream of work has been
conducted to enhance the efficiency and accuracy of CFI [1]–
[14].

Unfortunately, despite considerable effort in CFI, its ef-
ficacy is still questionable. Many studies have shown loop
holes in CFI through which an attacker can exploit and by-
pass the CFI [15]–[21]. In particular, because pioneering CFI
works protect indirect branches based on over-approximated
valid branch targets derived from a static pointer analysis, the
attackers can achieve the intended task without violating CFI
mitigations.

Hence, state-of-the-art CFI research focuses on minimiz-
ing the number of valid targets on each indirect branch by
employing runtime information to refine statically generated
CFG. For example, PathArmor [11] and PittyPat [8] reduce
candidate targets of branches based on the program context
and the path to the indirect branch. They utilize the last
branch record (LBR) and the process trace (PT) to retrieve the
trace, respectively. These approaches allow the classification
of valid target addresses of a certain indirect branch depend-
ing on the program path; thus, they can reduce the number of
targets compared to a context-insensitive approach. However,

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2980026, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

even with these approaches, the number of valid targets on
a certain branch remains high, which gives the attacker an
opportunity to bypass the CFI. To improve accuracy in the
context of target reduction, OS-CFI [10] and µCFI [9] lever-
age different contextual information, the location of code
pointer updates, and the constraining data that determines the
conditional branch direction, separately.

Although previous works have contributed to improving
the effectiveness of CFI, the assumption underlying these
works is that the protection of data directly related to control
flows is sufficient to mitigate a control flow hijacking attack.
For example, µCFI shows that attackers can bypass CFI
solutions that impose tight constraint on only control data
by exploiting non-control data such as the index of array
containing function pointers. Thus, µCFI identifies the non-
control data that directly determines control data; it traces
the value of the non-control data at runtime to narrow down
a set of allowed branch targets to a unique value. However,
µCFI assumes an impractical threat model wherein attackers
cannot corrupt non-control data, and this indirectly affects
control flows.

Another limitation of previous works is that they depend
on architecture-specific hardware features such as LBR and
PT, which are manufactured by Intel. Although these hard-
ware features enable CFI solutions to obtain indispensable
runtime information for the strict refinement of CFG without
incurring significant performance overhead, they can result
in the following drawbacks. First, the dedicated design for
the specific hardware hinders the deployment of solutions to
systems that do not support the hardware features. Second,
the proposed measure inherits the limitation of such hardware
features. For instance, the number of branches that LBR can
track is limited to 16, and thus, path information derived from
LBR is limited as well. In addition, it has been known that the
program trace tracked by PT can be lost based on the amount
of monitored information [10]. The fundamental flaws of
hardware features can cause security holes to be exploited.

To improve the accuracy of the branch target reduction,
we propose vCFI. The key idea of vCFI is protecting every
operation associated with generating indirect and conditional
branches related to the indirect branches. Toward this end,
we analyze the data of the program and extract targets
of protection that determine the direction of branches. We
retrieve instructions that are responsible for generating or
updating the conditional value and indirect branch address.
Then, the instructions are patched such that all intermediate
operands for the computation of the conditional and indirect
branch values are stored in the shadow stack of the location
hidden from the attacker. This ensures that all values that
affect control flow are isolated (protected); thus, the benign
control flow is preserved during program runtime. Compared
to previous work, vCFI assumes a more strict attack model.
That is, the previous research exempts the existence of non-
control data attack that can diverge the control flow, such as
manipulating the flag in the conditional statement. In con-
trast, vCFI assumes a non-control data attack and proposes

a facility to protect important data that can be exploited
to divert control flow. Further, we use vCFI as a compiler
extension so that dependency to a specific hardware feature
can be minimized.

The contributions of this paper are as follows:
1. Preventing control data attacks and non-control data

attacks related to control flow: We proposed vCFI as a
more comprehensive and realistic method that eliminates the
limitation of conventional CFI approaches by ensuring the
integrity of control-related data and condition-related data.

2. Providing a generally applicable method: We designed
and implemented a prototype of vCFI for instrumenting
control/condition-related data. vCFI extracts data to be pro-
tected through static analysis and enforces them in runtime.
We implemented it such that it is not dependent on hardware
and is thereby more scalable.

3. Empirical evaluation on control flow-related data: We
evaluated the system using the common SPEC CPU2006
benchmark. Furthermore, through statistics and analysis on
the control flow-related data, we demonstrated the impor-
tance of control data and non-control data to affect control
flow. In addition, we proposed an applicable and more ef-
ficient method based on performance analysis. The results
showed that this system performed more accurately and
better compared to other conventional CFI techniques.

The remainder of this paper is organized as follows. Sec-
tions II and III describe the motivation behind the study and
provide the preliminary with code example. In section IV, we
describe the design of vCFI. In section V, we evaluate our
approach. In section VI, we describe related work. In section
VII, we discuss the limitations of our work. In section VIII,
we conclude the paper.

II. MOTIVATION
State-of-the-art CFIs are still vulnerable because of the fol-
lowing reasons.

A. LIMITATIONS OF POINTER ANALYSIS
The effectiveness of CFI depends on the accuracy of CFG.
Unfortunately, because the pointer value—the target of in-
direct branches (e.g., indirect jump, call, and return)—is
dynamically determined during runtime, it is considerably
difficult to conduct sound and complete pointer analysis [22].
The difficulty of conducting an accurate pointer analysis re-
sults in an overapproximated CFG that forces CFI techniques
to create an opportunity for attackers to bypass the security
perimeter. Previous works [5], [6], [13]have used heuristic
approaches to constrain indirect branch targets and improve
the accuracy of CFG.

B. IMPRACTICAL ASSUMPTIONS WITH NON-CONTROL
DATA
Most CFI approaches are designed with a relaxed attack
model that exempts the possibility of compromising non-
control data that affects control flow (e.g., a conditional flag).
Therefore, existing CFI techniques have only focused on

2 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2980026, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

1 t y p e d e f i n t (*FUNC) () ;
2 FUNC f u n c _ p t r [4] = {&add , &sub , &empty , &exec } ;
3 i n t c a l c _ p t r (i n t a u t h e n c a t e , i n t idx , c h a r * c) {
4 i n t a u t h = a u t h e n c a t e ;
5 i n t sum = 0 ;
6 FUNC func = &empty ;
7 w h i l e (i d x) {
8 i f (a u t h == UNPRIV) {
9 i f (i d x < 3)

10 f unc = f u n c _ p t r [i d x] ;
11 }
12 e l s e {
13 f unc = f u n c _ p t r [i d x] ;
14 }
15 s t r c p y (buf , c) ; / / b u f f e r o v e r f l o w
16 sum += (* func) () ; / / i n d i r e c t c a l l
17 i d x = idx −1;
18 }
19 r e t u r n sum ;
20 }
21

22 i n t main (i n t a rgc , c o n s t c h a r * a rgv []) {
23 i n t sum ;
24 c h a r buf [1 0 0] = { 0 , } ;
25 i n t a r g = a t o i (a rgv [1]) ;
26 i n t i d x = a t o i (a rgv [2]) ;
27 FUNC func = NULL;
28

29 sum = c a l c _ p t r (arg , idx , buf) ;
30

31 }

FIGURE 1: An example of a code snippet vulnerable to a
control-flow attack

protecting control data such as the function pointer. However,
this is an impractical assumption because the attacker is free
to manipulate either control data or non-control data based
on cost efficiency in terms of a successful attack. Therefore,
a reasonable attack model should not limit the capability of
the attacker to altering only the control data. In other words,
the possibility of compromising non-control data as well as
control data should be considered from the perspective of the
defender.

III. PRELIMINARY
Before in-depth discussion on the motivating example, we
categorize data into four types: control data, control de-
pendency data, condition data, and condition dependency
data; we also define each data type to avoid ambiguity.
Control data is data directly referred to by indirect branch
instructions (i.e., indirect jmp/call and return) as an operand.
This data includes function pointers in vtable and GOT,
code pointers in jump table, return address in stack, etc.
Control dependency data is data that affects control data.
Furthermore, data used to determine control dependency data
is also control dependency data.

Code example: The indirect branch includes an indirect
call, an indirect jump, and return instructions, and its target-
address is determined during the process runtime. Owing
to this nature, CFG is generated with approximation on the

candidates of branch targets. Therefore, the CFI techniques
inevitably check the validity of an indirect branch based on
the set of branch target candidates derived by static analysis.

Unfortunately, validation with the set is not enough to
defeat a control flow hijacking attack. As shown in a pre-
vious study [15], the attacker can achieve turing-complete
computation by changing the original indirect branch target
to one of the candidates in the set. There are several ways
to manipulate the indirect branch. First, the attacker can
directly modify the control data such as a function pointer
value. Second, the control dependency data that attributes
the generation of control data can be abused. Third, the
condition data such as a flag in a conditional statement can
be manipulated because it can resolve control data values.
Finally, condition dependency data that affects condition data
can be manipulated as well.

We present an extreme example in Figure 1 to illustrate
various attack points that can be abused to bypass CFI. In the
calc_ptr function, the exec can be executed when the value of
auth is "PRIV" and idx is 3. If we assume that the attacker’s
goal is launching the exec function, the func value-the control
data-can be directly modified to the address of exec. In
contrast, non-control data that affects control data can be
corrupted as well. For example, the attacker can change the
value of auth and idx to "PRIV" and "3," respectively; hence,
the control flow veers to line 13 and func is set to the address
of exec owing to the modified idx.

Existing approaches assumed that non-control data—idx
and auth in this example—are not manipulated. For instance,
µCFI can particularly check the validity of func (in line 16)
by tracking the value of idx. Therefore, provided that idx
is modified by the attacker, µCFI including other existing
approaches cannot detect control flow bending. We argue that
such an assumption is not practical, and we attempt to harden
the CFI with an even stronger attack model that assumes the
attacker can manipulate non-control data to deviate control
flow. In Section IV, we illustrate the design of vCFI to show
how it tackles such stronger attacks and reinforces CFI.

IV. DESIGN
A. OVERVIEW
In this section, we describe the design of value-based con-
straint CFI (vCFI). The designed vCFI aims to enhance CFI
by effectively reducing the target set of the indirect branches.
Although previous work proposed novel approaches [9],
[10] to achieve the same goal, we consider a more strict
and practical attack model that allows the attacker to ma-
nipulate both non-control and control data. To tackle this
malicious attack, vCFI attempts to protect every data that
can be abused to diverge control flow. Therefore, extracting
a proper set for control flow-related data forms the core of
vCFI. Toward this end, we perform static analysis to create
a general CFG based on basic block granularity. Besides, we
conduct dependency analysis for retrieving the relationship
between instructions and constraint analysis for augmenting
the accuracy of pointer analysis. Finally, control data, control

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2980026, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Algorithm 1 Dependency analysis
Input: instructions - all instructions of program
Output: dependency map
DM ← 0 //dependency map

1: repeat
2: for inst← instructions do
3: if isAllocInst(inst) then
4: DM ← DM ∪ (sink, dst)
5: else if isStoreInst(inst) then
6: DM ← DM ∪ (valueOpnd, ptrOpnd)
7: else if isCallInst(inst) then
8: func← calledFunc(callinst)
9: for arg ← args(func), opnd← opnds do

10: DM ← DM ∪ (opnd, arg)
11: end for
12: for ret← returns(func) do
13: DM ← DM ∪ (ret, dst)
14: end for
15: else
16: for opnd← opnds do
17: DM ← DM ∪ (opnd, dst)
18: end for
19: end if
20: end for
21: until no instruction is found

dependency data, condition data, and condition dependency
data are retrieved by data analysis. We instrument the pro-
gram such that these data are protected in a shadow memory;
thus, the integrity of control flow is preserved at runtime.

B. STATIC ANALYSIS
Our static analysis consists of branch, dependency, condition,
and data analysis. Through the analysis, we derive necessary
information such as control and dependency data, which play
critical roles in building vCFI. In the following subsections,
we describe the mechanism and goal of each analysis.

1) BRANCH ANALYSIS

The CFG describes the path between the basic block that is
a linear sequence of code. Because each basic block ends
with branch instructions (e.g., jump), we first conduct branch
analysis to draw a simple CFG. Then, we further conduct
type and pointer analysis to obtain more constraint for CFG.
For example, we can specify the candidate callee functions
by comparing the type and argument of callees and those set
in the caller.

Static value flow (SVF) analysis was used for pointer
analysis. SVF analysis enables flow-, context-, heap-, and
field-sensitive analysis. Specifically, pointer analysis and
value-flow analysis in SVF are conducted for only top-level
pointers and address-taken variables. We used information
analyzed in SVF to place more constraints on ambiguous
pointers.

2) DEPENDENCY ANALYSIS

vCFI preserves control flow by protecting every data associ-
ated with the calculation of conditional and control data. To
realize this, we thoroughly protect all data found in the static
analysis. However, this naive approach not only significantly
increases the program size, but also incurs a considerable
performance overhead. Therefore, we perform dependency
analysis to explicitly extract operations that indifferently
affect an indirect branch and the conditional branches on
the pass to that indirect branch. The Algorithm 1 shows
pseudocodes for dependency analysis.

In LLVM, intermediate representation (IR) is the language
internally used by a compiler to represent the source code. By
using IR, the compiler can analyze and optimize the program.
Similarly, for a general programming language, each line of
IR defines variables or operations. In particular, IR supports
various IR instructions, the operations for which range from
arithmetic, terminator (e.g., ret instruction), memory man-
agement, and conversion operations. Each instruction can
have corresponding operands. The operand can be another
instruction as well as a constant value. Therefore, we can
track the propagation of values by creating dependency map-
pings between the identical operand of different instructions
and by traversing them. For example, if we have a statement
with a binary operation "a = b + c," the dependency rela-
tion—(source, destination)—of this statement can be defined
as (b,a) and (c,a). Then, by backtracking the mapping from
a certain point of instruction (destination), we can find every
instruction (source) that affects the operation of the destina-
tion instruction.

Dependency information is significantly leveraged when
we perform data analysis to derive important data (e.g., con-
dition data and its dependency data) that need to be protected.

3) DEPENDENCY CHECK

Algorithm 2 shows pseudocodes for the dependency check
procedure. We create a dependency map between the source
and the destination operands for every instruction across all
functions. We specifically illustrate the dependency check
for the call instruction (callinst in LLVM IR). For callinst,
we need to check the dependency between the caller and the
callee.

In the callee, we first check the dependency data for the
return instruction by traversing the CFG backward from all
return instructions to the entry of the called function. Then,
we pair the callee’s formal return and caller’s actual return
(e.g., (callee_rtn, caller_rtn)). The dependency of the passed
arguments is checked as well. In this case, we perform
forward traversing. If one of the callee’s argument types is
pointer, we check the dependency of that argument. This
is because the value of a pointer-typed argument can be
changed in the callee. Similar to the return, a pair of the
callee’s formal argument and the caller’s actual argument is
created (e.g., (callee_arg, caller_arg)).

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2980026, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Algorithm 2 Dependency check
Input: target(src,dst), DM(dependency map)
Output: dependency data set
DS ← target(src, dst) //dependency data set

1: repeat
2: for target(src, dst)← DS do
3: for dep(src, dst)← DM do
4: if src(target) = dst(dep) then
5: DS ← DS ∪ dep(src, dst)
6: end if
7: end for
8: end for
9: until no new dependency data set is found

4) BACKWARD TRACING
Once we obtain the dependency map between the operands,
we perform backward traversing on it to collect all source
operands for the individual operand. As a result, sets of
dependency data for every operand can be finally retrieved
from this phase.

Src operands are tracked using backward traversing based
on the dependency map for the instruction operands. This
process finds all src operands with operands on the depen-
dency map as dst. The process of finding src operands having
the found operands as dst is repeated until there none are left.
Finally, a set of all dependency data related with the operands
of the target instruction to be analyzed can be obtained.

5) CONDITION ANALYSIS
vCFI needs to find the sets of all condition data that are on the
path between the current basic block with an indirect branch
and another basic block with a preceding indirect branch.
To this end, we conduct condition analysis to extract the
condition data that lead control flow to get to the current basic
block.

Algorithm 3 to find the conditional data is straightforward.
We continue to recursively traverse the previous basic blocks
of current basic block until the analysis reaches the entry
of the program. Thus, every basic block can have a set of
previous blocks. Note that the set has previous information
that can be retrieved from the path between the current block
and the entry of the program. Therefore, there could be
redundancy in the previous block information for different
basic blocks on the same path. We further discuss the removal
of this redundancy in Section IV-D.

6) DATA ANALYSIS
We find all data that can affect the indirect branch by con-
ducting data analysis. These data include control data, control
dependency data, condition data, and condition dependency
data. Recall that a callee is determined by the control data.
Moreover, the control flow to the instruction that determines
the control data is constructed with conditional branches.
Based on the results from the previous analysis, the CFG,

Algorithm 3 Condition analysis
Input: targetbb(target basic block)
Output: condition data set
CS ← 0 //condition data set
curbb← targetbb

1: repeat
2: BBs← previous(curbb)
3: for bb← BBs do
4: CS ← CS ∪ condition(bb)
5: curbb < −bb
6: end for
7: until no new bb is found

8: previous(bb)
9: func← getfunc(bb)

10: if bb is func entryblock then
11: BBs← callsite(func)
12: else
13: BBs← predecessor(bb)
14: end if

dependency map, and the set of condition data, we retrieve
all control flow-related data. The data analysis is fulfilled as
follows: 1) find the control data of current indirect branch;
2) find all dependency data and track instructions backward;
3) find all dependency instructions and retrieve the control
dependency data; 4) find all basic blocks that contain control
data and control dependency data; 5) find all previous blocks
and retrieve condition data; 6) find all condition dependency
data; 7) find all basic blocks that involve the condition-related
data (condition data and condition dependency data); and 8)
Repeat steps 5 to 7 until no basic block is found.

7) EXAMPLE
We illustrate the procedure for retrieving the control flow-
related data with LLVM IR in Figure 2. We first generate
the CFG by branch analysis and the dependency map by
dependency analysis. As an example of dependency map, line
3 (sink, %4), line 8 (%0, %4), line 7 (sink, %8), and line
12 (@empty, %8) can be created. After creating the CFG
and dependency map, we analyze the conditional branches.
Then, we start the data analysis with initially deriving the
control data, which is a pointer (%32) in line 53. We leverage
the dependency map to find the source of %32, which in our
example, is line 52 (%8, %32). In turn, we obtain the source
of %8 such as line 46 (%28, %8), line 35 (%22, %8), line 12
(@empty, %8), and line 7: (sink, %8). We repeat this until all
control dependency data are found.

Afterwards, we find all basic blocks that encompass the
control and control dependency data from the previous step.
For instance, label 29 is the basic black that contains control
data %32 (line 52). Line 46, line 35, line 12, and line 7 are
defined in basic blocks, the labels of which are 24, 18, and
the entry, respectively.

Then, the path to the found blocks is derived. In other

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2980026, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

1 ; Function Attrs: noinline nounwind optnone uwtable
2 define dso_local i32 @calc_ptr(i32, i32, i8*) #0 {
3 %4 = alloca i32, align 4
4 %5 = alloca i32, align 4
5 %6 = alloca i8*, align 8
6 %7 = alloca i32, align 4
7 %8 = alloca i32 (...)*, align 8
8 store i32 %0, i32* %4, align 4
9 store i32 %1, i32* %5, align 4

10 store i8* %2, i8** %6, align 8
11 store i32 0, i32* %7, align 4
12 store i32 (...)* bitcast (i32 ()* @empty to i32 (...)←↩

*), i32 (...)** %8, align 8
13 br label %9
14

15 ; <label>:9: ; preds = %29, %3
16 %10 = load i32, i32* %5, align 4
17 %11 = icmp ne i32 %10, 0
18 br i1 %11, label %12, label %38
19

20 ; <label>:12: ; preds = %9
21 %13 = load i32, i32* %4, align 4
22 %14 = icmp eq i32 %13, 0
23 br i1 %14, label %15, label %24
24

25 ; <label>:15: ; preds = %12
26 %16 = load i32, i32* %5, align 4
27 %17 = icmp slt i32 %16, 3
28 br i1 %17, label %18, label %23
29

30 ; <label>:18: ; preds = %15
31 %19 = load i32, i32* %5, align 4
32 %20 = sext i32 %19 to i64
33 %21 = getelementptr inbounds [4 x i32 (...)*], [4 x ←↩

i32 (...)*]* @func_ptr, i64 0, i64 %20
34 %22 = load i32 (...)*, i32 (...)** %21, align 8
35 store i32 (...)* %22, i32 (...)** %8, align 8
36 br label %23
37

38 ; <label>:23: ; preds = %18, %15
39 br label %29
40

41 ; <label>:24: ; preds = %12
42 %25 = load i32, i32* %5, align 4
43 %26 = sext i32 %25 to i64
44 %27 = getelementptr inbounds [4 x i32 (...)*], [4 x ←↩

i32 (...)*]* @func_ptr, i64 0, i64 %26
45 %28 = load i32 (...)*, i32 (...)** %27, align 8
46 store i32 (...)* %28, i32 (...)** %8, align 8
47 br label %29
48

49 ; <label>:29: ; preds = %24, %23
50 %30 = load i8*, i8** %6, align 8
51 %31 = call i8* @strcpy(i8* getelementptr inbounds ←↩

([100 x i8], [100 x i8]* @buf, i32 0, i32 0), i8←↩

* %30) #5
52 %32 = load i32 (...)*, i32 (...)** %8, align 8
53 %33 = call i32 (...) %32()
54 %34 = load i32, i32* %7, align 4
55 %35 = add nsw i32 %34, %33
56 store i32 %35, i32* %7, align 4
57 %36 = load i32, i32* %5, align 4
58 %37 = add nsw i32 %36, -1
59 store i32 %37, i32* %5, align 4
60 br label %9
61

62 ; <label>:38: ; preds = %9
63 %39 = load i32, i32* %7, align 4
64 ret i32 %39
65 }

FIGURE 2: LLVM IR code example

words, the blocks with labels 23 and 24 for the block with
label 29, the block with label 12 for the block with label
24, the block with label 15 for the block with label 18, and
the previous block for the callsite of @calc_ptr. Therefore,
we obtain the set of basic blocks with the entry, label 9,
label 12, label 15, label 18, label 23, and the label 24. Next,
we extract the condition operand of terminator instruction
in each basic block. For example, %11 in label 9, %14 in
label 12, and %17 in label 15 are the extracted condition
data. The basic blocks other than those for the extraction are
terminated with an unconditional branch so no condition data
are available. The dependency analysis is performed against
these condition data to derive the condition dependency data.
This procedure is repeated until no additional basic block is
found.

C. RUNTIME ENFORCEMENT
The data found in the static analysis stage are all the data that
can be misused to manipulate the control flow when indirect
control transfer occurs. During execution, these data should
be protected from modification attacks based on memory
corruption. Therefore, we ensure control flow integrity by
checking whether the corresponding data have been modified
during execution. To ensure the integrity of correspond-
ing data, the instructions using the corresponding data as
operands are instrumented, whereby the values indicating the
corresponding data of destination operands are stored in a
shadow memory, and the values indicating the corresponding
data of source operands are read from the shadow memory.
In this case, the data integrity can be ensured because data
values prior to modification are maintained in the shadow
memory even if data are modified by memory corruption. The
values saved in the shadow memory are referenced when the
data values are explicitly used by instructions.

1

2 s e t V a l u e
3 Idx = Hash(& d a t a) ;
4 S ec u r e [Idx] . add(& da ta , d a t a) ;
5

6 g e t V a l u e
7 Idx = Hash(& d a t a) ;
8 S e c u r e _ d a t a = Se c u r e [Idx] . f i n d (& da ta , d a t a) ;

FIGURE 3: Implementation code for runtime enforcement

The destination operands of each instruction should write
data values on the shadow memory, and the source operands
should add instructions to read the data values from the
shadow memory. Therefore, codes were added for this. The
selected method keeps a value of data in a secure region when
it is written on the memory and reads a value of data from
the secure region when read from memory. Figure 3 shows
pseudocodes of setValue for executing a write operation and
getValue for executing a read operation. setValue generates
Idx with the address value of data and afterwards, saves the
data in a safe region. On the other hand, getValue generates

6 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2980026, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Control Control dependency Condition Condition Dependency Control dependency
(excluded)

Condition dependency
(excluded) Total Protected data* (%)

bzip2 20 1109 736 3453 1036 3447 4226 16.96031

Hmmer 9 932 1693 7611 1004 9206 9440 20.26229

perlbench 137 2405 20880 50285 10296 74613 71305 18.82451

gcc 205 1134 48807 38831 20907 157601 86657 15.98301

gobmk 44 201 9907 23080 1233 49984 32987 11.72408

soplex 513 2324 2240 8606 6245 17818 11300 13.18384

povray 173 1486 7934 27173 8429 44290 35194 14.02554

Milc 4 5 333 1230 7 1558 1559 5.603882

omnetpp 709 4897 3349 11045 12239 22529 16142 12.25469

Total 1814 14493 95879 171314 61396 381046 268810

Average 201.5555556 1610.3333 10653.222 19034.88889 6821.777778 42338.44444 29867.78 14.313573

TABLE 1: Full condition analysis
In the sixth and seventh columns, “excluded” refers to data that are excluded because they are not used in the memory operations.

* protected data = (total / overall data in the program)

Idx with the address value of data as well and afterwards,
finds the data from the safe region and returns it. Then, com-
putation is performed using the safe data obtained. setValue
and getValue are added to the respective operations of one
instruction. setValue is added at a part where the data to be
protected are used as destination operands of the instruction,
and getValue is added at a part where the data to be protected
are used as source operands of the instruction.

D. OPTIMIZATION

Considering that an attacker abuses memory corruption, at-
tack may occur when data are in the memory. In other
words, the attacker has no way of directly modifying a
corresponding operand when the operand of instruction uses
a register, and not a memory reference. Therefore, the data
that need to be protected are limited to the operands of
memory read or write instructions. Therefore, only the data
related with memory operations were verified rather than
checking every operation related to the data. Furthermore,
the constant values existing in the code region were excluded
from the data to be protected because the code region could
not be modified directly because of data execution prevention
(DEP). The performance overhead is minimized by reducing
the number of targets to be monitored through this method.

Analysis is performed in the basic block unit in each
process of the static analysis to improve its efficiency. In par-
ticular, when a certain block already has an analyzed result,
the existing analysis result is used for the corresponding basic
block to avoid redundant analysis.

V. EVALUATION
We conducted the test using Spec CPU2006 Benchmark.
The test environment consisted of Ubuntu 18.04.2 LTS
(GNU/Linux 4.15.0-72-generic x86_64), Intel(R) Xeon(R)
Gold 6138 CPU @ 2.00GHz, and 128 GB memory. The
analysis was performed at the IR level of LLVM (version
7.0.0).

Statistical analysis results of the test are provided for all
data affecting the control flow of indirect calls. Based on the

analysis of these data, we investigate whether this method is
effective in terms of security and performance.

A. FULL CONDITION ANALYSIS
With respect to Table 1, analysis was performed for the
respective amount of control-related data (i.e., control data
and control dependency data) and condition-related data (i.e.,
condition data and condition dependency data) for all indirect
calls in the benchmark program. These data are all data that
can directly or indirectly change the target address of the
indirect branch. The total column indicates the amount of all
the control flow-related data affecting each indirect branch
(duplicates are excluded). As shown in the Table 1, the part
occupied by the control data are only 0.67% of total control
flow-related data, which is very insignificant. Furthermore,
the control-related data including control data and control
dependency data account for only 6% of total control flow-
related data. Thus, the attack surface for control dependency
data that can indirectly change the pointer value is much
larger than that for directly changing the control data to
modify a pointer value. Because all methods proposed in the
existing papers checked only control data, the possibility of
bypassing these methods is high. The excluded data refers to
the quantity of data unrelated to the memory operation among
the extracted data. A large amount of data to be protected
has been practically reduced in the program. This is because
vCFI extracts only the data that need to be protected through
static analysis. The proportion of data to be protected among
all instruction-related data after excluding the data unrelated
to memory operation is 14.3%. When analyzed statistically,
it can be said that 14.3% of control and condition-related
data are processed in runtime.

B. ONE-TIME CONDITION ANALYSIS
Protecting all condition-related data requires considerable
analysis time and system resource although it can com-
pletely protect all control flows on paths reached to indirect
calls. Furthermore, when considered in the perspective of
the attacker, as the distance of attack target (i.e., indirect
branch) from a location where memory corruption caused by

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2980026, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Control Control dependency Condition Condition Dependency Control dependency
(excluded)

Condition dependency
(excluded) Total Protected data* (%)

bzip2 20 1109 226 2121 1036 2059 2387 9.579805

Hmmer 9 932 242 3946 1004 4382 4255 9.133057

perlbench 137 2405 6526 22735 10296 37078 29541 7.798822

gcc 205 1134 11267 11759 20157 76143 22950 4.232896

gobmk 44 201 400 2699 1233 5383 3156 1.121691

soplex 513 2324 1080 5101 6245 12489 6699 7.8158

povray 173 1486 3513 14647 8429 27896 18356 7.315246

Milc 4 5 4 15 7 22 24 0.086269

omnetpp 709 4897 2579 9397 12199 19627 13736 10.4281

Total 1814 14493 25837 72420 60606 185079 101104

Average 201.5555556 1610.3333 2870.7778 8046.666667 6734 20564.33333 11233.78 6.39018737

TABLE 2: One-time condition analysis
In the sixth and seventh columns, “excluded” refers to data that are excluded because they are not used in the memory operations.

* protected data = (total / overall data in the program)

vulnerability occurs, it becomes increasingly difficult for the
attacker to modify the data as desired because of the side
effects caused by instructions in the middle; moreover, the
difficulty (cost) of attack increases because more detailed
attack configurations are required. Based on this fact, there
seems to be a room for applying a more practical method
than the full condition analysis method. Therefore, we also
tested a one-time condition analysis method that improved
performance by selectively analyzing the condition data and
condition dependency data that could be misused in actual
attacks.

When condition-related data are extracted through con-
dition analysis in the full condition analysis method, the
condition data and condition dependency data are extracted
by using control-related data as input values. Then, the
condition data and condition dependency data are selected
again through the condition analysis. This condition analy-
sis process is performed recursively, thereby extracting all
condition-related data.

In contrast, the one-time condition analysis method per-
forms a condition analysis only once. In other words, this
method performs the analysis for the condition-related data
of basic blocks directly branching to the basic blocks contain-
ing the control-related data. Therefore, the extracted control
data and control dependency data are identical to the results
of full condition analysis. However, for the condition-related
data, the analysis results are produced for only the condition
data of the basic block that can directly change the control
data and the control data dependency. Although this method
does not provide perfect integrity for indirect calls, it can
protect data that are relatively easy to modify when an attack
occurs; thus, improvements such as more efficient monitoring
and faster performance can be expected.

As shown in Table 2, control data and control depen-
dency data derived from the one-time condition analysis were
identical to the results of full condition analysis; however,
condition-related data derived as protection targets based on
a one-time condition analysis were reduced to 26.9% and
42.3%, respectively, compared to the results of Table 1.
Furthermore, the total amount of data to be monitored was

reduced to 37.6%.
However, although monitored amount of data has de-

creased, it does not mean that the strength of security pro-
vided by vCFI decreased considerably. In comparison with
conventional CFI studies, vCFI ensures same or higher se-
curity strength compared to conventional techniques of pro-
tecting only control data because vCFI protects all control-
related data including control data even if a one-time condi-
tion analysis is applied. When a one-time condition analysis
is applied, some part of the condition-related data, which are
protected in the full condition analysis, are excluded from
the protection targets; however, no serious security problem
occurs because it is relatively difficult to use the excluded
data in attacks.

We consider the cost and complexity of protection accord-
ing to the frequency of performing the condition analysis for
comparison with a full condition analysis-based method. In
this process, control dependency data, which are data that can
directly/indirectly change the control data, are all extracted,
and these data become the analysis targets of the condition
analysis.

Let us assume a trace reaching a target basic block con-
taining control data from the entry basic block of CFG. Here,
the control data exist in the target basic block and the control
dependency data exist at a location close to the target basic
block. Suppose the condition analysis is performed based on
these control-related data. Then, adjacent basic blocks will
be extracted starting from the previous basic block of the
basic block containing the control-related data. Let x be the
distance between the target basic block and the furthest basic
block from the target basic block among the basic blocks
containing the control-related data. Then, when the condition
analysis is performed only once, the previous basic blocks
of the control-related basic blocks will be extracted, and
the distance will be at least x+1. If the condition analysis
is performed once more, the distance will become x+2. If
this is repeated continuously, it ultimately becomes the full
condition analysis, and the distance becomes the distance
from the target basic block to the entry basic block.

As the condition analysis is repeated, condition-related

8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2980026, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Source size (bytes) Analysis time (s)

Original One-time Full Original One-time Full

bzip2 141460 311908 443292 0.84 7.48 32

Hmmer 309332 639776 1045952 1.82 33.98 326

perlbench 2540524 5148340 8617780 1333.88 5685 22118

gcc 5309816 8000236 13558296 700.58 6929 33951

gobmk 4592036 5402728 7624832 150.93 1561 31077

soplex 732544 1233416 1567364 11.39 1478 3917

povray 1888900 3570312 4897752 210.59 1960 4191

Milc 197952 216564 321752 0.71 0.69 1

omnetpp 1378472 2579024 2777996 66.4 4474 6938

Total 17091036 27102304 40855016 2477.14 22129.15 102551

Average 1899004 3011367.1 4539446.2 275.2377778 2458.794444 11394.55556

TABLE 3: Analysis performance

data located further away from the indirect call are protected.
Furthermore, if the relative distance from the indirect call
increases, various operations can change (affect) the values of
data. Hence, the possibility of a successful attack decreases
as it is difficult to compose the attack codes. In addition, the
possibility of becoming an attack target drops as well because
a large cost is required for an attack.

In general, it can be said that as the distance to the indirect
call decreases, the importance increases compared to that of
data relatively farther away. Consequently, a one-time con-
dition analysis is a method of protecting control/condition-
related data near a relatively more important indirect call.
Moreover, it also has the advantage that less performance
overhead can be expected compared to a full condition anal-
ysis.

C. ANALYSIS PERFORMANCE
The source size change and analysis time were evaluated
according to the adoption of vCFI. In the case of source
codes, the bitcode of LLVM IR was targeted. In general,
the increase in the source code size was proportional to the
amount of control-related data and condition-related data that
are to be protected among all the data of the program. When
the code size is compared with the average value of data to
be protected among the entire data shown in the last column
of Table 1 and 2, it can be seen that they are proportional to
each other.

The results indicate that static analysis time increases
exponentially as the size of analysis target program increases.
This is because the analysis is performed based on the com-
plex CFG of the program. The CFG of the program has a
tree structure, and as the depth increases, the number of child
basic blocks increases exponentially. In addition, the program
analysis time is affected by the complexity of the program
graph.

D. RUNTIME PERFORMANCE
This test measured the amount of overhead that occurs in
actual runtime. We performed the benchmark test repeatedly
for the original program, one-time condition analysis-applied

program, and full condition analysis-applied program, re-
spectively, and then, we obtained the average time for the
execution. The factor that had the largest influence on the
runtime performance was the depth of the indirect call in
the control flow of the program. Because the data from the
beginning of the execution trace to the indirect call must be
protected, the amount of data to be protected is determined
by the location of the indirect call, which considerably affects
performance.

In the case of a full condition analysis, the average over-
head was 13.7%. In contrast, it was 6.7% in the case of a
one-time condition analysis, thereby showing a considerably
better performance than the full condition analysis. In the
case of the program protected based on the one-time con-
dition analysis, a much smaller performance degradation was
observed because not every data existing on the execution
flow path from the entry to the indirect call was protected.

E. MEMORY PERFORMANCE
This test measured the memory usage of each process in
actual runtime. The measured amount represents the actual
memory size of the executed process. The increased amount
compared to the original memory size is the result of storing
additional runtime enforcement code and control-related data
in shadow memory. In the case of one-time condition analy-
sis, the average overhead was 1.7%. On the other hand, it was
4.3% in the case of full condition analysis.

F. SECURITY ANALYSIS
vCFI finds and protects all dependency data affecting the
control flow of indirect control transfer. These data include
all control-related data and condition-related data, and they
are protected from modification. In a full condition analysis,
no attack can occur on the control flow of an indirect branch
because every data that can modify the indirect branch is
protected. Therefore, the allowed target of the indirect branch
must always be 1.

In a one-time condition analysis, control-related data are
protected; however, not all condition-related data are pro-
tected. In this case, the control flow of the indirect branch

VOLUME 4, 2016 9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2980026, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Original (s) One-time (s) Full (s) One-time
overhead (%)

Full
overhead (%)

bzip2 8.187 8.986 10.97 9.759374618 33.9929156

Hmmer 4.978 5.919 5.938 18.90317397 19.28485335

perlbench 0.1412 0.1481 0.1679 4.886685552 18.90934844

gcc 1.317 1.331 1.377 1.06302202 4.555808656

gobmk 17.06 17.31 19.03 1.465416178 11.54747948

soplex 0.02045 0.02228 0.02287 8.948655257 11.83374083

povray 0.001968 0.002013 0.002086 2.286585366 5.995934959

Milc 23.01 23.34 23.51 1.434159061 2.172968275

omnetpp 0.5244 0.5829 0.6021 11.15560641 14.81693364

Total 55.240018 57.641293 61.619956 59.90267843 123.1099832

Average 6.137779778 6.4045881 6.8466618 6.655853158 13.67888703

TABLE 4: Runtime performance

Original (KB) One-time (KB) Full (KB) One-time
overhead (%)

Full
overhead (%)

bzip2 20128 20264 21024 0.675675676 4.451510334

Hmmer 8036 8336 8396 3.733200597 4.479840717

perlbench 7676 7976 8416 3.908285565 9.640437728

gcc 18984 19404 19980 2.212389381 5.246523388

gobmk 26368 26584 26728 0.819174757 1.365291262

soplex 4844 4860 5064 0.330305533 4.541701073

povray 2636 2712 2788 2.883156297 5.766312595

Milc 10068 10100 10228 0.317838697 1.589193484

omnetpp 11628 11696 11832 0.584795322 1.754385965

Total 110368 111932 114456 15.46482182 38.83519655

Average 12263.11111 12436.8889 12717.333 1.718313536 4.315021838

TABLE 5: Memory performance

can be modified by manipulating the condition-related data.
In this case, the number of allowed targets is not always 1.
However, only because the allowed target of the one-time
condition analysis does not always become 1, it does not
mean that the security strength is lower than that of the
existing approaches. This is because the assumption itself is
different from that of the existing one. We assume that every
data that can change the control flow can be manipulated
whereas other studies considered control data only attacks.
Therefore, when a comparison is performed under the same
assumption of control data only attacks as in existing stud-
ies, the one-time analysis method shows that the number
of allowed targets is always 1 as well because all control-
related data are protected from modification. On the other
hand, under the assumption that a non-control data attack is
possible, it cannot be said that the number of allowed targets
is always 1 for a one-time condition analysis as well as for
other approaches.

VI. RELATED WORK

Control-flow hijacking attack including code-reuse attack is
one of the prevalent methods to lead a vulnerable software
to deviate from its original execution path. Furthermore, the
widespread adoption of W⊕X (Write XOR Execute) prim-
itive prohibits attackers from code injection attacks, which
makes the attack technique an indispensable part of the attack

process. With the prevalence of this attack, CFI [1] was
proposed as a mitigation technique. As CFI enforces original
control-flow based on a control flow graph (CFG) derived
by a static analysis (e.g., point-to analysis), a sound and
complete static analysis is required to avoid disrupting the
functionality of the software and introducing security holes.
However, a sound and complete point-to analysis suffers
from the undecidability of aliasing [22].

As unsound point-to analysis can disturb the original func-
tionality of the program, early CFI works—coarse-grained
CFIs [2], [3]—employed sound but incomplete point-to anal-
ysis to generate CFG. The goal of coarse-grained CFI works
focuses on reducing performance overhead to practically
enforce CFI policies to programs. Thus, they relax the al-
lowed target on indirect branches. For example, BinCFI [3]
allows indirect calls to transfer to any function entries of the
program. Unfortunately, it has been shown that attackers still
construct payloads under the relaxed CFI restriction [12].

Fine-grained CFI is considered as a relatively secure CFI
policy compared to coarse-grained CFI. However, attackers
can bypass fine-grained CFI by exploiting over-approximated
edges of CFG [15]–[18]. To address the problem of fine-
grained CFI, researchers have strived for enhancing the ac-
curacy of CFG. MCFI [4] enables a fine-grained CFI policy
to be adopted to each module, which makes dynamic-link
libraries (DLLs) to be efficiently enforced by CFI. Forward-

10 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2980026, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

edge CFI [5] restricts the forward control transfers (i.e., indi-
rect jmp/call and virtual call) to more strict targets. TypeAr-
mor [6] also enforces strong fine-grained CFI on forward-
edges. As compared to forward-edge CFI, TypeArmor can be
adopted to a binary when the source code of the application
is not available.

Although previous works contribute to mitigate control-
flow hijacking attack practically, they inherit the drawback of
static analysis. In particular, only one target of each indirect
control transfer is determined as the runtime context. This
means that a valid target set derived by static analysis, except
for one target, can still be exploited to conduct a control-
flow hijacking attack. To overcome the limitation of static
analysis, mutational CFI, which refines fine-grained CFG
derived from static analysis by leveraging runtime informa-
tion, is used. Generally, extracting runtime information is
required for the original programs to be instrumented, which
incurs significant performance overhead. Thus, mutational
CFI uses hardware features such as branch trace store (BTS),
last branch record (LBR), and processor trace (PT), which
emit runtime information at the core-level and store them to
dedicated registers or buffer.

GRIFFIN [23] and PT-CFI [7] track the context informa-
tion from Intel PT, and then practically restrict backward-
edges to the call site of each function call. Furthermore,
recent works [8]–[11] have proposed a way to strictly narrow
down the allowed target of forward-edges. PathArmor [11]
supports context-sensitive CFI, which checks whether the
consecutive path stored in LBR exists within CFG. PITTY-
PAT [8], similar to PathArmor, enforces path-sensitive CFI
on a forward-edges; however, the target set of each indirect
branch is updated by the executed path at runtime while the
CFG of PathArmor remains intact. OS-CFI [10] defines the
concept of origin, which is the address and context of the
last assignment instruction for c-style indirect branch targets
and the address of object creation instruction for virtual calls.
With the help of the origin stored as meta-data, the target set
of each indirect branch can be divided into more fine-grained
branches. Although these works can eliminate inaccurate
forward-edges, they still approximated edges in exceptional
circumstances wherein a function pointer is retrieved from
a function pointer array and determined by the index of the
array at runtime. µCFI [9] addresses this issue of identifying
and tracking non-control data, which directly affects the
determination of control-flow.

Despite tremendous improvement on the accuracy of CFI,
the state-of-the-art research does not consider non-control
data attack which can hijack control-flow by corrupting the
data unrelated to control data. In general, since we assume
the threat model that a strong attacker can corrupt any data in
writable memory space, previous CFI approaches that only
assumes control data attack can be ineffective under control-
flow hijacking attack in the wild. Furthermore, the dependent
design on architecture-specific hardware features can be an
obstacle to wide deployment.

VII. DISCUSSION
In the runtime enforcement stage, we allocated a random
memory region and saved the data in that region. However,
brute force attack can occur for the randomly allocated
memory region. For instance, if the address of the random
memory region is preserved even with repeated forking of the
same instrumented process, which enables the random region
to be found without corresponding address change [24], the
data stored in the random memory region can be modified.
Furthermore, the protected data can be attacked if the random
address is found because of the vulnerability of the random
algorithm.

Such a drawback of random approaches can be overcome
by using hardware-based security techniques similar to those
of existing studies. For example, as shown in OS-CFI, a pro-
tected memory region can be created by using Intel MPX and
TSX, thereby protecting the control-related and condition-
related data in the corresponding region.

VIII. CONCLUSION
We proposed vCFI, which can protect all data that can change
the control flow related with an indirect branch. Through the
vCFI, we extract control-related data that affects the indirect
branch target and condition-related data that have influence
on the decision of control-related data. Furthermore, all the
extracted data, which potentially affect the control flow, are
protected in real time by instrumenting the program.

vCFI introduced a more powerful attack model, which
assumed that non-control data could be attacked as well and
resolved the problem. In that regard, the significance of vCFI
is large. Furthermore, the performance measurement has
demonstrated that the vCFI provides much stronger security
compared to the conventional techniques while maintaining
reasonable runtime overhead.

REFERENCES
[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow in-

tegrity,” in Proceedings of the 12th ACM conference on Computer and
communications security. ACM, 2005, pp. 340–353.

[2] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song,
and W. Zou, “Practical control flow integrity and randomization for binary
executables,” in Security and Privacy (SP), 2013 IEEE Symposium on.
IEEE, 2013, pp. 559–573.

[3] M. Zhang and R. Sekar, “Control flow integrity for cots binaries.” in
USENIX Security, 2013, pp. 337–352.

[4] B. Niu and G. Tan, “Modular control-flow integrity,” in Proceedings of the
35th ACM SIGPLAN Conference on Programming Language Design and
Implementation, vol. 49, no. 6. ACM, 2014, pp. 577–587.

[5] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson,
L. Lozano, and G. Pike, “Enforcing forward-edge control-flow integrity
in gcc & llvm.” in USENIX Security, vol. 26, 2014, pp. 27–40.

[6] V. Van Der Veen, E. Göktas, M. Contag, A. Pawoloski, X. Chen, S. Rawat,
H. Bos, T. Holz, E. Athanasopoulos, and C. Giuffrida, “A tough call:
Mitigating advanced code-reuse attacks at the binary level,” in 2016 IEEE
Symposium on Security and Privacy (SP). IEEE, 2016, pp. 934–953.

[7] Y. Gu, Q. Zhao, Y. Zhang, and Z. Lin, “Pt-cfi: Transparent backward-edge
control flow violation detection using intel processor trace,” in Proceedings
of the 7th ACM Conference on Data and Application Security and Privacy.
Scottsdale, Arizona, USA: ACM, march 2017.

[8] R. Ding, C. Qian, C. Song, B. Harris, T. Kim, and W. Lee, “Efficient
protection of path-sensitive control security,” in 26th {USENIX} Security
Symposium ({USENIX} Security 17), 2017, pp. 131–148.

VOLUME 4, 2016 11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2980026, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[9] H. Hu, C. Qian, C. Yagemann, S. P. H. Chung, W. R. Harris, T. Kim, and
W. Lee, “Enforcing unique code target property for control-flow integrity,”
in Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2018, pp. 1470–1486.

[10] M. R. Khandaker, W. Liu, A. Naser, Z. Wang, and J. Yang, “Origin-
sensitive control flow integrity,” in 28th {USENIX} Security Symposium
({USENIX} Security 19), 2019, pp. 195–211.

[11] V. van der Veen, D. Andriesse, E. Göktaş, B. Gras, L. Sambuc, A. Slowin-
ska, H. Bos, and C. Giuffrida, “Practical context-sensitive cfi,” in Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer and Communi-
cations Security. ACM, 2015, pp. 927–940.

[12] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of
control: Overcoming control-flow integrity,” in 2014 IEEE Symposium on
Security and Privacy. IEEE, 2014, pp. 575–589.

[13] B. Niu and G. Tan, “Per-input control-flow integrity,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security, 2015, pp. 914–926.

[14] V. Mohan, P. Larsen, S. Brunthaler, K. W. Hamlen, and M. Franz, “Opaque
control-flow integrity.” in NDSS, vol. 26, 2015, pp. 27–30.

[15] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross, “Control-
flow bending: On the effectiveness of control-flow integrity,” in 24th
USENIX Security Symposium (USENIX Security 15), 2015, pp. 161–176.

[16] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and T. Holz,
“Counterfeit object-oriented programming: On the difficulty of preventing
code reuse attacks in c++ applications,” in 2015 IEEE Symposium on
Security and Privacy. IEEE, 2015, pp. 745–762.

[17] M. Conti, S. Crane, L. Davi, M. Franz, P. Larsen, M. Negro, C. Liebchen,
M. Qunaibit, and A.-R. Sadeghi, “Losing control: On the effectiveness
of control-flow integrity under stack attacks,” in Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2015, pp. 952–963.

[18] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard, H. Okhravi,
and S. Sidiroglou-Douskos, “Control jujutsu: On the weaknesses of fine-
grained control flow integrity,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2015,
pp. 901–913.

[19] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose, “Stitching the
gadgets: On the ineffectiveness of coarse-grained control-flow integrity
protection,” in 23rd {USENIX} Security Symposium ({USENIX} Secu-
rity 14), 2014, pp. 401–416.

[20] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in Proceedings of the 14th ACM
conference on Computer and communications security. ACM, 2007, pp.
552–561.

[21] I. Evans, S. Fingeret, J. Gonzalez, U. Otgonbaatar, T. Tang, H. Shrobe,
S. Sidiroglou-Douskos, M. Rinard, and H. Okhravi, “Missing the point
(er): On the effectiveness of code pointer integrity,” in 2015 IEEE Sympo-
sium on Security and Privacy. IEEE, 2015, pp. 781–796.

[22] G. Ramalingam, “The undecidability of aliasing,” ACM Transactions on
Programming Languages and Systems (TOPLAS), vol. 16, no. 5, pp.
1467–1471, 1994.

[23] X. Ge, W. Cui, and T. Jaeger, “Griffin: Guarding control flows using intel
processor trace,” ACM SIGPLAN Notices, vol. 52, no. 4, pp. 585–598,
2017.

[24] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières, and D. Boneh, “Hack-
ing blind,” in 2014 IEEE Symposium on Security and Privacy. IEEE,
2014, pp. 227–242.

DONGJAE JUNG is currently pursuing a Ph.D.
degree from the Graduate School of Information
Security in the Korea Advanced Institute of Sci-
ence and Technology (KAIST), Daejeon, Rep. of
Korea. He received his BS degree in Information
and Computer Science from Ajou University, Su-
won, Rep. of Korea and his MS degree in Informa-
tion Security from the Korea Advanced Institute
of Science and Technology, Daejeon, Rep. of Ko-
rea. His current research interests include program

analysis, system security, and malware detection and analysis.

MINSU KIM is currently a principal researcher
at S2W LAB Inc., South Korea. He received the
his M.S. and Ph.D. degrees in Inforamation Se-
curity from Korea Advanced Institute of Science
and Technology (KAIST), South Korea, and also
received the B.S. degree in Computer Science
from KAIST. His research interest includes system
security, particularly, especially in the mitigations
against code reuse attack (CRA).

JINSOO JANG is currently an assistant professor
at the Department of Computer Science & Engi-
neering, at Chungnam National University (CNU).
Dr. Jang received his Ph.D. and MS in Informa-
tion Security from Korea Advanced Institute of
Science and Technology (KAIST), and BS from
Ajou University. He has been working on systems
security areas, particularly in hardening the trusted
execution environment (TEE) and leveraging gen-
eral hardware features to build various defensive

measures.

BRENT BYUNGHOON KANG (M’09) is cur-
rently an associate professor at the Graduate
School of Information Security at Korea Advanced
Institute of Science and Technology (KAIST).
Before KAIST, he has been with George Mason
University as an associate professor. Dr. Kang
received his PhD in Computer Science from the
University of California at Berkeley, , and his MS
degree from the University of Maryland at Col-
lege Park, and his BS degree from Seoul National

University. He has been working on in the field of systems security area
including botnet defense, OS kernel integrity monitors, trusted execution
environment, and hardware assisted security. He is currently a member of
the IEEE, the USENIX, and the ACM.

12 VOLUME 4, 2016

